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Abstract—In densely deployed wireless sensor networks, 

spatial data correlations are introduced by the observations 

of multiple spatially proximal sensor nodes on a same 

phenomenon or event. These correlations bring significant 

potential advantages for the development of efficient 

strategies for reducing energy consumption. In this paper, 

spatial data correlations are exploited to design cluster-

based routing algorithms of high data aggregation 

efficiency. We define the problem of selecting the set of 

cluster heads as the weighted connected dominating set 

problem. Then we develop a set of centralized 

approximation algorithms to select the cluster heads. 

Simulation results demonstrate the effectiveness and 

efficiency of the designed algorithms. 

Index Terms—Wireless Sensor Networks (WSNs), Routing, 

Clustering, Dominating Set, Ant-colony Optimization 

I. INTRODUCTION

Recent advances in wireless communications and 

embedded computing have enabled the creation of 

wireless sensor networks. Due to the features of 

reliability, accuracy, flexibility, cost-effectiveness and 

ease of deployment, wireless sensor networks are 

promising to be used in a wide range of applications, such 

as environmental monitoring, target tracking, etc [1]. As a 

consequence, wireless sensor networks are receiving 

more and more attention from researchers. In wireless 

sensor networks, sensor nodes are usually powered by 

batteries that cannot be replaced in most cases. As a 

result, the energy constraint has significant effect on the 

network design and makes energy efficiency a major 

design challenge [1]. 

Environmental monitoring is a kind of typical 

applications of wireless sensor networks. In such kind of 

applications of wireless sensor networks, it is generally 

needed to deploy the sensor nodes densely in order to 

achieve satisfactory coverage [2]. Due to the high density 

of sensor nodes, spatially proximal sensor observations 

are highly correlated. The core operation of an 

environmental monitoring wireless sensor network is to 

collect and process data at the network nodes, and then 

transmit the necessary data to the base station for further 

analysis and processing. The correlations of sensor data 

can be exploited to develop efficient approaches for 

reducing energy consumption in data collecting. 

Routing is an essential problem of wireless sensor 

networks. Due to the inherent constraints such as power, 

memory, and CPU processing capabilities of sensor 

nodes, routing in sensor networks is a challenging issue. 

Many routing protocols have been developed to make 

wireless sensor networks practical and efficient. These 

protocols can typically be classified into two types: (1) 

flat routing protocol, and (2) hierarchical routing protocol. 

In a wireless sensor network in which data correlation 

exists, the sensor nodes can perform data aggregation to 

avoid duplicated data transfers. [3] 

By grouping sensor nodes into different clusters, 

clustering allows hierarchical structures to be built on the 

nodes and thus can improve the scalability of multi-hop 

wireless sensor networks [4]. Typically, a clustering 

algorithm divides the network into subsets of nodes, 

called clusters, each with one node serving as the cluster 

head. After the formation of clusters, sensor nodes 

transmit their data to the cluster heads for data 

aggregation, and then the aggregated data are further 

transmitted to the sink. Clustering provides an 

architectural framework for exploiting spatial data 

correlations to reduce energy consumption [4]. By 

selecting the cluster heads efficiently, hierarchical routing 

protocols can be developed to reduce the usage of 

consumption power and maximize the life time of the 

networks. 

Various clustering algorithms have been proposed to 

organize sensor nodes in a wireless sensor network into 

clusters. In view of the energy constraint of such kind of 

network, many of these algorithms or protocols [5, 6, 7, 8, 

9, 10, 11] have considered the issue of energy 

consumption or network lifetime. However, without 

considering spatial data correlations when organizing 

nodes into clusters, the cluster structures generated by 

these algorithms cannot provide effective support for the 

aggregation and compression to exploiting spatial data 

correlations to reduce energy consumption. Motivated by 

this, this paper tries to investigate how to integrate spatial 

data correlations with clustering algorithms so as to bring 

forth network structures which are able to gain high 

energy-efficiency by exploiting spatial data correlations 

to reduce energy consumption. 

In this paper, we focus on designing routing 

algorithms to conserve energy by exploiting existing 

spatial data correlations which typically exist in sensor  
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networks in which sensor nodes are densely deployed. 

The targeted applications are monitoring applications that 

need to monitor a phenomenon over a geographic region 

covered by the sensor network. Such a sensor network is 

generally composed of two types of nodes: common 

sensor nodes and data sinks [12]. The data sink 

periodically gathers data values measured by common 

sensor nodes. By exploiting the spatial data correlations 

in the sensor data, our proposed algorithms select a small 

subset of sensor nodes which are called cluster heads. 

During data gathering, common sensor nodes first send 

their data to the cluster heads. Data compression is done 

by cluster heads, and then the compressed data is relayed 

to the sink. These cluster heads form a connected 

correlation-dominating set which means the resulting 

communication graph is connected. In this paper, based 

on defining the problem of selecting such a set of cluster 

heads as the weighted connected dominating set problem, 

we design several centralized and distributed algorithms 

for computing a weighted connected dominating set for a 

sensor network.  

In addition, we propose another approach to tackle the 

clustering problem in a different way. The approach has 

two steps. The first step selects a set of cluster heads that 

form a dominating set. This dominating set needs not to 

be connected. In the second step, a set of nodes are 

selected and added to the above dominating set to make 

the resulting union set a connected set. This problem is 

modeled as a Steiner Tree problem. Then the ant-colony 

algorithm is adopted to solve the problem. The 

effectiveness of the above described approaches is 

verified by extensive simulations. 

The rest of the paper is organized as follows: Section II 

formally defines the problem as a weighted connected 

dominating set problem. Section III presents the designed 

centralized and distributed algorithms, respectively. 

Section IV provides the numerical results to demonstrate 

the effectiveness of our clustering scheme through 

simulations. Finally, Section V gives concluding remarks 

and directions for future work. 

II. PROBLEM STATTEMENT

A.  Problem Definition 

This paper addresses the optimization problem that 

arises in wireless sensor networks with spatial data 

correlations. Given a wireless sensor network, select a set 

of cluster-heads C that satisfy (a) the selected cluster 

heads in C form a connected communication graph, (b) 

each sensor node that is not in C is a direct neighbor of a 

cluster head in C, and (c) the summation of the spatial 

data correlation degrees of all clusters is as large as 

possible. The first requirement for connectivity in the 

communication graph is due to the fact that the selected 

sensor set needs to collectively relay data to the sink. The 

second requirement makes sure that a node is either a 

cluster head or a direct neighbor of a cluster head. The 

third requirement is used to guarantee the resulting 

network structure is capable of make good use of the 

spatial data correlations to reduce energy consumption. 

This problem can be defined formally as a weighted 

connected dominating set problem in the following text. 

Definition 1. (Network Graph) Given a sensor network 

consisting of a set of sensor nodes V, the topology of the 

sensor network can be modeled as an undirected graph 

G(V, E) with V as the set of vertices and an edge (u, v) is 

included in the edges set E if two nodes, u and v, can 

communicate directly with each other. The network 

subgraph induced by a subset M of set V is the subgraph 

of G involving only the vertices and nodes in M.

Definition 2. (Correlation Degree) Let S be a subset of 

set V and s1, s2, …, sn be the members of set S. Let Xt(S) = 

{xt
i, i = 1, 2, …, n} be the vector of samples at time 

instant t returned by the n nodes in set S. The correlation 

degree Dt(S) among nodes in set S at time instant t is the 

spatial data correlation of Xt(S). Let S be a cluster, then 

we can define the correlation degree of cluster S

similarly. 

B.  Computation of Correlation Degree 

Given a sensor network consisting of a set of sensor 

nodes, we assume the spatial data correlation degree 

between two nodes is proportional to the distance 

between the two nodes. A model frequently encountered 

in practice is the Gaussian random field [13]. This model 

has the nice property that the dependence in data at 

different nodes is fully expressed by the covariance 

matrix, which makes it more suitable for analysis. Thus, 

we assume a jointly Gaussian model for the data

measured at nodes, with an N-dimensional multivariate 

normal distribution GN( , K): 
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where K is the covariance matrix (positive definite), and 

is the mean vector. The diagonal elements of K are the 

variances 2

iiik . The rest of Kij depend on the distance 

between the corresponding nodes (e.g. 

)exp( 2

,
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jiij adK ). Then, for any index combination I

= {i1, . . . , ik}  {1, . . . , N}, k  N, W = (Xi1, . . . , Xik )

is k-dimensional normal distributed. Its covariance matrix 

is the submatrix K[I] selected from K, with rows and 

columns corresponding to {i1, . . . , ik}. 

Without loss of generality, we use differential entropy 

instead of entropy, since we assume that data at all nodes 

is quantized with the same quantization step, and 

differential entropy differs from entropy by a constant for 

uniformly quantized variables. The entropy of a k-

dimensional multivariate normal distribution Gk( ,K) is: 
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Base on equation (2), we can compute the spatial data 

correlation degree of a set composed of a node and its 

close neighbors. After having computed the spatial data 

correlation degree, the clustering algorithms can pick out 

the cluster heads and group the nodes into different 

clusters. We will introduce the algorithms in the next 

section. 
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As for two correlated random data source Xi and Xj, let 

H(Xi) and H(Xj) be the entropies of Xi and Xj. Then Xi and 

Xj can code their data using H(Xi) and H(Xj) as their 

coding rate. If they can communicate with each other, 

they can jointly code their data using a coding rate H(Xi,

Xj). In [9], it has been proved that even Xi and Xj cannot 

communicate with each other, they can still jointly code 

their data using a coding rate H(Xi, Xj). The prerequisite is 

their coding rates are equal to their conditional entropies 

H(Xi|Xj)  and H(Xj|Xi). 

Above conclusion can be extended to 

multidimensional conditions. As for a data source set X = 

(X0, X1, X2, …, Xn), if the sources know the correlation 

structure, then the sources can use a joint coding rate 

H(X0, X1, X2, …, Xn) to code their data even they do not 

communicate with each other. Assume the sources in set 

X are arranged according to their distances to X0, then the 

coding rates are assigned as follows [14]:

*
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For a cluster, let X0 be the cluster head and (X1, X2, …, 

Xn) are the members that are listed according to their 

distances to X0. The coding rates can be assigned 

according to equation (3). 

C. Problem Definition 

After the formation of the clusters, the total 

communication cost incurred during the data gathering 

consists of two components, 
ktoclusterstotal EEE sin

,

where Eclusters means the communication cost consumed 

by each member of a cluster while sending the data to the 

cluster-head, and Etosink means the communication cost 

incurred by the cluster-heads while sending the data to 

the sink. When organizing sensor nodes into clusters, 

smaller number of clusters is preferred. This is because a 

smaller number not only means higher data compression 

rate, but also means the communication cost Etosink is 

lower. 

Let a set of sensor nodes C = {c1, c2, …, cm} be the set 

of selected cluster heads. Our goal is to select the set C

that holds the following conditions: 

1) Minimize
ktoclusterstotal EEE sin

.

2) For each sensor node u V, either u C or u V

 C holds. For each node u V  C, there exists a 

cluster head v C and there exists an edge (u, v)
E.

3) The communication subgraph induced by C is 
connected. 

4) The sink is a member of the cluster heads set C.
5) The residual energy of a cluster head is above 

certain threshold. 

To minimize the energy cost of data gathering, we 

need to do two sides of work. On one hand, we need to 

reduce Eclusters. On the other hand, we need to reduce 

Etosink. Sometimes, the reduction of Eclusters maybe means 

the rise of Etosink. Thus, a uniform energy cost is needed to 

unify Eclusters and Etosink. In this paper, the average energy 

cost for collecting the data generated by one node in one 

period is adopted to meet above purpose. 

As for a cluster C = {c0, c1, c2, …, cm} with c0 serves as 

the cluster head. Let T(ci) be the energy consumed by 

node ci for sending the data produced in one period by ci

to c0. T(ci) can be computed by following expression: 

*

0( ) 2 ( ( , ) )i elec i i t rT c E R d c c E E        (4) 

where Eelec is the energy cost by ci to start the 

communication module, Ri
* is the coding rate of ci,  is 

the data gathering frequency, d(ci, c0) Et represents the 

energy consumed by ci for sending a data unit, d(ci, c0) is 

the distance between ci and c0,  is the path loss exponent, 

Et is the energy for sending a data unit under the 

condition that the communication distance is the standard 

reference distance, and Er stands for the energy consumed 

by c0 for receiving a data unit. 

After cluster head c0 receives the data from the cluster 

members, it packs the data into packets with size  and 

forwards them to the base station. Let P(c0) be the energy 

cost by c0 for sending a packet to the base station, then 

the energy consumed for collecting the data produced by 

cluster C can be expressed as: 

*
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R P c  stands 

for Etosink.

Therefore, the average energy cost for collecting the 

data generated by one node in one period can be 

expressed as: 

*

0

1 1

1
( ) ( )

m m

i i

i i

Cost T c R P c
m m

           (6) 

To minimize Etosink, we need to minimize *

1

m

i

i

R . In 

another word, the data correlation degree of the cluster 

should be maximized. Notice that P(c0) can only be 

computed after the completion of clustering operation. 

P(c0) can be computed in an approximate way as follows: 

*0 0
0 * *

( , ) ( , )
( ) ( ( ) ) ( 1)( )elec t elec r

d c BS d c BS
P c E d E E E

d d
   (7) 

where d* stands for the optimum hop distance from c0 to 

the base station. Let x be the average hop distance from c0

to the base station, then the energy consumed by c0 for 

sending a packet to the base station can be expressed as: 

0 0( , ) ( , )
( ) ( ) ( 1)( )elec t r

d c BS d c BS
f x E x E Eelec E

x x
  (8) 

By differentiating (8), we have 
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Figure 1.  Illustration of Pieces 
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According to the condition of extremum, let expression 

(9) be equal to 0, then we get an equation. Solve the 

equation, then d* can be computed. 

* ( 1)(2 )elec r

t

E E
d

E
                  (10) 

The above-discussed clustering problem can be 

modeled as a weighted connected dominating set problem 

[15]. A dominating set of a graph G = (V, E) is a node 

subset S V, such that every node u V is either in S or 

adjacent to a node of S. A node of S is said to dominate 

itself and all adjacent vertices. If the nodes in a graph G

are assigned with different weights, then graph G is 

called a weighted graph. A weighted connected 

dominating set is a connected dominating set in a 

weighted graph. Our clustering problem can be modeled 

as finding a weighted connected dominating set in which 

the total summation of the weights of the cluster heads is 

maximum. Unfortunately, this problem is a problem of 

NPC hardness [16].  

III. CLUSTERING ALGORITHMS

A set of approximation algorithms are proposed to 

select a weighted connected dominating set for a sensor 

network. The algorithms are based on the two algorithms 

proposed in [17] by Guha and Khuller. 

To solve the connected dominating set problem 

discussed above, there are two strategies: 
1) In the process of computing the dominating set, 

the connectivity of the graph induced from the 
interim dominating set is ensured by constraining 
the candidate nodes from which the dominating 
nodes are selected. This strategy can guarantee the 
connectivity of the graph induced by the final 
dominating set. 

2) In the process of computing the dominating set, 
the candidate nodes from which the dominating 
nodes are selected are not constrained, thus the 
connectivity of the graph induced from the interim 
dominating set is not ensured. In order to 
guarantee the connectivity of the graph induced by 
the final dominating set, additional nodes may be 
needed to be added into the final dominating set. 

The two strategies presented above are denoted as 
Strategy I and Strategy II in this paper. In the following 
two subsections, we first present three algorithms based 
on Strategy I, then we present one algorithm based on 
Strategy II. These algorithms are all centralized 
algorithms. The base station with high computing ability 
and sufficient power supply is the suitable computing 
device to run these algorithms. To run these algorithms, 
the base station needs to collect the position and residual 
energy information of the sensor nodes. After the 
computation, the results are broadcast to the sensor 
nodes. 

A. Algorithms Based on Strategy I 

The three centralized algorithms proposed in this 

subsection are sequential algorithms, which means that 

they run in cycles and a node is chosen as a cluster head 

in a cycle. The repetition continues until every node in 

the network is either a cluster head or a direct neighbor of 

a cluster head. Given a sensor network, each node is 

associated with a color, white, gray, or black. All nodes 

are initially white and change color as the algorithm 

progresses. The algorithm is essentially an iteration of the 

process of choosing a white or gray node to dye black.

When a node is dyed black, any neighboring white nodes 

are changed to gray. At the end of the algorithm, the 

black nodes constitute a weighted connected dominating 

set. The meanings of three colors that a node u can have 

are explained as follows: 

white – node u is not in the dominating set, and u
is not dominated by a node colored as 

black.

gray – node u is not in the dominating set, but u is 

dominated by at least one node colored as black.

black – node u is in the dominating set and acts as 

a cluster head. 

We use the term piece to refer to a particular 

substructure of the network that is in the running process 

of an algorithm. A white node is simply regarded as a 

white piece, and a black piece contains a maximal set of 

black vertices whose weakly induced subgraph is 

connected plus any gray vertices that are adjacent to at 

least one of the black vertices of the piece. Fig. 1 

illustrates the definitions. The pieces are indicated by the 

dotted regions. Vertices a, b, and c are three white pieces. 

The other vertices are divided into 4 black pieces, which 

are marked as A, B, C and D in Fig. 1. 

In each iteration cycle of the algorithm, a single white

or gray node is chosen by the algorithm to dye black. The 

selection of the chosen node is based on following 

criteria: 

residual energy. If a node’s residual energy is lower 

than a certain threshold Ethreshold, then this node is 

deprived of the candidateship of becoming a cluster 

head. 

compression rate, Du / Nu, where Du is the  spatial 

data correlation degree of the node set composed of 

node u and its close white neighbors, and Nu is the 

number of cluster members if u is selected as a 

cluster head. This value indicates to what degree 

node u compresses the data sent to it if node u is 

selected as a cluster head and acts as the compressor 

node. If multiple nodes tie on this item, then next 
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Pseudocode of Algorithm I:

1. add all nodes to L1;

2. clear L2;

3. while (L1 is not empty) {

4. calculate the correlation degree of the nodes;

5. choose the best candidate => u;

6. dye u black;

7. delete u from L1;

8. add u to L2;

9. select node adjacent to u whose color are white => T;

10. color nodes in T gray;

11. delete nodes in S from L1;

12. add nodes in S to L2;

13. }

14. if (sink is gray)

15. color sink black;

Figure 2.  Pseudocode of Algorithm I  

item is used to break the tie. 

improvement. The improvement of a node u is 

defined as the number of distinct pieces within the 

closed neighborhood of u. That is, the improvement 

of u is the number of pieces that would be merged 

into a single black piece if u were to be dyed black. 

If there are still multiple nodes tying on this item, 

then the residual energy is used to break the tie. 

The compression rate of node u indicates to what 

degree that node u compresses the data sent from its 

neighbors. The improvement of node u indicates the 

number of pieces that will be reduced if node u was 

selected as a cluster head. The iteration goes on until 

there is only one piece left. In an iteration cycle, only 

nodes having more energy than Ethreshold are candidates of 

cluster heads. The compression rate is then compared. 

The node with the highest compression rate is selected as 

the best node. Tie is broken by using the improvement. . 

If there are still multiple nodes tie on improvement, then a 

node with the most residual energy is chosen to be the 

target node. 

The main differences between three algorithms lie in 

the number of black pieces and the candidate nodes set 

from which the target node is chosen. In Algorithm I, 

only one black piece is used and the best node is only 

chosen from all the gray nodes. This can insure the 

connectivity of the resulting dominating set. Like 

Algorithm I, only one black piece is used in Algorithm II 

too. Yet in Algorithm II, all gray nodes and white nodes 

that are one-hop to the black piece are candidates. If a 

white node u is selected as the target node, one gray node 

that connects u to a black node is also colored black. This 

can also insure the connectivity of the resulting 

dominating set. Different from Algorithm I and 

Algorithm II, multiple black pieces are used in Algorithm 

III. And in every iteration cycle, the best node is chosen 

form all gray and white nodes. The iteration cycle 

continues until two conditions are satisfied: 1) every node 

is either a member of the final dominating set or is 

dominated by another node; 2) the induced graph of the 

final dominating set is a connected graph. 

Fig. 2 presents the pseudo code of Algorithm I. Two 

lists, L1 and L2, are used to record nodes in the running 

process of the algorithm. L1 is used to record the nodes 

that are not included in the clusters, that is, nodes that are 

not colored as black or gray. On the other hand, L2 is used 

to record the nodes that are already included in the 

clusters, that is, the nodes in the black piece. At the 

beginning, all nodes are included in L1 and L2 is empty. 

Then the algorithm begins its iteration process. In each 

iteration cycle of the algorithm, the spatial data 

correlation degrees are first calculated. Then a single 

white or gray node is chosen by the algorithm to dye 

black. When a white or gray node is dyed black, all white 

nodes adjacent to it are colored gray. When a node is 

dyed black, it is placed into the black piece along with all 

of its newly gray neighbors. The best candidate is chosen 

based on the comparison discussed above. The best 

candidate and all the nodes just colored gray are deleted 

from L1 and added to L2. After all nodes are dyed black or 

gray, the algorithm judge if the sink is colored black or 

not. If the sink is colored gray, then the algorithm adds 

the sink to the weighted connected dominating set by 

coloring the sink black. 

The processes of Algorithm II and Algorithm III are 

similar to the process of Algorithm I, so the pseudo code 

of Algorithm II and Algorithm III are not presented.  

B. Algorithm Based on Strategy II 

The above-discussed algorithms can guarantee the 

final dominating set is a connected dominating set. 

However, the strategies used in these algorithms limit the 

selection range of nodes in every step, and this may make 

the clusters generated by these algorithms do not have the 

maximum correlation degrees. 

The approach proposed in this subsection tackles the 

clustering problem in a different way. The approach has 

two steps. The first step is similar to the algorithms 

discussed above. This step selects a set of cluster heads 

that form a dominating set. The difference lies in the 

candidate nodes set from which the optimum node is 

selected. In this algorithm, the candidate nodes set 

includes all the gray and white nodes. Consequently, the 

dominating set selected here needs not to be a connected 

dominating set.  

In the second step, a set of nodes are selected and 

added to the above dominating set to make the resulting 

union set a connected set. For a sensor network G = (V, E)

and the cluster heads set S = {s1, s2, …, sn}, some nodes 

of (V - S) can  selected and added to S to make the 

resulting set a connected tree with minimum 

communication cost. This problem can be modeled as the 

minimum Steiner Tree problem [18]. The minimum 

Steiner Tree of G(V, E) is a sub-graph G’(Vs, Es) without 

cycles. The cost function of G’ is defined as the 

summation of the costs of edges in Es, that is:  

2 2

( , )

( ) ( ( , ) * )
su v E

W S w d u v d          (11) 

Minimum Steiner Tree problem is a problem of NP-

complete hardness. Ant-colony algorithm is adopted to 

solve the problem. Multiple ants cooperate in solving the 

minimum Steiner Tree problem. The Ant-colony 

algorithm is shown in Fig. 3. 
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IV. NUMRICAL RESULTS

In this section the simulation results are presented to 

demonstrate the performance and effectiveness of our 

proposed algorithms. The number of nodes of the used 

networks ranges from 100 to 1000. The nodes are 

deployed uniformly on planes of different sizes to ensure 

all networks have a same node density. The network area 

is a square that is divided into sub-squares. The data of 

nodes in a same sub-square are strongly correlated, yet 

the data of nodes in different sub-squares are weakly 

correlated. Each sub-square follows Gaussian random 

field model. 

The above-discussed four algorithms are compared in 

the experiments. Among them, three algorithms are based 

on strategy I. These algorithms are denoted as Algorithm 

I, II, III respectively. Another algorithm is the algorithm 

based on strategy II. This algorithm is denoted as 

Algorithm IV. 

The networks work in a periodical way. In one period, 

a node produces 32 bytes data and codes them with the 

coding rate shown in expression (3), and then the data is 

sent to the cluster head. If a node and its cluster head lie 

in different sub-squares, the node sends the data directly 

to the cluster head without any processing. After a cluster 

head receives all the data from its cluster members, it 

reorganizes the data into packets with the size of 32 bytes 

and then forwards these packets to the base station.  

Three energy costs are compared in the experiments. 

These costs are the energy cost consumed inside clusters, 

the energy costs consumed outside the clusters, and the 

total cost. These three costs are denoted as in-cluster cost, 

CH-BS cost and total cost respectively. Figs. 4, 5 and 6 

show the comparisons of the three costs. It can be 

observed from the figures that Algorithm IV achieves the 

highest energy efficiency. 

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated how to exploit 

spatial data correlations in sensor data to develop 

efficient cluster-based routing algorithms for reducing 

energy consumption. We presented several centralized 

and distributed clustering algorithms that group sensor 

nodes into clusters of high data aggregation efficiency. 

These algorithms select the set of cluster heads for a 

sensor network by constructing a weighted connected 

dominating set. We showed the proposed weighted 

connected dominating set-based clustering approach an 

effective way for reducing energy consumption in 

collecting sensor data. As the future work, we plan to 

adopt different models to capture the spatial data 

correlations in our clustering approach. We also plan to 

exploit temporal and spatial data correlations jointly to 

refine our clustering algorithms. 

Figure 2. Pseudocode of ant colony optimization algorithm 
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Figure 6. Comparison of total cost 
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Figure 5. Comparison of CH-BS cost 
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