
Web Services Resilience Evaluation using LDS
Load dependent Server Models

Massimiliano Rak, Rocco Aversa, Beniamino Di Martino, Antonio Sgueglia
Dipartimento di Ingegneria dellInformazione,

Seconda Universitá di Napoli
Aversa(CE), Italy

Email: {massimiliano.rak, rocco.aversa, beniamino.dimartino}@unina2.it
antonio.sgueglia@gmail.com

Abstract— In the field of ICT, the term resilience is com-
monly used, understanding to mean the ability of a system
to deliver acceptable service in the presence of faults. We
interpret resilience assessment to mean assessment of ICT
systems in evolving environments and conditions and in
the presence of faults or failures of any kind. Resilience
Measurement and benchmarking is an open problem, mainly
referred to security-related problems. In this paper we
propose to model Web Services (WS)as Load Dependent
Servers (LDS), i.e. systems whose response time to a given
request depends on the load at the time the request is
received. Adoption of LDS-based models enable us to have a
simple way to represent the System state. We propose to use
this simple representation to quantify the system resilience
comparing models built using off-line measurement and
models built using on-line measurement.

Index Terms— SOA, resilience, Load Dependent Server,
Denial of Services

I. INTRODUCTION

Service Oriented Computing for the development of
open, large-scale interoperable systems is becoming a
customary approach. Web Service standards and their
implementations are widely spreading, and there are many
examples of “working” solutions. In Service Oriented
Application designs, abstraction layers completely hide
the underlying system to all users (i.e., both to final
users, system administrators and to service Developers).
Due to architecture’s transparency it is very hard for
application/service developers to perform a quantitative
evaluation at any stage of the system life cycle. This prob-
lems can be applied to any non-functional requirements(
i.e. performance, security, dependability, availability, . . . ).

In this paper we focus on the resilience, using the
term resilience we refer to the ability of a system to
deliver acceptable service, in presence of degraded system
conditions. A quantitative resilience evaluation means the
definition of an index which represents the perceived
quality of a system, respect to the system state. The main
difference between the Fault tolerance concept and the
Resilience, is that the first aims at defining techniques and
tools able to build up a system able to work in presence
of faults, the latter aims at quantifying the quality of a
system working in fault conditions.

Manuscript received April 29, 2009; revised October 7, 2009; ac-
cepted December 1, 2009.

Resilience is referred, not only to system degraded due
to system faults, but even to degradation due to secu-
rity problems, as an example the presence of malicious
attacks. At the state of the art ‘Quantitative evaluation
techniques have been mainly used to evaluate the impact
of accidental faults on systems dependability, while the
evaluation of security has been mainly based on qualita-
tive evaluation criteria. Therefore, there is a need for a
comprehensive modelling framework that can be used to
assess the impact of accidental faults as well as malicious
threats in an integrated way [1]. As a result a lot of
research work exists, aiming at resilience benchmarking.

The common approach to dependability benchmark
aims at modeling the “fault loads”,i.e. the loads generated
by the faults. Usually the dependability benchmark takes
place together with standard performance benchmark
(SPEC, TPC), measuring how the performance indexes
vary during as an effect of the fault loads. [1]–[3]. Fol-
lowing this approach both malicious threats and accidental
faults are modeled in terms of a load fault, most of the
papers, so, focus on the fault injection techniques and/or
in building up emulated security attacks.

The main lack, in this context, is that the proposed
approaches are unable to face all the “qualitative” security
problems, i.e. the effect of adoption of security mecha-
nisms, the administrative policies adopted, . . . . In fact the
state of the art lack in terms of security evaluation metrics
and security benchmarking.

The approach we propose in this paper is completely
different: instead of focusing on the dependability/security
benchmarks, we focus on the system: instead of us-
ing common, well-assested performance benchmarks and
models, we wonder if it is possible to build up a bench-
marking methodology in order to point out the system
behaviour depending on its (eventually degraded) state.
In other words: we aims at proposing a benchmarking
technique to discover a performance model which relates
the user perceived performances to the system state. If
such a technique exists, than we will be able to evaluate in
an homogeneous way, accidental faults, malicious threats,
security policy and mechanisms effects, . . .

As a result the approach we propose is to develop
a benchmarking technique which results not in a single
global index, but in a Model, i.e. a benchmarked descrip-

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 39

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcm.5.1.39-49



tion of the system, which synthesizes the obtained results
and can be used to evaluate the system behaviour under
given conditions.

Moreover we made the following considerations, which
lead to a set of requirements for the benchmarking tech-
nique.

Performance benchmark aims at reproducing real work-
loads and offer global evaluation in order to have a
simple way to compare two different platforms. The main
lack of the common approach is that it is independent
from the services: they evaluate a standard workload
on a set of standard services. This approach helps the
platform owners, but it is useless for service providers and
final users: what happens to the target web services and
workload? This consideration leads us to define the first
requirement for our benchmarking technique: The tech-
nique should be Service-centric, i.e. we aims at measuring
how a given service works. The web service platform,i.e.
the containers, the server, the hardware platform, is a
“parameter” for the WS evaluation. This means that the
benchmarking technique accepts as an input the service
WSDL.

Moreover, given a specific set of services, it is much
harder to define a standard workloads: it depends on
the services architecture! This means that the benchmark
approach we propose must be oriented to indirect mea-
surement: the second requirement is that the results
should be useful for predicting the performance behaviour
under real workloads.

A additional consideration should be done related to
the need of quantifying effect of both malicious at-
tacks and faults. Malicious attacks may result in Server
with gradually degrading performances, i.e. the system
is not in equilibrium (steady state), usually required in
benchmarking. In order to catch the system behaviour
in any condition, transients cannot be neglected. The
third requirement is that the proposed benchmarking
technique should be able to catch transitional behaviours.

In order to simplify the approach, as starting point we
assume that the services are offered on a dedicated plat-
form, and are, for the benchmarking, available for offline
benchmarking, i.e. we are able to perform our benchmarks
with the assumption that there is no additional load on the
servers. After a preliminary off-line measurement we will
be able to perform the same measurement on line This
assumption limits the technique applicability: we cannot
use it on publicly available services (such as services
offered by google, viamichelin, . . . ), we aims at facing
this kind of problems with future extensions.

The paper is organised as follows: next section illus-
trates the approach and describes the simple case study
adopted. Section III details the benchmarking technique
and related problems, using the case study services to
illustrate the technique. Section IV describes the bench-
marking output model, while section V illustrates some
examples of the model usage and how the results can
be used to evaluate the target environment and how it
can be used to quantify the system resilience. Section VI

illustrates the related work in the scientific community,
and section VII summarizes the results and outline the
future work.

II. APPROACH

As anticipated in introduction the approach we propose
in this paper aims at defining a benchmarking technique
which helps in discovering a performance model which
relates the user perceived performances to the system
state. The analysis we conducted lead us to define the
following requirements:

• the technique should be Service-centric, i.e. the
benchmarking technique accept as an input only the
service WSDL;

• the proposed benchmarking technique should be able
to catch transitional behaviours;

• the results should be useful for predicting the per-
formance behaviour under real workloads.

Moreover the performance index we will focus on is the
service response time, which is directly related to user-
perceived performances.

The main assumption we made in order to build up
such a technique is that the Web services can be modeled
as Load Dependent Servers (LDS), i.e a WS response
time received at instant t depends on the number (and
kind) of requests that the WS platform is elaborating at
instant t. We will demonstrate this assumption in section
III. Thanks to this behaviour we are able to model Web
services response time in terms of : RT (request) =
f(ServiceState, request), i.e the response time will be
represented as a function of the service state (in terms
of number and kind of pending requests) and the actual
request. This approach introduces the concept of Service
State: it depends only on the service usage and affect
the performance of the service itself. We will build up
the relationship Service State-Service RT performing a
set of ad hoc measurement, performed in a dedicated
environment. The result is that the services platform
(hardware, operating system, middle-ware) will be taken
into account by the derived model. Any kind of platform
degradation will result in changes between the expected
and the measured behaviour.

The proposed approach open the following questions,
which are strictly related each other:

• Are Web Services Load Dependent Servers?
• How to represent Service State?
• How to represent (model) the relationship Service

State-Service RT
• How to measure them?

It is very hard to reply to this question in abstract terms,
so we will focus on a simple reference case study, which
will help us to show the approach and validate it.

A. Test-bed and case study

As case study, we have chosen an application for
remote files archiving where the files may contain confi-
dential data. Even if the application is relatively simple, it

40 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



carries out complex tasks (analysis of large log files) and
has to meet desired security requirements, according to
user credentials and data confidentiality. The application
is composed of a set of services to store and to elaborate
files, allowing the adoption of authentication mechanisms.
The services enforce different security policies and im-
plement different security mechanisms. According to the
definition given previously of security level, we can say
that the service can operate at different security levels.
In other words, it is possible to search for, to access
and to use a service with different security features
depending on the user Requested Policy (RP). The RP
contains information on the credentials the user has, on
the confidentiality of the log file data and/or on other
service level constraints.

Figure 1 describes the service-based application, with-
out any security feature. The application sends the log
file to a storage service, which returns an unique FileID.
Every time that the application invokes the elaboration
services in order to “evaluate” the log file (e.g., to search
for DoS attacks, to search for statistics on a given IP
address, and so on), it passes the FileID to the elaboration
services. These access the original file, analyse it and
return the results. The proposed approach were validated
implementing a framework and applying it in a dedicated
test-bed. The testing environment we adopted is Callisto,
an IBM cluster available at Second University of Naples
composed of 40 nodes ( IBM e326m, 2 Opteron 2.2 GHz
Dual Core - RAM 2 GB - HD 2x72 GB - Network: 2
GB Ethernet), and a Front-end (IBM x346, 2 Xeon 2.2
GHz Dual Core HT - RAM 4 GB - HD RAID 6x72GB
- Network: 2 GB Ethernet), managed by means of a
Rocks Linux Cluster Distribution. We used the cluster
nodes both as clients and as hosts for the application
servers. As Service Platform we adopted three different
application server: AXIS and TOMCAT, using Geronimo
as container, Glassfish and Jetty.

As web service case of study, we developed a simple
application that offers a storage service. First the web
service receives the content of a plain text file, then
it stores the file into the local file system. Finally the
name of the just created file is returned to the service
requestor. Figure 1 illustrates a simple sequence diagram
in which the service usage is illustrated. Even if this
application is relatively simple, it uses many different
kind of resource of the service platform: disk access,
memory and CPU usage, and so forth. The Storage service
performance (response time) strongly depends on the
underlying platform, on which no assumption has been
done about (i.e. we will never use information given by
the underlying system).

In order to validate the approach, as simplifying as-
sumption, we assume that the resources assigned to the
platform never changes,i.e. the only workload on the
platform is given by our services. This assumption is
acceptable, because in real environment the platform
usually are dedicated resources, they are often built upon
a virtualized hardware. Moreover we will focus on be-

haviour of a single service, we will analyse composed
services behaviour and the effect of external workloads
in future works.

III. THE MEASUREMENT TECHNIQUE

The core of the approach is the measurement technique,
that we have defined and implemented in a framework
(SoaBNC). As first step the measurement technique needs
to represent the service state in terms of parameters which
the external workload is able to control: when a request is
received by a server at a time t, its service time depends
both on the number of requests the server is actually
managing at time t, and on the service parameters (in
the storage example the service parameter is the size of
file to store).

We build up our Test Clients (TCs) in order to “force“
the target system in a given state, maintaining a fixed
number of Pending requests on the server under test. The
TC, as shown in Figure 5, is composed of a large set
of threads, each one submits its requests to the server in
a closed loop way: when the server replies, it submits
the same request again for a given number of times.
By increasing the number of threads inside the TC, we
increase the total number of concurrent requests, and we
are able to control the total amount of requests a server
has to reply simultaneously at any time. TC registers the
time at which each request starts (Start Time), the time
each reply is received (Stop Time) and the number of
pending requests, at Start Time and Stop Time.

The TC aims at generating a fix and stable load,
however some response time do not respect the chosen
criteria (e.g., the response time to the first (or last)
messages). In order to face this problem we filter the log
files containing the service response times. We introduce
the following definition:

• Definition: PN(t) (Number of Pending Request at
time t) is the number of requests at time t that the
testing system has submitted to the server, without
receiving a reply.

The response time of requests started at time t are
interesting if and only PN(t) = N , where N is the
number of request we are interested on. Measurement are
not so accurate to grant that the PN(t) are exactly the
number of requests on the server (for example some of
the replies may be on the network) so we relax this condi-
tion assuming that (PN(t)/PNexpected) > Paccuracy
where Paccuracy is the accuracy requested in order to
consider acceptable the system state measurement. In the
following we assumed a Paccuracy = 0.99, however the
parameter is configurable in the SoaBNC framework.

The number of Pending requests can be evaluated in
two ways (our framework supports both the procedures):
(a) during the measurement the client take trace of the
number of pending requests; (b) analysing the log file
with start and stop time of each request. In the following
measurements we adopted the first approach, the second
one is, usually, more time expensive.

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 41

© 2010 ACADEMY PUBLISHER



Figure 1. Log Analysis Service Usage

Figure 2. The Closed Loop approach

In order to graphically evaluate a state measurement,
we adopt three different kind of plots:

• Pending Plot: for any given time of the experiment
(shown on the x-axis) it reports on the y-axis the
number of Pending requests(PN(t)); this plot helps
us to find the window of messages (and their starting
times) to be evaluated.

• Response Time Evaluation (RTE): reports on x-axis
the time in which a valid message (messages started
in the valid window) has been sent and on the y-axis
its evaluated response time.

• Response Time Histogram (RTH): reports the
number of messages (normalised to one) which
have the response time in an interval of values of
fixed length (the interval we use in the examples is
MaxResponsetime/20, which has shown us an ac-
ceptable resolution); this plot helps us to graphically
evaluate the statistical distribution of the response
time.

Figure 3 shows an example of the plots (side a Pending
Plot, side b RTE plot, side c RTH plot), for the case
in which we have 60 concurrent requests for the storage
server with a storage file of an hundred of bytes.

A. The Measurement Procedure

The proposed Measurement Technique, for the per-
formance characterisation of a given service S, can be
summarised in the following steps:

1) Define the Service Parameter (SP) values interval,
i.e., in the case of the storage services it is the
interval of values the file dimension has (in our
experiments 10, 100, 1000 bytes).

2) Define the Concurrent Request (CR) values Interval,
i.e., the number of concurrent requests we are
interesting to evaluate to build our performance
model

3) Start-up the Tests, at the state we use a Full Facto-
rial Design, evaluating all the combination of SPs
and CRs

4) Build up a report containing three plot (Pending,
Response Time Evaluation, Response Time His-
togram) for each test set.

The set of results will be adopted (section IV) to build
up models able to compare service platforms and predict
the service response time under any given workload.

B. Measurement Technique Validation

In order to validate the approach we must show that
the System Response Time (i.e. the response time of the

42 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



 0

 10

 20

 30

 40

 50

 60
 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

 7
e+

06

 8
e+

06

 9
e+

06

P
en

di
ng

 r
eq

ue
st

s

Time (micro sec)

 0
 200000
 400000
 600000
 800000
 1e+06

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

 7
e+

06

 8
e+

06

 9
e+

06

R
es

po
ns

e 
tim

e 
(m

ic
ro

 s
ec

)

Time (micro sec)

mean up value
mean down value

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0
12

56
2

25
12

4
37

68
6

50
24

9
62

81
1

75
37

3
87

93
6

10
04

98
11

30
60

12
56

23
13

81
85

15
07

47
16

33
10

17
58

72
18

84
34

20
09

97
21

35
59

22
61

21
23

86
84

25
12

46

Li
ke

lih
oo

d

Response time (micro sec)

(a) (b) (c)

Figure 3. Evaluation Plots: (a) Pending Plot, (b) Response Time Plot, (c) Histogram Plot

target service on the SUT) depends on the number of
Pending requests. This means that the resulting values
should be a constant value. Due to measurement error,
we have to take into account that the response time has a
statistical form, so we expect that it should have a Normal
Distribution, whose mean value represents our constant.
Standard deviation will help us to understand the accuracy
of our measurement.

Due to space limits, in this paper we will illustrate
the validation procedure only on the Storage service
(even if we made similar consideration on a larger set of
services and on their compositions), described in detail in
section II-A, which accepts as a parameter a file and store
it on the server file system. We modeled its behaviour
using three different file dimension (10 bytes, 100 bytes ,
1000 bytes) and varying the number of concurrent request
between 5 and 200 (step 5). Figure 4 shows some of the
results obtained, we just selected a set of values from the
full set of results, the first column contains the Pending
Plot, the second the RTE plot, while the last the RTH
plot. All the result refer to a file dimension of 100 bytes,
the first row contains the plots obtained for 40 concurrent
requests, the second for 100 requests and the last one for
140 requests.

Some consideration are really useful at this step. The
first one is that the Pending plot shows that the system not
always is able to maintain the stable load on the server
(sometimes the client becomes too slow, for example due
to page faults or other actions on the client host machine).
The Filtering technique let us to find the windows in
which the values are of interest. Moreover not always
the response time is a single constant value, for 40 and
100 concurrent requests, we obtain two different values. It
is interesting to point out that, as show by the histogram
(RTH plot) both have a Normal distribution: the server
has two different behaviour! We will call this the system
Double Response Time. Moreover it is important to point
out that the two measured behaviour have no relation to
the Pending plot shapes, in fact they are distributed on
all the response in all the valid windows. This result has
two effect on our methodology: the first one (negative)
shows that the system has an its own evolution that
is independent from the workload we submit to it, the
second one (positive) is that this evolution is regular (at
the end we have just two different values) and can be
statistically modeled using the proposed approach! Note

that when the number of the concurrent request grows
the results become more and more stable (from 140
concurrent requests to more the result is stable). Moreover
the lower value is usually more stable than the higher
value (i.e. the standard deviation is lower).

We suppose (but this analysis is unproven, and out of
the scope of this paper) that the second behaviour (the
one with higher response time) depends on the memory
usage: it is the response time of service when the garbage
collector of the JVM under tomcat starts. This will justify
the higher variance of this result.

In order to complete the analysis we have to point out
that some outliers are registered, as shown in the RTE
plots, in most of the case this happens just before the
client becomes unable to maintain the load on the server.
This can be a third server behaviour (whose response time
become so slow that the client has some side effects). In
this second case, we suppose that it depends on another
cyclic phenomenon on the server, for example it could be
the effect of page fault.

Our conclusions are that the proposed technique is
able to force the system states, in which the system
is not completely stable, but whose behaviour can be
easily modeled (as we will see in the following sections).
Moreover the proposed approach help us to catch an
important behaviour typical of this class of systems,
and which characterises the underlying platform. So the
proposed technique can be adopted, in future, to evaluate
and directly compare the service platforms, independently
from the offered services.

IV. BENCHMARK RESULT

The proposed measurement technique produces a large
set of values, which should be collect in a clear and
understandable way. Instead of proposing a single per-
formance index, we collected all the result in a synthetic
representation, named Basic Model (BM). BM is a simple
way to collect the measurement data obtained from the
technique above illustrated, it represents the system as
a simple Response Time vs (Pending Requests,Service
Parameter) table, containing all the measurement results,
it can be seen as a tabular description of the function:
RT = f(ConcurrentRequests, ServiceLoad). Table
I illustrates the Basic Model representing the Storage
Service in our test-bed environment. The BM can be used
to build up predictive models, it contains all the needed

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 43

© 2010 ACADEMY PUBLISHER



 0
 5

 10
 15
 20
 25
 30
 35
 40

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

 7
e+

06

P
en

di
ng

 r
eq

ue
st

s

Time (micro sec)

 0
 40000
 80000

 120000
 160000
 200000
 240000

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

R
es

po
ns

e 
tim

e 
(m

ic
ro

 s
ec

)

Time (micro sec)

mean up value
mean down value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0
80

21
16

04
2

24
06

4
32

08
5

40
10

6
48

12
8

56
14

9
64

17
1

72
19

2
80

21
3

88
23

5
96

25
6

10
42

78
11

22
99

12
03

20
12

83
42

13
63

63
14

43
84

15
24

06
16

04
27

Li
ke

lih
oo

d

Response time (micro sec)

 0

 20

 40

 60

 80

 100

 0

 2
e+

06

 4
e+

06

 6
e+

06

 8
e+

06

 1
e+

07

 1
.2

e+
07

 1
.4

e+
07

P
en

di
ng

 r
eq

ue
st

s

Time (micro sec)

 0
 200000
 400000
 600000
 800000
 1e+06

 0

 3
e+

06

 6
e+

06

 9
e+

06

 1
.2

e+
07

R
es

po
ns

e 
tim

e 
(m

ic
ro

 s
ec

)

Time (micro sec)

mean up value
mean down value

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0
17

91
6

35
83

2
53

74
8

71
66

4
89

58
0

10
74

96
12

54
12

14
33

28
16

12
44

17
91

60
19

70
76

21
49

92
23

29
08

25
08

24
26

87
41

28
66

57
30

45
73

32
24

89
34

04
05

35
83

21

Li
ke

lih
oo

d

Response time (micro sec)

 0
 20
 40
 60
 80

 100
 120
 140

 0

 2
e+

06

 4
e+

06

 6
e+

06

 8
e+

06

 1
e+

07

 1
.2

e+
07

 1
.4

e+
07

 1
.6

e+
07

 1
.8

e+
07

P
en

di
ng

 r
eq

ue
st

s

Time (micro sec)

 0
 200000
 400000
 600000
 800000
 1e+06

 0

 5
e+

06

 1
e+

07

 1
.5

e+
07

 2
e+

07

R
es

po
ns

e 
tim

e 
(m

ic
ro

 s
ec

)

Time (micro sec)

mean up value
mean down value

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0
25

55
4

51
10

8
76

66
2

10
22

16
12

77
70

15
33

24
17

88
79

20
44

33
22

99
87

25
55

41
28

10
95

30
66

49
33

22
04

35
77

58
38

33
12

40
88

66
43

44
20

45
99

74
48

55
28

51
10

83

Li
ke

lih
oo

d
Response time (micro sec)

(a) (b) (c)

Figure 4. Storage Service Evaluation Plots, File Dimension=100 byte, column (a) Pending, column (b) RTE,column (b) RTH; row 1) 40 concurrent
requests, row 2) 100 concurrent requests, row 3) 140 concurrent requests

information to build up a regression model or to build
up a simulator, it is out of the scope of this paper to
details the predictive models. In order to build the table
we need to face two main problem: designing the set of
experiment we want to perform and collect and managing
problems like the double response time values. About the
former problem, we have a given Service to characterise,
and the measurement technique let us to model it in terms
of 1) the concurrent requests, 2) the service parameters,
we just adopt a Full Factorial Design, collecting all the
possible combination of variable values. The double value
response time can be modeled assigning a probability to
each mean response time, to obtain this values we adopted
the following procedure:

1) analysing the RTH plot we are able to find a
threshold between the two normal distributions;

2) we evaluate the total number of messages in the
valid window (Total)

3) we evaluate the number of messages whose
response time is under/upper the threshold
(Low/High)

4) we evaluate the probability the response time
is under (up) the threshold as : Low/Total
(High/Total)

We call First Local Mean Response Time (LMRT1)
the mean response time for all the values under the
threshold and First Local Mean Probability (LMP1) the
probability that the response time is under the threshold.

Moreover we will use the name LMRT2 and LMP2
(Second Local Mean Response Time and Second Local
Mean Probability) for the values up the threshold. At the
state of the art we never meet system with three different
RT, in that case the proposed approach can be easily
extended. As a result we obtain the following table

Note that the proposed table can be used in order to
build up Regression Models of the target system, being
derived from a Full Factorial Design in which PR and
SP are the primary factors and the response time is the
response variable and in the section IV-A it is explained
how this models can be created.

In order to consult the BM table we propose a set of
BM Views, i.e. plots which summarise the most useful
information extracted from the measurement. This plot
can be easily generated from the BM table. that reports
less information, but helps in the system analysis. The
first two kind of plots (we call the the Summary plots)
need an additional performance index: Global Response
Time (GRT) which is the mean response time, it can be
easily evaluated as: GRT = p1 ∗ v1 + p2 ∗ v2, they are:

• Summary Service Parameter Variation Plot
(SSPV plot) it is an histogram plot, in which we
report on x-axis the Service Parameter values and
on the y-axis the GRT for each Pending Request).

• Summary Pending Requests Variation Plot (SPRV
plot) it is an histogram plot, in which we report on
x-axis the Pending Request values and on the y-axis

44 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



Pending 100 byte 1000 byte 10000 byte

10
20778.138889 0.207852%
7417.747813 0.792148%

23759.088123 0.360000%
8932.946121 0.640000%

230474.045455 0.712813%
178053.461538 0.287187%

30
20064837.100000 0.113208%

13193.502128 0.886792%
20016567.155405 0.128139%

9251.671301 0.871861%
496995.153846 0.115044%
104890.650000 0.884956%

60
39889774.212389 0.499915%
20105687.837700 0.500085%

39896118.759369 0.488452%
19404894.255518 0.511548%

38351145.329820 0.500000%
21832269.444747 0.500000%

90
59723169.181102 0.245397%
39306771.734448 0.754603%

59824112.668784 0.250170%
40057044.840297 0.749830%

57668507.421627 0.249631%
40938348.972189 0.750369%

120
59995541.706524 0.997957%
40157000.916667 0.002043%

59998405.808941 0.991121%
22146599.894231 0.008879%

60155694.951018 0.998894%
42366593.000000 0.001106%

150
80008628.591489 0.544572%
59510484.347750 0.455428%

79875403.686498 0.545579%
59850399.971206 0.454421%

78400065.079701 0.548427%
62401520.353851 0.451573%

TABLE I.
THE STORAGE SERVICE BASIC MODEL TABLE

the GRT for each Service Parameter.
Together with the summary plots we propose three

more detailed plots ( we call them Stochastic plots), which
gives a graphical representation of the proposed BM.

• Local Mean Service Parameter Variation Plot
(LMSPV plot) it is a line plot, in which we report
on x-axis the Service Parameter values and on the
y-axis two lines, one containing the LMRT1 values
and the second the LMRT2 values for each Pending
Request.

• Local Mean Pending Requests Variation Plot
(LMPRV plot) it is a line plot, in which we report
on x-axis the Service Parameter values and on the
y-axis two lines, one containing the LMRT1 values
and the second the LMRT2 values for each Service
Parameter.

• Mean Probability Service Parameter Variation
Plot (LMSPV plot) it is a line plot, in which we
report on x-axis the Service Parameter values and on
the y-axis two lines, one containing the LMP1 values
and the second the LMP2 values for each Pending
Request.

• Mean Probability Pending Requests Variation
Plot (LMPRV plot) it is a line plot, in which we
report on x-axis the Service Parameter values and on
the y-axis two lines, one containing the LMP1 values
and the second the LMP2 values for each Service
Parameter.

These plots help in understanding how the system be-
haviour evolves and can be used in order to build up
predictive models, as shown in the following section.

A. The Regression Model

In this subsection it is described how build up simple
and multiple regression models using the results obtained
in the previous chapter. In this case the number of
concurrent requests cr and the request parameter rp are
the primary factors and the mean response time y is the
response variable. The linear multiple regression model is
expressed by the equation:

y = b0 + b1 ∗ cr + b2 ∗ rp + e (1)

The terms e represents the error of the model. If we
organize the results of the experiments in a matrix where

yi is the mean response time of the i-th couple of
(cri, rpi) and cri and xrpi

are the values of the number
of pending requests and the request parameter for that
couple, we obtain that:

⎡
⎢⎢⎣

y1

y2

...
yk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 cr1 rp1

1 cr2 rp2

... ... ...
1 crn rpn

⎤
⎥⎥⎦

⎡
⎣

b0

b1

b2

⎤
⎦ +

⎡
⎢⎢⎣

e0

e1

...
ek

⎤
⎥⎥⎦ (2)

The previous expression can be written as Y = XB + e.
The values of b0, b1 and b2 that minimizes the Sum of
Squared Error are [4]:

B = (XT X)−1(XT y) (3)

Where B = [b0b1b2]
T . The following table summarizes

some parameter characterizing the model.
Parameter Value

Model y = Xb + e
b (XT X)−1(XT y)

ymean

∑
n

i=1
y

n

SS0 n(ymean)2

SSY
∑n

i=1
y2

i

SST SSY − SS0
SSR SST − SSE
R2 SSR

SST

The coefficient of determination (R2) indicates the
percentage of the variance of the model that is related
to the regression. The higher the value of R2, the better
the regression.
If we apply this technique to the storage service we obtain
that:

B = [−6.9128 ∗ 10064.939910056.0008 ∗ 1003] (4)

and R2 = 0.72533. In order to have a more accurate
model, the previous one can be linearized by fixing
the value of request parameter (linear simple regression
model):

y = b0 + b1 ∗ cr (5)

In this case the whole system is described by 3 functions
(one for each value of request parameter). For instance
for the storage service by fixing the value of request

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 45

© 2010 ACADEMY PUBLISHER



parameter at 100 the system can be modelled by the
function 6.

y = −5135804 + 539528 ∗ cr (6)

In this case the value of the coefficient of R2 is 0.98 and
the fig. IV-A shows the relation between the simple linear
regression model and the mean response time.

-1e+07
 0

 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

 0  2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

Li
ke

lih
oo

d

Response time (micro sec)

Mean response time
Linear multiple regression model

Figure 5. Simple linear regression model

V. RESILIENCE EVALUATION WITH LDS MODELS

The BM is a powerful tool for comparing system
behaviours, in fact it is a tabular representation of the
system states. In this section we will show how, adopting
the proposed technique, we are able to offer a clear quan-
tification of resilience when degradations are affecting
the system (and in consequence the BM). Moreover the
BM helps in isolating the causes of the service quality
degradation.

A. System Configuration

As first example we compare the measurement after
a system degradation. We assumed that the underlying
web services platforms (i.e. the hardware, the operating
system and the application server) are offered as black
box, however their configuration (and their degradations)
have direct effect on the offered services performance: in
this example we assume that the platform owners change
a parameter (the number of threads in the pool for the
application server), and we will show how this change
directly affects the BM.

Figures 6 and 7 show the plots SSPV (on side a) and
SPRV (on side b) for the storage service. As shown in the
figure, even if these plots are just a summary, they can be
really interesting and they show that our approach is able
to put in evidence details about the system architecture,
in fact if we focus on figure 7 we can notice that the
service response has two different behaviour: one before
and one after a threshold (in our case it is 115 Pending
Requests) that differ in term of order of magnitude of the
mean response time.

In order to put in evidence this behavior, we emulated
a system degradation, comparing the results for two the
Application Server thread pool dimension: 80, whose

results are described in figure 6, and 150, whose results
are described in figure 7. It is interesting to note that the
threshold for the behavior change does not correspond to
the maximum value, but to a value that is a few little: (115
for a limit of 150 and 35 for a limit of 80). Moreover both
before and after the threshold the behavior are linear.

Figure 8 contains the four stochastic plots for the
Storage service. Note how at the Pending threshold value
(the one at which the RT mean value changes) we have
an inversion of probability between low and high values.

The proposed example put in evidence that the pro-
posed benchmarks, together with the resulting model,
offer a powerful tool for comparing different platforms
states from the point of view of service performances.

B. Service behaviour changes during a DoS attack

As second example we emulated a simple DoS attack: a
client generates a continuous flood of service invocations,
but it never waits for the service completion. The result
is that the application server receives a large number of
uncompleted requests.

We started up the attack emulator and, during the
attack, we started up our benchmarks.

The attack we choose to emulate is very simple and
has only a little effect on the server: it represent an initial
DoS that will improve in time. We aims at showing that
the LDS model changes even in this case, helping in
identifying the problem.

We compare the result in two different condition: off-
line, i.e. the benchmark takes place in ad-hoc environ-
ment, and on-line, i.e. we started up the attack emulator
and, during the attack, we started up our benchmarks.

In order to reduce the benchmark time the on-line
measurements are focused on a limited set of concurrent
requests (up to 50, while offline measurement offer mea-
sures up to 150).

As anticipated the response time in both of the cases
is similar, but the stochastic plots show the difference
between the two different tests, as shown in figure 9,
while the probability of up and down values in com-
mon condition continuously changes between in the off-
line measurement, the presence of the DOS completely
changes the plots.
The new behaviour implies that the probability of obtain-
ing the better response time (the low value) is always
less than the second response value (the worst value).
When the attack starts, this result does not affect the final
mean response time, but when the attack increases the
performance loss will be visible.

VI. RELATED WORK

Evaluation and comparison of Web Services (and web
servers) platform is a common problem, usually faced
, in business world, with the typical benchmarking ap-
proach: the platform performances are characterised by
a performance index evaluated on a standard workload.
SPECweb05 and TPC-App are the most known standard

46 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

20 40 60 80 10
0

12
0

14
0M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Pending request

Results grouped by concurrent requests

rp=10 rp=100 rp=1000

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

10 10
0

10
00

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Pending request

Results grouped by request parameter

cr=20
cr=40
cr=60

cr=80
cr=100
cr=120

cr=140

Figure 6. Summary Plots: Thread limit 80 (a) Service Parameter Variation Plot (SSPV) (b) Pending Requests Variation Plot (SPRV)

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

20 40 60 80 10
0

12
0

14
0

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Pending request

Results grouped by request parameter

rp=10 rp=100 rp=1000

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

10 10
0

10
00

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Pending request

Results grouped by concurrent requests

cr=20
cr=40
cr=60

cr=80
cr=100
cr=120

cr=140

Figure 7. The Thread Pool Effects: Thread limit 150 (a) Service Parameter Variation Plot (SSPV) (b) Pending Requests Variation Plot (SPRV)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 250  500  750  1000

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Request parameter

Mean for high value
Mean for low value

 0

 0.2

 0.4

 0.6

 0.8

 1

 250  500  750  1000

Li
ke

lih
oo

d

Pending request

Mean for high value
Mean for low value

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 250  500  750  1000

M
ea

n 
re

sp
on

se
 ti

m
e 

(m
ic

ro
 s

ec
)

Request parameter

Mean for high value
Mean for low value

 0

 0.2

 0.4

 0.6

 0.8

 1

 250  500  750  1000
Li

ke
lih

oo
d

Pending request

Mean for high value
Mean for low value

(a) (b) (c) (d)

Figure 8. The Stochastic Plots: (a) Local Mean Service Parameter Variation Plot (LMSPV) (b)Local Mean Pending Requests Variation Plot (LMPRV)
(c)Mean Probability Service Parameter Variation Plot (LMSPV) (d)Mean Probability Pending Requests Variation Plot (LMPRV plot)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10  15  20  25  30  35  40  45  50

Li
ke

lih
oo

d

Concurrent request

High value Low value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160

Li
ke

lih
oo

d

Concurrent request

High value Low value

(a) (b)

Figure 9. The Stochastic Plots: (a) With DoS; (b) Without DoS

benchmarks. Benchmarking approach aims at evaluating
the server under a set of well-known workloads and to
compare different platforms respect to use cases consid-
ered typical. They can be used for high level comparison
of platforms (i.e. to sell a product), but they are of little
use in application (services) tuning and optimization and
for predicting the platform behaviour under different and
user-defined workloads.

It is out of the scope of this paper (and this section)
to offer a complete survey on the performance prediction
and modeling of Web services platforms, we will report

only that models and techniques that, at the best of authors
knowledge, have common features with our proposal. A
complete survey on model-based performance models is
[5], while [6], [7] are interesting readings which exploit
the main active research activities on Software Perfor-
mance Engineering (SPE).

As pointed out in [5], many modeling techniques
and formalism exist and are applicable to performance
prediction, between the extended queue network mod-
eling technologies, the LQN, as proposed in [8] may
be compatible with the proposed approach. In [9] (in

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 47

© 2010 ACADEMY PUBLISHER



figure 12) the authors perform some tests repeating the
same calls a fixed number of times (as we do) and in
fact they have a behaviour similar to the our ones (the
double value response time, due to the garbage collection
in their analysis) during the validation steps. They are
interested in the system start-up, while we focus on the
stable behaviour. Our works try to build up a rigorous
approach to face that kind of problems.

Wu and Woodside in [10], illustrate a framework which
combines measurement and model, in their approach the
workload is driven by user profiles and on real system us-
age. Measurement calibrate the models, while the models
define and manage tests. The main difference with our
approach is that our measurement defines (discover) the
model and we use user-independent workloads (which we
consider in the simulated predictive model).

The concept of Load Dependent Servers, proposed in
[11] (the idea originated in [12], [13]), perfectly match
with our modeling approach, they use standard benchmark
(as workload) and regression models to represent the
system behaviour, proposing a multi step methodology
for model calibration. The main differences are the way
in which their models are built and characterised. The
approach proposed in this paper can be used as an
alternative way to build up their LDS regression models.

Mathur and Apte, in [14] follow the idea of load-
dependent behaviour, modeled by LDS, and study the
evolution of LDS, modeling them using queue networks.
Note that they focus on simulation analysis, they use
measurements only to validate their models.

A completely different approach to black box system
modeling, that should be considered, is the adoption of
control-theoretic feedback loops, some interesting exam-
ples of their application to performance of computer
systems are [15]–[18].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposes a benchmarking technique,
which helps both in understanding the behaviour of the
hosting platform and in quantifying the system resilience.
The approach we adopted in building up the measurement
technique was to define a target system category (Load de-
pendent servers) and force them in a given state, then we
derive (in an automated way) the models from the mea-
surement. The measurement technique adopted, at the best
of the authors knowledge, even if sporadically adopted,
were never defined in this way, and never adopted in order
to build up automatic performance model.

The resulting models were used to compare the services
behavior in degraded server conditions, pointing in evi-
dence how the benchmarks catch the system degradation
and helps in defining their causes.

In our humble opinion a relevant result, obtained ap-
plying the technique on the proposed case study, is the
discovering of the LDS multiple behaviour (the double re-
sponse time). It is due to the presence of cyclic evolutions
of the server (garbage collections, effects of the memory
hierarchy, ...) and they are (partially) independent from

the workload the server is subject to. This behaviour, in
complex system, may be really hard to discover, but has
a visible effect upon the overall performance evaluation
of the target system (the delay introduced sometimes are
many times bigger than the most common response time).
This behaviour is very common, but very hard to discover
and reproduce.
The next step in the research activity is to use the tech-
nique and the models we introduced to create simulation
models able to predict the system behavior under a given
workload and in presence of faults. We aims at adopting
the simulation both in the development stages, in order
to predict how the degradation of a single service could
affect the behavior of composed services, and at run time,
predicting the system evolution under known workloads in
order to optimally tune the system. Moreover we aims at
investigating more in detail which are the kind of systems
that can be modeled following the proposed approach,
besides web services.

ACKNOWLEDGMENT

We wish to thank prof. Villano and the anonymous
reviewers for their comments, which helped us in improve
the paper quality.

REFERENCES

[1] A. van Moorsel et al., “State of the art, Tech. Rep. D2.1.a,
February 2009.

[2] B. M. L. S. Don Wilson, “Progress on defining
standardized classes for comparing the dependability of
computer systems.” unknown, 2002. [Online]. Available:
http://citeseer.ist.psu.edu/570755.html

[3] H. Madeira, “Assessing, measuring, and benchmarking
dependability and resilience,” in LADC, ser. Lecture Notes
in Computer Science, A. Bondavalli, F. V. Brasileiro, and
S. Rajsbaum, Eds., vol. 4746. Springer, 2007, p. 238.

[4] R. Jain, Ed., The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measure-
ment, Simulation, and Modeling. Wiley-InterScience, Apr
1991.

[5] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni,
“Model-based performance prediction in software devel-
opment: A survey,” IEEE Trans. Software Eng., vol. 30,
no. 5, pp. 295–310, 2004.

[6] C. M. Woodside, G. Franks, and D. C. Petriu, “The future
of software performance engineering,” in FOSE, L. C.
Briand and A. L. Wolf, Eds., 2007, pp. 171–187.

[7] C. M. Woodside, “The relationship of performance models
to data,” in SIPEW, ser. Lecture Notes in Computer Sci-
ence, S. Kounev, I. Gorton, and K. Sachs, Eds., vol. 5119.
Springer, 2008, pp. 9–28.

[8] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Ma-
jumdar, “The stochastic rendezvous network model for
performance of synchronous client-server-like distributed
software,” IEEE Trans. Computers, vol. 44, no. 1, pp. 20–
34, 1995.

[9] J. Xu, A. Oufimtsev, C. M. Woodside, and L. Murphy,
“Performance modeling and prediction of enterprise jav-
abeans with layered queuing network templates,” ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 2,
2006.

48 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



[10] X. Wu and C. M. Woodside, “A calibration framework
for capturing and calibrating software performance mod-
els,” in EPEW, ser. Lecture Notes in Computer Science,
N. Thomas and C. Juiz, Eds., vol. 5261. Springer, 2008,
pp. 32–47.

[11] M. Curiel and R. Puigjaner, “Using load dependent servers
to reduce the complexity of large client-server simula-
tion models,” in Performance Engineering, ser. Lecture
Notes in Computer Science, R. R. Dumke, C. Rauten-
strauch, A. Schmietendorf, and A. Scholz, Eds., vol. 2047.
Springer, 2001, pp. 131–147.

[12] J. Zahorjan and E. D. Lazowska, “Incorporating load
dependent servers in approximate mean value analysis,”
SIGMETRICS Perform. Eval. Rev., vol. 12, no. 3, pp. 52–
62, 1984.

[13] H. Perros, Y. Dallery, and G. Pujolle, “Analysis of a
queueing network model with class dependent window
flow control,” INFOCOM ’92. Eleventh Annual Joint
Conference of the IEEE Computer and Communications
Societies, IEEE, pp. 968–977 vol.2, May 1992.

[14] V. Mathur and V. Apte, “A computational complexity-
aware model for performance analysis of software servers,”
in MASCOTS, D. DeGroot, P. G. Harrison, H. A. G.
Wijshoff, and Z. Segall, Eds. IEEE Computer Society,
2004, pp. 537–544.

[15] M. Karlsson and M. Covell, “Dynamic black-box per-
formance model estimation for self-tuning regulators,”
in ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 172–182.

[16] J. L. Hellerstein, Y. Diao, S. Parek, and D. M. Tilnury,
Feedback Control of COmputing Systems. Wiley-IEEE
Press, 2004.

[17] C. Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and S. Son,
“Feedback control architecture and design methodology
for service delay guarantees in web servers,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 17, no. 9,
pp. 1014–1027, Sept. 2006.

[18] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance guar-
antees for web server end-systems: a control-theoretical
approach,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 13, no. 1, pp. 80–96, Jan 2002.

Massimiliano Rak is an assistant professor at the Second
University Napoli, Italy. His research activities include both
theoretical and experimental issues, in the areas of performance
evaluation of computing systems, parallel and distributed soft-
ware engineering, security of information systems. He received
the laurea degree in Computer Science Engineering from the
University of Napoli Federico II in 1999 and Ph.D. in Computer
Engineering from the Second University of Napoli in 2002.

Rocco Aversa graduated in Electronic Engineering at Univer-
sity of Naples sin 1989 and received his Ph.D. in Computer
Science in 1994. He is Associate Professor (Assistant Professor
from 1995 to 2004)in Computer Science at the Department of
Information Engineering of the Second University of Naples.
His research interests are in the area of parallel and distributed
systems. The research themes include: the use of the mobile
agents paradigm in the distributed computing; the design of
simulation tools for performance analysis of parallel applications
running on heterogeneous computing architectures; the project
and the development of innovative middleware software to
enhance the Grid computing platforms. Such scientific activity
is documented on scientific journals, international and national
conference proceedings Rocco Aversa participated to various
research projects supported by national organizations (MURST,
CNR, ASI) and in collaboration with foreign academic institu-
tions. In 2005 he was appointed in the board of the directors of

the consortium ”Centro Regionale Information e Communica-
tion Technology” as the representative of the Second University
of Naples.

Beniamino Di Martino is a Full Professor at the Second Univer-
sity of Naples (Italy). He is the author of five international books
and more than 100 publications in international journals and
conferences. He served as General and Program Chairman, and
a member in programme committees, of several international
conferences, and as Guest Editor for several journals special
issues. He is an Editorial Board Member and Chair of inter-
national journals. He is Vice Chair of the Executive Board of
the IEEE CS Technical Committee on Scalable Computing. His
research interests include programming and compiler techniques
for high-performance and grid computing, mobile and intelligent
agents, automated program analysis and transformation, reverse
engineering, semantic-based information retrieval, the semantic
web and semantic web services.

Antonio Sgueglia is a Ph.D. student at Second University of
Napoli, Italy. His research activities are focused on modeling
and on performance evaluation of distributed Business to
Business SOA architectures. He received the laurea degree
in Computer Science Engineering from Second University of
Napoli in 2003. He works as System Engineer at Ericsson
Telecomunicazioni S.p.A. He worked as senior researcher at
CIRA (Italian Aerospace Research Centre)

JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2010 49

© 2010 ACADEMY PUBLISHER


