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Abstract—Future cognitive radios will require use of both
established emitter databases and local spectrum sensing to
optimize their performance. We view these techniques as
ways of estimating an RF environment map (RFEM), which
characterizes the position, directivity, power, and modulation
type of all relevant RF emitters in a geographical region
of interest. Cognitive radios will make their best decisions
when they have the best RFEM information available.
Good RFEM estimates are facilitated by spectrum-sensing
algorithms that exploit the complex statistics of modern com-
munication signals rather than relying on simplistic energy
detection. We illustrate some of the ways that such statistics
can be exploited using collected modern communications
signals.

Index Terms—Cognitive Radio, Spectrum Sensing, Radio-
Frequency Environment Maps, Cyclostationary Signal Pro-
cessing, Spectrum Management, Statistical Signal Process-
ing.

I. INTRODUCTION

As cognitive radios (CRs) and CR networks (CRNs)
continue to mature and deploy, they will add their energy
to the RF bands they inhabit, which will further compli-
cate their basic task of identifying and utilizing unused-
but-assigned portions of the spectrum. CRNs will have to
rapidly identify primary user’s signals as well as identify
and avoid interfering with secondary network signals.
This will be done using a mixture of CR-based spec-
trum sensing and database lookup. We view the database
and sensing approaches to RF environment characteriza-
tion (RFEC) as complementary rather than competitive.
Databases will not be updated sufficiently rapidly and
cannot be expected to cover all propagation and inter-
ference situations adequately. On the other hand, sensing
is relatively expensive and is vulnerable to propagation-
based impairments such as frequency-selective fading and
shadowing.

Emitter databases and CR-based spectrum sensing are
both used to enable the CRN to make the best possible
decisions regarding all of the CR’s adjustable parameters.
If the CRN had perfect knowledge of the RF environment,
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decision-making could be optimized. In this paper we
introduce an RF environment map (RFEM), a multidimen-
sional characterization of RF emitters and the opportuni-
ties for secondary network access. Our RFEM is focused
on spectrum sensing, in contrast to other maps that focus
on building and distributing network-related databases [1].
We view emitter databases and local spectrum sensing as
resulting in imperfect estimates of an RFEM. It follows
that sensing methods should be evaluated in terms of their
ability to accurately produce the needed RFEM elements.
Our position is that this requires sophisticated exploitation
of the statistical structure of all of the involved signals,
and that current research and development in CRNs
typically underutilizes the available statistical information
contained in the primary and secondary signals.

The remainder of this paper is organized as follows.
In Section II, we discuss the underutilization of signal
statistics found in the open literature, and in Section III
we define and discuss the RFEM. Examples of algorithms
that exploit more than the energy of the received signal
for the purpose of building an RFEM are presented in
Section IV, and conclusions are drawn in Section V.

II. UNDERUTILIZATION OF SIGNAL STATISTICS

The vast majority of papers written on the topic of
spectrum sensing for CR employ some form of energy
detection (ED) to distinguish between the two basic situa-
tions of signal-present and signal-absent. ED has universal
applicability because all signals possess energy. However,
it is well known to suffer performance degradation when
the noise power is not known accurately or is variable,
the propagation channel is harsh, or cochannel (inband)
interference is present [9]. Moreover, ED has severely
limited capability to distinguish between different modu-
lation types, and so cannot be used to classify the signals
inhabiting the bands of interest.

The provided justification for this widespread and per-
sistent use of ED is simplicity. For example, the recent
peer-reviewed papers on spectrum sensing for CR in [2]–
[7] all use ED, and provide statements such as “Since
noncoherent energy detection is simple ... we will adopt
it,” “Compared with the cyclostationary detector, the
proposed [ED] detector has less computational complexity
and ... [is] ... more mathematically tractable,” “... due
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to its low computational ... complexities and its fast
detection ability, ED is widely employed.” So in general,
popularity and simplicity are favored over potentially
large performance gains. This strikes us as reasonable for
product development, but not so reasonable for advanced
academic research.

In addition to favoring ED, the complex non-Gaussian
statistics of communication signals are often ignored
or simply defined away. For example, in [6], random
processes that make up a wideband signal’s subbands are
defined to be Gaussian. In other cases, the signal to be
detected is explicitly defined to be non-Gaussian, but is
otherwise not statistically specified [8], to enable the use
of non-cyclic higher-order cumulants.

Blind signal detection, classification, and parameter
estimation can be performed by properly exploiting the
statistics exhibited by communication signals [11], which
are ignored by ED. Almost all communication signals
are cyclostationary signals, which means they have one
or more nth-order moment functions that are periodic or
almost periodic in time for n ≥ 2 [13]. The presence and
harmonic structure of the periodicities as a function of n

provide a “digital DNA” for modulation classification and
noise-and-interference-tolerant presence detection [11],
[14].

A major conceptual and computational difficulty in-
hibiting widespread use of cyclostationary signal process-
ing is that modern signals possess a very rich and complex
harmonic structure starting with n = 2 [14]. This is
in contrast to the cyclostationary structure of textbook
modulation types, such as BPSK, MSK, and CPM, which
possess a simple and sparse structure [15]. Our position is
that each signal’s structure must eventually be more fully
exploited to allow significant advances in autonomous CR
spectrum sensing and decision making.

For example, consider the textbook BPSK signal. That
is, BPSK with independent and identically distributed
symbols, square-root raised-cosine pulse function, and
zero symbol-clock jitter, phase noise, and carrier fre-
quency drift. The statistical structure of this BPSK signal
is simple in that it has exactly five cycle frequencies:
{0, fsym, 2fc − fsym, 2fc, 2fc + fsym}. The measured
spectral correlation is shown in Figure 1, where the five
features are clear. It is sometimes more convenient to view
such functions edge-on, as in Figure 2, where the viewing
angle is parallel to the frequency axis.

Another important textbook signal is Gaussian
minimum-shift keying (GMSK), which is a component
modulation used in GSM. The three-dimensional and
edge-on spectral correlation plots are shown in Figures
3 and 4, respectively. This signal has only two significant
cycle frequencies, which are given by 2fc ± fsym.

However, these textbook signals are rarely, if ever, used
per se. Instead, they are used as components in more
complex signals, such as GSM and OFDM. These more
complex signals have a very different set of second-order
statistics. For example, GSM has the second-order statis-
tical structure shown in Figures 5 and 6, in which the two
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Fig. 1. Measured spectral correlation function for a textbook BPSK
signal. The symbol (bit) rate is 0.25 and the carrier offset is 0.1
(normalized frequencies).
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Fig. 2. Measured spectral correlation function for a textbook BPSK
signal. The symbol (bit) rate is 0.25 and the carrier offset is 0.1
(normalized frequencies).

conjugate peaks arising from GMSK are visible, but so are
many hundreds of additional—potentially exploitable—
cycle frequencies.

Two notable recent papers that embrace the statistics
of real-world primary-user signal types are [16] and [19].
The former combines cooperative multiple-sensor detec-
tion with exploitation of cyclostationarity and compares
the obtained performance to ED, while the latter reveals
the connections between multitaper spectrum estimation
[20] and the theory of spectral correlation [17].

III. THE RADIO-FREQUENCY ENVIRONMENT MAP

The demand for RF spectrum with good propagation
characteristics is rapidly increasing in order to support
new wireless services, broadband applications, and mobile
broadband. Since the RF spectrum is already allocated,
we need new spectrum management mechanisms that will
make efficient use of the spectrum resource.

Here, we describe two primary approaches for recov-
ering the underutilized spectrum while respecting the
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Fig. 3. Measured spectral correlation function for a textbook GMSK
signal. The symbol (bit) rate is 0.25 and the carrier offset is 0.1
(normalized frequencies).
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Fig. 4. Measured spectral correlation function for a textbook BPSK
signal. The symbol (bit) rate is 0.25 and the carrier offset is 0.1
(normalized frequencies).
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Fig. 5. Measured spectral correlation function for a collected GSM
signal.
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Fig. 6. Measured spectral correlation function for a collected GSM
signal.

spectrum rights of the incumbents [21].
1) Spectrum overlay: It allows secondary access to

the spectrum only when the licensed user is not
using the frequency band. The spectrum overlay
approach requires secondary transceivers to detect
the presence of the signal of the licensed emitter.

2) Spectrum underlay: It allows secondary access
even when licensed system is in operation. In order
to avoid harmful interference, the transmit power
of the secondary transmission is constrained to lie
below the noise floor.

These approaches do not attempt to make optimal usage
of the spectrum. In order to make optimal usage of the
spectrum, the interference margins1 need to be maximally
utilized. Unlike spectrum underlay, the secondary power
is not constrained below the noise floor. Also, contrary
to the spectrum overlay approach, secondary operation is
permitted in a frequency band without spatial or temporal
constraints. Fig. 7 illustrates secondary usage of the
licensed spectrum utilizing the interference margins at the
receivers.

Following are some of the challenges for maximizing
the secondary usage of the spectrum.

• Recovering Spectrum Underutilized by Primary
Users. The knowledge of location, transmit-power,
and radiation pattern for primary-user emitters is
necessary for maximizing the recovery of under-
utilized spectrum. Also, knowledge of the temporal
spectrum-usage behavior of primary users is needed
to maximize recovery in the temporal dimension.

• Optimizing the access to the secondary spectrum.
In order to maximize the utilization of recovered
spectrum, the transmit-power and radiation pattern
of the secondary transceivers need to be dynamically
controlled. By characterizing the spatial distribution
of RF-power, it is possible to detect and quantify
the spatial RF-footprint of a network’s emitters and
thereby provide a path to noninterference with that
and other networks.

• Reducing the Impact of RF-Propagation Uncer-
tainty. RF propagation is not deterministic and un-
certainty cannot be avoided. Hence, it becomes nec-
essary to allocate large spatial buffer zones based

1Interference margin at a receiver represents the interference power
constraint for successful reception of the signal.
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Fig. 7. Maximizing the secondary usage of the licensed spectrum.
The top part shows a range of frequency bands and the activity of
the licensed emitters. The bottom part shows secondary access to the
spectrum while ensuring non-interference to the primary receivers. It
exploits the opportunities when licensed emitter is inactive. Such an
example secondary spectrum usage is marked with ‘A’. The secondary
usage is not constrained below the noise floor, similar to the underlay
spectrum usage labeled with letter ‘B’ but the secondary users can
exercise higher transmit power depending upon the interference margin
at the receiver similar to the secondary spectrum usage marked with
‘C’.

on the worst-case path-loss exponent and worst-case
shadowing in order to accommodate the uncertainty.
Spectrum sensing can be used to gain knowledge
about the RF-environment such as shadowing and
path-loss variances, which can be used to minimize
the spatial buffers needed to mitigate RF-propagation
uncertainty.

The RF-environment for a radio is influenced by the
positions and radiation patterns of the transceivers, the
propagation channels, and noise. The main challenge for
RFEC is to obtain the knowledge of the RF environment
with bounded inaccuracy under conditions of cochannel
interference, channel effects like large-scale path loss,
shadowing and multipath, and transceiver mobility.

If we always knew the exact values of the parameters
influencing the RF environment, it would be possible to
make optimal use of the underutilized spectrum. From
the perspective of desiring maximum recovery of the
underutilized spectrum and maximum utilization of the
recovered spectrum, we propose following two spatial
quantities:

1) Occupancy represents the aggregate RF power re-
ceived at a point in space for a particular band
of frequencies. The occupancy value at a point
captures the sum effect of transmit-power, radiation
pattern, and position of all emitters, as well as
channel effects and noise.

2) Opportunity represents the margin for interference
power at a point from a particular direction. In
the case of omnidirectional reception, there is a
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Fig. 8. Single-band occupancy map showing the aggregate RF power
for unit area cells. Emitters and receivers in a single network have the
same shape; emitter is solid.

single opportunity value associated at each point
which represents margin for inclusion of additional
interference power.

The occupancy and opportunity attributes are based on
the physical interference situation. The spatial distribu-
tion of occupancy and opportunity is captured by the
Occupancy and Opportunity Maps. Based on character-
ization of occupancy and opportunity, it is possible to
make decisions about connectivity and RF routes between
any two points in space. We capture this connectivity
information through use of the Connectivity Map. The
connectivity map can be generalized to show multiple
channels. Taken together, the proposed occupancy, op-
portunity, and connectivity maps comprise the RFEM.
Figures 8–10 illustrate the three constituent maps with
a setup of three networks operating in a single spectral
band.

A multi-band version of the connectivity map is shown
in Figure 11 to illustrate its potential application to
multi-network multi-band spectrum planning and dynamic
management.

IV. EXPLOITATION OF SIGNAL STATISTICS

The ultimate goal of signal-statistics exploitation for
CR is to blindly estimate the RFEM. In this short paper,
we illustrate how exploitation of small subsets of second-
order statistics can be used to detect, geolocate, and
characterize multiple cochannel signals. To emphasize the
real-world applicability of exploitation of signal statistics,
we use a three-signal scenario in which two of the signals
are collected. In particular, we consider an RF scene
involving collected ATSC-DTV and WCDMA signals
together with a simulated AM-DSB signal. A version of
the scene with low signal-to-noise ratio (SNR) is depicted
in Figure 12. In this scene, the inband SNR for the DTV
and WCDMA signals is about -18 dB, whereas for the
AM signal it is about -14 dB.
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Fig. 11. Multiple-band connectivity map showing the degree to which adjacent unit area cells can connect using a new radio link. Transmitters
and receivers in the same network have the same shape; the transmitter is solid. The particular frequency band is encoded through the color of
the connecting lines, and the line color is determined by the best available connectivity. This kind of map reveals exploitable spectrum holes in
the spatial and frequency dimensions. For this particular set of networks, the spectrum holes for band I (green), band II (yellow), and band III
(brown) are easily discerned. Moreover, the directivity of the transmitters is taken into account, so that the best channel to use depends on the spatial
orientation of the to-be-added transmitter-receiver pairs.

We consider detection, geolocation, and power-
estimation for each of the three signals in the scene.

A. Detection
For signal detection, we exploit the second-order statis-

tics of each signal through the spectral correlation func-
tion (SCF) [17] evaluated at one or two cycle frequencies
(CFs). For the WCDMA signal, we assume knowledge
of its chip rate CF of 3.84 MHz, for the DTV signal
we assume knowledge of its carrier frequency and basic
symbol rate (10.7622 MHz) to compute the values of its
two CFs, and for the AM signal we assume knowledge
of its doubled-carrier CF.

The detection algorithm is a suboptimal noncoherent
cycle detector. This structure integrates the magnitude of
the SCF for one or more CFs and sums the result. As such,

it does not use detailed knowledge of the signal’s SCF,
only its CFs. Mathematically, let x(t) denote the received
noisy three-signal RF scene for t = 0, 1, . . . , T − 1, and
consider a target CF of α∗. Then the detection statistic is
given by

Yscd =

∑

k

∣∣∣Ŝα∗

xT
(fk)

∣∣∣
2

, (1)

where Ŝ
α∗

xT
(f) is the cyclic periodogram [17].

We consider the hypothesis testing problem given by

H1 : x(t) = s∗(t) + pi(t) + n(t),

H0 : x(t) = pi(t) + n(t),
(2)

where s∗(t) is the signal to be detected (one of the three
signals in the scene), i(t) comprises the other two signals,
n(t) is WGN, and p controls whether the the interference
is considered in the hypotheses. When p is zero, the
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Fig. 9. Single-band opportunity map showing the RF power that each
unit area can tolerate given the presence of the shown networks. High-
opportunity regions are green; low are red.
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Fig. 10. Single-band connectivity map showing the degree to which
adjacent unit area cells can connect using a new radio link. Two adjacent
unit areas are not connected if the opportunity value at either unit area
is below the minimum required signal-to-interference-and-noise ratio
(SINR). Unit areas that cannot be connected are joined by a red line.
The ability to connect two unit areas is encoded into the width of the
line connecting their centers.

detection performance relates to detecting a signal in
noise, whereas when it is one, the performance relates to
detection in the presence of both noise and interference.

The detection performance for the RF scene in Figure
12, which includes two collected signals, is provided in
Figure 13 for T/fs = 5 ms. Detecting each of these three
signals in the presence of noise only is quite easy for
this block length, and is only slightly more difficult when
interference is also present on the two hypotheses. We
emphasize that the two wideband signals are collected,
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and DTV signals are collected using a Tektronix RF Hawk receiver and a
custom data acquisition system employing ADC at 12.5 MHz (complex)
with resolution 14 bits/sample. The action of the unknown propagation
channel is particularly evident for the DTV signal, which ideally has a
flat spectrum over 6 MHz.
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Fig. 13. Receiver operating characteristics for detection of each of three
cochannel signals. 800 ms of data was processed using 5-ms blocks. The
detection statistic for noise alone is much smaller than that for either (1)
all three signals present, and (2) signal of interest absent but interference
signals present. It is relatively easy to detect the presence of any of the
three signals regardless of the presence or absence of the other signals.

not simulated, and are subject to random channel effects
and other impairments as shown in the individual-signal
PSDs of Figure 12.

B. Power Estimation

In this section we demonstrate that the power levels
of the weak signals in our RF scene can be accurately
tracked using small block lengths in spite of cochannel
interference. Consider a unit-power signal s(t) with SCF
S

α

s
(f). The SCF for As(t) is simply |A|2Sα

s
(f), which

suggests a simple least-squares estimation problem for A.
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The resulting estimator is given by

∣∣∣Â
∣∣∣
2

=

∣∣∣
∑

k
Ŝ

α∗

xT
(fk)Sα∗

s
(fk)

∣∣∣
|
∑

k
S

α∗

s (fk)|
. (3)

The results are shown in Figure 14, where it is difficult
to distinguish the measured values from the ideal values.
Note also the evident power-control power variations in
the WCDMA signal, which can take on values of 0.5, 1.0,
1.5, and 2.0 dB.

C. TDOA Estimation for Geolocation
In this section we provide evidence that the various

emitters in a difficult RF scene can be geolocated through
multiple TDOA estimates. The TDOAs are measured
using the SPECCOA algorithm [18], which correlates an
SCF measurement for one sensor with the cross SCF
measurement from two sensors to obtain an estimate of
the delay experienced by the signal as it moves past the
sensor pair. TDOA estimation is not as tolerant to noise
as are detection and power estimation, but performance
can be improved by increasing the processing block
length. Instead, though, we provide results for the 5-ms
block used here but with reduced noise. The RF scene
is as in Figure 12 except the noise spectral density is
reduced by 20 dB. This leads to inband SINR values for
WCDMA and DTV of about -2 dB. The TDOA estimation
results are shown in Figure 15. The estimator performance
for collected WCDMA is excellent for this SINR and
block length, but performance decreases for DTV and
the relatively weak AM signal. The figure also shows a
temporally smoothed version of the TDOA estimate for
each signal, which indicates that accurate estimates can
be made of the signal’s TDOA provided the sensor can
process sufficiently many blocks.

V. CONCLUSION

We advocate the use of a RF environment map (RFEM)
that is obtained and updated through the joint application
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Fig. 15. TDOA estimation performance for the three-signal RF scene
of Figure 12, but with reduced noise level, and using the same 5-ms
blocks as in the detection and power-estimation examples.

of central database lookups and local spectrum sensing in
cognitive radio (CR) applications. The multidimensional
RFEM characterizes the RF environment in a geographi-
cal region of interest by capturing the spatial and spectral
distribution of occupancy, opportunity, and connectivity.
These quantities relate to the aggregate RF power, in-
terference margin, and ability to connect radios at any
two points, respectively. Our position is that updating the
RFEM in the future will become increasingly difficult as
ever more emitters vie for the best spectrum. We advocate
increased research and development of signal processing
algorithms that can tolerate strong noise and multiple
cochannel interferers. We have shown that suboptimal
processing structures can provide noise-and-interference
tolerant algorithms provided the involved signals’ true
statistical nature is exploited. Moreover, we have demon-
strated these ideas using collected WCDMA and DTV
signals, which have passed through unknown and time-
varying propagation channels and data acquisition subsys-
tems prior to RFEM processing.

We encourage signal processing researchers to develop
methods of spectrum sensing for cognitive radio that
exploit the rich and complex statistics of today’s real-
world communication signals. In our future work, we
will connect estimator output to RFEM component maps
to evaluate the quality of maps that are based solely on
spectrum-sensing.
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