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Abstract— This paper presents a comprehensive review of
the cognitive radio network (CRN) testbed built at TTU.
Our goals are (1) to use our CRN testbed as a data
acquisition tool; (2) to use random matrix theory to model
the collect data and apply the new models in the context
of quantum information. We attempt to achieve a balance
between experimental work and theoretical work. We first
spell out the vision and concrete tasks for our research in
the near future. Second, we review our latest results in an
more accessible manner than the conference version.

Index Terms— Cognitive Radio Network, Spectrum Sensing,
Distributed Sensing

I. INTRODUCTION

“Big Data” [1] refers to datasets whose size is beyond
the ability of typical database software tools to capture,
store, manage, and analyze. Big Data is envisioned as the
next frontier for innovation, competition, and productivity.
This paper is motivated to spell out the vision and some
recent results in the context of next generation cognitive
radio network (CRN) [2].

Three analytical tools are central to the CRN: (1) large
random matrices; (2) convex optimization; (3) game the-
ory. The unified view is the so-called “Big Data”—high-
dimensional data processing. Due to the unique nature
of cognitive radio, we have an unparalleled challenge—
having too much data at our disposal. In the today’s digital
age, making sense of the data in real-time is central to
not only the major players like Facebook, Google and
Amazon, but also our telecommunication vendors. For the
solutions to the Big Data problem to become successful,
however, there are still many hurdles. For one thing, the
current tools are inadequate. Our research is motivated
for this need. The testbed is used as a tool for data
collection. On the other hand, an analytical tool of using
large random matrices is proposed to analyze the big
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data collected using such a network testbed. To our best
knowledge, very little (probably none) work has been
done using this hybrid approach.

Compared with the previous systems, the CRN contains
radios that are highly programmable; their modulation
waveforms are changing rapidly and their frequencies are
agile; their radio frequency (RF) front-ends are wide-
band (up to several GHz). In addition to the highly
programmable nature of their physical layer functions,
a CRN radio senses the spectrum at a unprecedentedly
low signal-to-noise-ratio (SNR) (e.g. -21 dB required by
the FCC). To support this fundamental spectrum sensing
function, the system allocates computing resources with
the ultimate goal of real-time operations. From another
view of point, this radio is a powerful sensor with
almost unlimited computing and networking capabilities.
Through the combination of these two views, communica-
tions and sensing are merged into one function that trans-
mits, receives, and processes programmable modulated
waveforms. Real-time distributed computing is embedded
in these two functions.

It is believed that we lack a coherent network theory
that is valid for numerous applications. Rather, the state-
of-the-art network is designed for special needs, when a
new need arises, the network must be redesigned. Costs
are wasteful due to the lack of a network theory. The
cognitive radio poses unique challenges in networking.
Another motivation for this paper is to build a testbed
that will collect more empirical data. Only when suffi-
cient empirical experience is accumulated, good network
models can be established and thus the exact network
science.

Wireless technology is proliferating rapidly; the vision
of pervasive wireless computing, communication, sensing
and control offers the promise of many societal and
individual benefits. Cognitive radios, through dynamic
spectrum access, offer the promise of being a disrup-
tive technology. Cognitive radios are fully programmable
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wireless devices that can (1) sense their environment
and (2) dynamically adapt their transmission waveform,
channel access method, spectrum use and networking
protocols. It is anticipated that cognitive radio technology
will become a general-purpose programmable radio that
will serve as a universal platform for wireless system de-
velopment, as microprocessors have served a similar role
for computation. There is, however, a big gap between
having a flexible cognitive radio, effectively a building
block, and the large-scale deployment of cognitive ra-
dio networks that dynamically optimize spectrum use.
Testbeds are built to partly fill this gap.

One goal is aimed towards a large scale cognitive
radio network; in particular, we need to study novel
cognitive algorithms using quantum information and ma-
chine learning techniques, to integrate FPGA, CPU and
graphics processing unit (GPU) technology into state-
of-the-art radio platforms, and to deploy these networks
as testbeds in real-world university environment. Our
applications range from communications to radar/sensing
and Smart Grid technologies. Cognitive radio network-
ing/Sensing for unmanned aerial vehicles (UAVs) is also
very interesting and challenging due to its high mobility.
Synchronization is critical. UAVs can be replaced with
robots.

One task will pursue a new initiative of CRN as
sensors and explore the vision of a dual-use sens-
ing/communication system based on CRN. The motiva-
tion is to push the convergence of sensing and commu-
nication systems into a unified cognitive networking sys-
tem. CRN is a cyber-physical system with the integrated
capabilities of control, communications, and computing.

Due to the embedded function of cooperative spec-
trum sensing in CRN, rich information about the radio
environment may be obtained. This information unique
to CRN can be exploited to detect, indicate, recognize,
or track the target or intruder in the covered area of a
CRN. The data for this kind of information system are
intrinsically high-dimensional and random. Hence, we can
employ quantum detection, quantum state estimation, and
quantum information theory in our new initiative using
CRN as sensors. In this way, the sensing capability of
CRN can be explored together with great improvement in
performance.

Roughly speaking, a cognitive radio has two fundamen-
tal functions [2]: (1) spectrum sensing; (2) radio resource
management. In-networking (distributed) computing is
required for supporting these two functions. The central
problem is so-called Big Data [1]—-in analogy with
big data sets encountered in Facebook, Amazon, and
Netflix etc. Spectrum sensing requires huge data vectors
are recorded. How do we make sense of these data?
First, a novel paradigm of quantum information exploiting
long data vectors is proposed for spectrum sensing. The
performance of quantum detection in the example below
has achieved 8 dB better that of the classical GLRT!
This new capabilities are critical to anti-jamming com-
munications. Second, sample covariance matrices are used

as the starting point; they are modeled as large random
matrices. Random matrix theory [2], [3] are chosen as the
mathematical tool.

II. ETHERNET CONNECTION BETWEEN HARDWARE
PLATFORM AND MATLAB

Ethernet is widely used in telecommunication comput-
ing platforms, especially in multi-blades platforms that
require carrier grade computing capacity.

MATLAB supports transmission control protocol
(TCP) / internet protocol (IP) for data exchange, with
built-in toolbox or third-party software package. Instru-
ment Control Toolbox, provided by Mathworks Inc., is
one of the widely used toolboxes enabling MATLAB and
Simulink to support TCP/IP communications. Another
similar toolbox called TCP/UDP/IP toolbox [4] is in light
weight and still reliable. It provides Socket APIs for
TCP or user datagram protocol (UDP) communications.
Although this toolbox is developed by a third party, it is
easy to be integrated into MATLAB.

We use WARP to acquire radio data and implement
functional modules of wireless physical layer, like mod-
ulation and demodulation. WARP is a full-functional
hardware platform in which the Ethernet is used for
communicating with MATLAB on personal computer
(PC) server. On the WARP Board a 10/100/1000 Mbits
Ethernet device is provided [5]. The system on chip
(SOC) is implemented in the on-board Virtex-4 FPGA
where Xilinx Tri-Mode EMAC Ethernet IP core can
be integrated to support Gigabit Ethernet [5]. TCP/IP
protocols can be supported by integrating a third-party
TCP/IP stack or a self-developed protocol stack, with
optimal design on data memory/first-in-first-out (FIFO).

We propose a simple working model to implement the
computing transaction base on the architecture described
above:

1) Static IP addresses are configured on both WARP
hardware platform and PC server. Meanwhile, a
static route entry needs to be set at PC server.

2) In MATLAB, a TCP or UDP socket is created by
the TCP/UDP/IP toolbox [4], to keep listening the
input TCP/UDP message at a specified port. UDP
is used in our experiment due to less time cost than
that of TCP.

3) The computing request is initiated at WARP and
sent to MATLAB with user data via UDP stack
over the Ethernet interface. A randomly generated
identification (ID) is used to label this computing
transaction.

4) Once MATLAB receives the UDP data sent from
WARP over the specified port, it extracts the data
from the UDP packet and sends out a response,
tagged with the transaction ID, to WARP over the
specified UDP port.

5) The time cost is measured at WARP once it receives
the response with expected transaction ID.

Our measurement is focused on the time delay on data
exchange. In MATLAB, no actual processing algorithm
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Figure 1. Schematic of the evaluation system.

is performed. The test results show that 5 ms is the cost
to transfer one full-length UDP packet of 1480 bytes to
MATLAB and get the response. With increasing number
of user data packets, the time cost increases approximately
linearly, e.g., 6 UDP packets cost about 28 ms. The
throughput of the data exchange is around 2 Mbps. There
is still much space to improve the performance, as our
current TCP/IP implementation based on WARP is not
optimal. For example, current Ethernet IP core in the
Virtex-4 SOC is designed to work in polling mode which
has worse performance than interrupt mode.

The serial port connection between FPGA and MAT-
LAB is also explored as the other option to integrate
the off-board computing engine [6]. Fig 1 shows the
schematic of the implementation. Instead of the ba-
sic RS-232 serial communication, a USB-to-universal-
asynchronous-receiver/transmitter (UART) is used to sup-
port higher data rate up to 912600 bps. Although this
data rate is acceptable in many applications, this kind
of connection method is better used when Ethernet is
not available. Ethernet is an universal communication
interface in most of the embedded system, with better
reconfigurability and competitive performance.

The integration of the off-board computing with
standalone on-board processing is also pervasive in
typical Software Defined Radio (SDR), like the
USRP/GNURadio [7]. In the SDR system, the front-end
only performs the RF functions and some fixed functions
like, ADC, DAC, and up-conversion/down-conversion,
etc., while most of the base-band communications phys-
ical layer is running over the software on the general
purpose processor [8], [9]. This kind of architecture pro-
vides better flexibility to introduce configurable physical
layer and data link layer. And the complex and novel
application algorithms are easier to be integrated [10].
However, compared with the architecture of WARP +
PC, the normal SDR system needs to implement both
the time critical communication tasks and the additional
data processing algorithms on the same general purpose
processor (GPP). The additional computing and timing
overhead in the SDR system needs to be considered in
selecting the network node platform corresponding to
different network applications.

III. COGNITIVE RADIO NETWORK AS SENSORS:
EXPERIMENTS AND LESSONS

Our research on the distributed sensing is now ex-
ploiting the evolving large scale cognitive radio network
testbed. The concept of the cognitive radio network
as sensor network naturally derives from the spectrum
sensing functionality of the cognitive radio network. The
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S-S

Sensor

CE/CE-DA

Cognitive Engine (CE)

CE/CE-DA

Data Archive (DA)Distributed Sensing

Wireless Access and Sensing                                    Infrastructure

Sensing Control Information
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Figure 2. Sample topology of an IEEE 1900.6 distributed RF sensing
system.

convergence of the distributed sensing with the cognitive
engine enables the adaptive waveform design, intelligent
processing of sensing information, etc. The referenced
system interface and architecture are well described in
IEEE 1900.6 [2], [11] as Fig. 2.

A series of experiments have been performed with the
motivation of cognitive radio network as sensors [12]–
[14]. This section reviews the experimental results and
the corresponding lessons, to disclose the challenges and
directions towards the large scale cognitive radio network.

Distributed cognitive sensing has materialized by in-
trusion detection using machine learning, joint spectrum
sensing and localization [15], distributed aspect synthetic
aperture radar, wireless tomography [16]–[18], closed-
loop wide-band cognitive sensing [6], mobile crowdsens-
ing [19], and so on. The following experiments are really
initial results to demonstrate the motivated applications.

1) Through Tree Target Detection: As the effort to-
wards distributed cognitive sensing, the through tree target
detection experiment with single transmitter and receiver
is performed. MATLAB is used as waveform design
tool. WARP platform and a digital phosphor oscilloscope
(DPO) are used as signal transmitter and receiver respec-
tively. The experiment architecture is shown in Fig. 3.
Multi-frequency signal is used to sound the target.

When there is no target, the corresponding power
spectrum density (PSD) of the received signal is displayed
at DPO as Fig. 4 (a). If there is a target behind tree, the
corresponding PSD at the receiver is shown in Fig. 4 (b).
The amplitude perturbation caused by the presence of tar-
get can be easily identified from the comparison between
Fig. 4 (a) and Fig. 4 (b). Although the experiment is just
composed of the single transmitter and receiver, it still
unveils the potential of the feasibility for the localization
functionality of the sensing network over cognitive radio
network.

2) Intrusion Detection by Machine Learning: Passive
target intrusion detection is a very important application
in distributed cognitive sensing. In the complex radio
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Figure 3. Experiment architecture for through tree target detection. [12]

(a) Power spectrum density of the received multi-frequency signal, 

without target

(b) Power spectrum density of the received multi-frequency signal, 

with target

Figure 4. Power spectrum density of the received multi-frequency
signal. [12]

environment, for example indoor office environment or
ground clutter, it is hard to detect and locate the target
by simple radio propagation theory due to the multi-path
phenomena. Hence, we explore machine learning algo-
rithms, like multi-class support vector machine (SVM),
for passive target intrusion detection and localization.

A database with mass data is built. These data cor-
respond to the information about the radio environment
when the potential targets are in different locations. These
data are used to train the classifier. Then, if some target
intrudes into the surveillance area, the recorded informa-
tion about the radio environment is sent to the pre-trained
classifier. In this way, the intrusion can be detected and the
location of the target can be found. Thus, the perturbation
is implicitly used by multi-class classification.

The experiment scenario is shown in Fig. 5. One WARP
platform is used as the radio transmitter to sound the
environment. The other six WARP platforms are exploited
as the radio receivers to record signal about radio environ-
ment. NC-OFDM is applied. Multi-class SVM using one

Figure 5. The experiment scenario for passive target intrusion detection
using machine learning. [13]

Figure 6. The preliminary results for passive target intrusion detection
using machine learning. [13]

against all strategy and Gaussian kernel is exploited as the
classifier. The preliminary localization results are shown
in Fig. 6. These results show the potential and prospect
of intrusion detection using machine learning.

Some potential improvements are expected in future
work for this machine learning based localization. Firstly,
more sensors are to be involved in to improve the ac-
curacy. Secondly, intensive computing on the collected
big data requires stronger computing engine with minor
delay to achieve real time localization. In addition, the
hardware/software platform should be flexible such that
the advanced algorithms such as machine learning and
convex optimization can be integrated seamlessly and
quickly.

3) Variance-based Moving Target Tracking: We have
demonstrated the localization and tracking of a moving
target by monitoring the variance of received signal
strength (RSS) measurements taken by a network of
USRP platforms. It is assumed that the signal of op-
portunity is transmitted from one USRP platform. All
the other USRP platforms serve as sensors. Because the
moving target causes the attenuation and perturbation of
signals between the transmitter and receivers. Thus, the
variance of the signal strength can be used to indicate
the presence of the target. The location of the target is
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Figure 7. The preliminary results for variance-based moving target
tracking. [14]

based on the location of each sensor and the variance of
the corresponding received RSS. The tracking results are
shown in Fig. 7.

The similar variance-based motion tracking method has
been proposed in [20], [21], implemented on narrow-
band system. Our research goal is to build the a dual-use
sensing/communication network with dynamic spectrum
access [14]. Also, our experiment achieves the real time
tracking capability by exploiting the SDR platform with
more flexibility. The algorithm development is also faster
due to the well designed software architecture of GNU-
Radio. However, with sensing nodes increasing, there are
still some bottlenecks caused by the big data exchanging
and full occupation of the computing resource. The sys-
tem performance and availability are impacted by these
bottlenecks.

IV. TESTBED FOR LARGE SCALE COGNITIVE RADIO
NETWORK: CHALLENGES AND ENABLING

TECHNOLOGIES

Our past experiments demonstrate the application of
CRN for the sensor networks. The results of these exper-
iment are encouraging. However, The results also disclose
the imperative demands on the large scale cognitive radio
network. More attractive services can be introduced into
the large scale CRN. Also the performance of the services
can be improved significantly by exploiting the big data
collected from this large scale cognitive radio network.

Taking the the sensing service as example, the capacity
and performance of a single sensor heavily depend on
the hardware configuration of the sensor platform, such
as radio frequency bandwidth, CPU processing capabil-
ity, memory size, FPGA capability, etc. But a kind of
distributed sensing based on large scale cognitive radio
network can significantly mitigate the weakness of a
single sensor or small scale sensor network. The deployed
large scale cognitive radio network expands the sensing
capability of the single sensor in both space and radio
frequency domains, especially when the cognitive radio
technology is enabled within the network. Besides, the
network usage can relax the hardware requirement for

each sensor. Thus we can configure the network with flex-
ible divergence regarding different sensing requirements.

Inspite of the benefits from the large scale cognitive
radio network, many challenges emerge when bringing
such network to a feasible fact. In the rest of this
section, the following aspects are discussed regarding the
challenges and the corresponding enabling technologies in
vision: network architecture, communications and wave-
form diversity, computing and control, finally, the SDR
based implementation architecture.

A. Network Architecture

Wireless network is usually established in two modes:
ad-hoc or infrastructure based. Similarly, the cognitive
radio network can also be considered to be deployed in
either of the two ways [22]. In the infrastructure based
CRN, the centralized node acts as the base station, which
collects spectrum sensing information from the CR user
(including iteself) and performs resource allocation, etc.
In the ad hoc CRN, all the CR users are with the same
cognitive radio capabilities such as the decision making
[22].

However, it is more feasible to build the large scale
cognitive radio network over a hybrid, heterogeneous and
hierarchical architecture, as shown in Fig. 8. Although
some applications of CRN, like the mobile distributed
sensing, are applicable to adopt ad hoc network configu-
ration. But, the ad hoc network capacity is tightly related
with the network diameter and the node distribution [23],
[24]. Also, compared with the traditional ad hoc wireless
network, the ad hoc CRN faces more challenges in the
radio resource allocation, topology control, relaying and
the primary user protection, etc [22]. Thus, the scalability
would be a challenge when extending the size of the
CRN significantly while keeping the performance of the
network. On the other hand, the ad hoc network config-
uration usually requires the nodes to be homogeneous.
As we have different wireless platforms with distinct
capabilities, it is a better way to converge these platforms
in heterogeneous manner for different applications.

As in Fig. 8, according to our achieved testbed experi-
ence, we propose the large scale cognitive radio network
consisting of software defined radio (SDR) platforms, like
universal software radio peripheral (USRP), wireless open
access research platform (WARP), etc., and also our latest
wideband cognitive sensing platforms as well as multiple
input multiple output (MIMO) wideband communication
systems. WARP platform has powerful FPGA to support
real-time applications and real time signal processing.

This hierarchical network is composed of clusters. The
homogeneous nodes developed on similar platform form
the cluster as the subnet which could be configured in
ad hoc mode or infrastructure based mode. The size of
each cluster could be not so large. The nodes distribution
within the cluster could be limited and not very dense.
However, the size of the whole network can be extended
easily and significantly by connecting all the clusters to
wired infrastructure. A cluster head is assigned for each
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Figure 8. Overall architecture of the testbed for large scale cogntive
radio network.

cluster. This cluster head is developed on a platform with
higher capability than that of nodes within the cluster.
It has three functions but not limited to: 1) Exchang-
ing data/control information between clusters, 2) Radio
resource management and cluster control, 3) Performing
the collective task in the distributed computing within the
cluster.

In addition, the capabilities of all the clusters can
be expanded through exploiting the cloud computing.
These additional computing resources can be provided by
Internet or some other super computers connected to our
hierarchical network.

B. Waveform diversity for communications and sensing

The challenges of the communication system within the
proposed hierarchical large scale cognitive radio network
mainly lie in the wireless clusters. Unlike the licensed
primary user, the cognitive user is featured with dynamic
spectrum access. Also, the cognitive radio node within our
network is expected to perform both wireless communi-
cation and sensing tasks. Thus, the waveform diversity
combined with the OFDM technology is the solid base
of the physical layer for the large scale cognitive radio
network.

Waveform diversity is a key research issue in the
current wireless communication system, the radar system,
and the sensing or image system. Waveform should be
designed or optimized according to the different require-
ments or objectives of system performance and should
be adapted or diversified dynamically to the operating
environment in order to achieve a performance gain [25].
For example, the waveform should be designed to carry
more information to the receiver in terms of capacity.
For navigation and geolocation, the ultra short wave-
form should be used to increase the ranging resolution.
For multi-target identification, the waveform should be
designed so that the returns of radar signals can bring
more information about targets back. Waveform diversity
will also play an important role in the dual-use com-
munication/sensing system, e.g., the large scale cognitive

radio network. OFDM waveform will be the competent
candidate.

OFDM is the core technology in wideband commu-
nication. The OFDM waveform has also been used in
the radar society [26]–[29]. The advantages of using
OFDM for radar tasks have also been summarized in [30].
Digital generation, inexpensive implementation, pulse-
to-pulse shape variation, interference mitigation, noise-
like waveform for low probability of intercept/detection
(LPI/LPD), and so on are the benefits of the OFDM
waveform [30]. Similarly, the research about the joint
OFDM-based radar and communication system has been
carried about in Karlsruhe Institute of Technology, Ger-
many [31]–[35]. Range estimation, angle estimation, and
Doppler estimation are extensively studied.

For the OFDM-based dual use communication/sensing
system, there are three basic strategies to design wave-
form. The first strategy is to embed radar sounding signal
or sensing task into communication waveform. When the
communication is executed, the sensing task will also
be performed. The second strategy is to put the com-
munication payload data into the radar sounding signal.
The small amount of data can be exchanged among radar
stations or sensor nodes. The idea of the third strategy
is borrowed from OFDMA, which means different tones
of OFDM waveform are assigned to different communica-
tion and radar tasks. In this way, joint and multi-objective
optimizations are needed with consideration of energy
consumption, spectral shaping, performance requirement
for each task, inter-task interference suppression, and so
on.

C. Computing and control

In our experiments of machine learning based local-
ization, and the variance based moving target tracking,
it is expected that the performance of the experiments
can be improved with extending the sensing network
to large scale cognitive network. However, involving
more sensing nodes always brings the overhead of both
the radio resource and computing resource. In the real
time tracking experiment, the whole system even stops
working when too many sensors are introduced into the
sensing network. The congestion of the collected data
between the centralized computer and the sensor nodes
is the bottleneck. In such situation, the distributed and
collaborative computing within nodes of the wireless
cluster is necessary. Instead of just transferring all the
collected data to the centralized computer server, the
computing tasks would be well designed and balanced
among the networks nodes as possible as it can. Only
those intermediate resulting data of the computing at the
network nodes is transfered to the centralized server. The
overhead from both the network traffic and the computing
delay is decreased.

The design challenges for this kind of wireless in-
network computing are well discussed in [36]. Different
with traditional wired distributed computing, the research
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Figure 9. Example of task scheduling within clusters.

and design challenges for wireless distributed computing
are from these aspects:

1) Communication network design: Due to the channel
uncertainty, the efficient and stable MAC layer is required.
The computing data needs to be exchanged among the
network nodes robustly. Proper routing, relaying, buffer-
ing can also be considered to improve the reliability of
the message passing.

2) Synchronization: For certain distributed computing
algorithm, the synchronization among tasks on different
nodes are necessary. This synchronization is established at
the process/event level [37]. On the other hand, the clock
level synchronization is required when the timestamps of
the network data are needed. For the sensing network, the
collected data is similar to the snapshot of the network
state. Thus the data fusion of all the nodes requires the
fairly accurate time synchronization. Usually, the global
reference clock and the GPS receiver can be merged into
the network nodes.

3) Network Control: The network control, for purpose
of optimally cooperating the computing resources, in-
cludes the topology control, resource management, tasks
scheduling, and working load balance. The wireless dis-
tributed computing over the cognitive radio network could
suffer from the dynamic spectrum access. The topology
stability and the nodes availability could be changed
more frequently than the traditional wireless network.
We propose to adopt the centralized network control
than distributed manner, in the current research stage,
for easier control with predicted behavior. Fig 9 shows
a simple example in which the cluster head performs
the centralized control of computing tasks assigned to
the network nodes. The task scheduling is based on the
event/process synchronization.

For the large scale cognitive radio network and cogni-
tive radio network as sensors, the large scale optimization
can be explored to address the related issues, e.g., high-
fidelity wireless communications, various sensing tasks,
resource management, load balancing, task distribution,

Main Problem

Subproblem 1 Subproblem 2 Subproblem N

Subproblem 11 Subproblem 12 Subproblem 1M

Subproblem 121 Subproblem 122 Subproblem 12L

Figure 10. Multi-level Decomposition [40].

and so on. Optimization stems from human instinct.
Through optimization, we can achieve the best perfor-
mance we expect. However, the scalability is one of
challenges in optimization theory, which means it is hard
to handle the optimization problem with thousands of
or millions of variables. Grid and cluster computing has
been used to solve the large scale optimization prob-
lems [38]. The parallel implementations of various solvers
to optimization problems on grids and clusters have been
presented [38]. Thanks to the in-network computing ca-
pability and the strong computational power of the whole
network, it is straightforward to deal with the large scale
optimization problem in a distributed fashion using all the
available resources provided by cognitive radio network.

Layering as optimization decomposition [39] was first
proposed to solve the network design issue. However,
it is one of the general and analytic methodologies
to solve the large scale optimization problem. A large
scale problem can be divided into many sub-problems
that can be distributed to multiple tasks. The decom-
position of the large scale optimization problem can
be based on Lagrange duality. Multi-level decomposi-
tion shown in Fig 10 can be supported [40]. Alternat-
ing direction method of multipliers (ADMM) is another
way to deal with large-scale statistics, machine learning,
and optimization problems [41]. It takes the form of
a decomposition-coordination procedure, in which the
solutions to small local sub-problems are coordinated
to find a solution to a large original problem [41]. An
ADMM algorithm for a class of total variation regu-
larized estimation problems has recently been studied
in [42]. MapReduce is the third way to support distributed
computing for large data sets on clusters of computers.
MapReduce is a patented software framework introduced
by Google in 2004 [43] [44]. “Map” step performs
the division of input and “Reduce” step combines the
results to get the output. MapReduce can easily make the
traditional algorithms scalable.

D. SDR based implementation architecture
The large scale cognitive radio network requires the

network node to be intelligent enough with computing,
communication, control, and sensing capability. Mean-
while, the development on the platform should be fairly
easy to meet the requirement of fast prototyping of the
advanced algorithms, quick network configuration.
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Figure 11. Software architecture over GNURadio working with USRP.

For USRP/GNURadio, the well defined SDR architec-
ture is very helpful to combine the upper layer software
including TCP/IP/MAC and the physical layer, as shown
in Fig. 11. The tunneling virtual device is used to bridge
the GNURadio physical layer with the existing upper
layer stack embedded in the Operation System (OS) like
Linux [7], [45]. Thus the GNURadio based physical layer
can be decoupled with the application layer. The services
and control can be added into such SDR based platform
flexibly. It is feasible to implement the separated data
plane and control plane on a single SDR platform [46],
[47].

The real-time configurable OFDM waveform can be
implemented under such flexible SDR architecture to meet
the dynamic spectrum access requirement for cognitive
radio network. On the other hand, the combination of
the SDR with the parallel computing architecture will
also bring big benefit for the “big data”. There are two
flavors of parallel computing to be integrated within
our testbed of large scale cognitive radio network. At
each USRP/GNURadio node, the thread-per-block signal
flow will naturally work in a parallel manner when the
software is running over multi-core architecture. Also, the
general-purpose computing on graphics processing units
(GPGPU) will be utilized for high speed signal processing
algorithms [48].

As the signal processing application of
USRP/GNURadio can be developed using general
programming language, the rich software libraries of the
convex optimization and machine learning can be easily
integrated [46], [49], [50].

The software architecture for rapid prototyping of the
applications over SDR is also a challenging but helpful
research area from the computer engineering perspective.
Some existing cognitive radio network testbeds [51], [52]
provide the middle-ware [53]–[55] based software frame-
work for the testbed users to develop the applications
easily.

E. UAV - extend to dynamic large scale cognitive radio
network

The static cognitive radio network can be extended to
a dynamic cognitive radio network as shown in Fig 12.
UAV can be incorporated into cognitive radio network.
The key point of the dynamic cognitive radio network
is that UAV has the mobile capability. UAV can at least

Figure 12. Dynamic cognitive radio network using UAVs

search for the available spectrum in different locations
intelligently. The movement of UAVs can change the
existing network topology. However, this change is still
under some level of control. The dynamic cognitive radio
network can undoubtedly achieve autonomous network
resiliency in the crowded radio environment. If the relay
node is out of the communication range or there is no
available spectrum for the relay node to use, UAV can in-
telligently change its location to maintain the connectivity
of wireless communication. In order to shoot for this kind
of smart and dynamic network, the movement control,
the movement overhead, the movement benefit, and the
movement restriction should be mathematically incorpo-
rated into the network design. Performance analysis of
802.11a wireless links from UAV to ground nodes has
been presented in [56]. Wireless relay communications
with UAV has been discussed in [57]. UAV relay network
to support WSN connectivity has been reported in [58].

Meanwhile, the capability of cognitive radio network as
sensors can also be greatly enhanced. The development
of UAV system has gained a lot of attentions throughout
the world. The importance and significance of this kind of
system in aerial activities have grown continuously [59].
Also, UAV systems are greatly preferred in operations
where the tasks are dangerous, tedious, and impossible
for human pilots [59]. For example, radio source local-
ization by a cooperating UAV team has been presented
in [60]. Source localization is formulated as a stochastic
distributed estimation problem. UAV is exploited to im-
prove the observability in terms of the Fisher information
matrix of the corresponding estimation problem [60]. An
automatic flight control algorithm that exploits network
mobility and allows an autonomous UAV team to react
cooperatively is developed to determine the location of a
radio emitter [60]. Besides, UAV can also serve as mobile
data sink. For example, UAV is used to collect data from
low-power wireless sensors [61].
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F. Intrusion and Anomaly Detection in CR-based Smart
Grid Network:

The salient features of CR, namely, frequency agility,
transmission speed, and range, are ideal for application to
the Smart Grid [62], [63]. In this regard, a CRN can serve
as a robust and efficient communications infrastructure
that can address both the current and future energy
management needs of the Smart Grid. The CRN can be
deployed as a large scale wireless regional area network
(WRAN) in a Smart Grid. In this manner, a CRN testbed
for the Smart Grid would serve as an ideal platform to not
only address various issues related to the Smart Grid, such
as security, information flow and power flow management,
etc., but also reveal more practical problems for further
research. From both the power and information flow
standpoint, it is imperative to detect any abnormalities in
the received data, before processing. These abnormalities
could result from intentional intrusion by unauthorized
personnel, smart meter miscalibration or failure, in ad-
dition to communication errors due to noise, network
congestion, or outages. Recently, anomaly detection algo-
rithms for astronomical data was presented in [64], [65].
These algorithms can be readily applied to the CRN based
Smart Grid for intrusion and anomaly detection.

V. MODELING OF THE CRN WITH LARGE RANDOM
MATRICES

At this point, it is assumed that a CRN testbed is at our
disposal. The nature questions arise. How do we configure
our network tested to collect data? What information can
we infer from the collected data? Very little work is
known in the literature to answer the two basic questions.

With data acquisition and storage now easy, today’s
statisticians often encounter datasets for which the sam-
ple size, n, and the number of variables, p, are both
large [66]: in the hundreds, thousands, millions and even
billions in situations such as web search problems. This
phenomenon is so-called “big data”. The analysis of these
datasets using classical methods of multivariate statistical
analysis requires some care. In the context of wireless
communications, network becomes more and more dense.
Spectrum sensing in cognitive radio collects much bigger
datasets than the traditional MIMO-OFDM, and CDMA
systems.

Assume we have a number of USRP2 nodes p = 100;
the sample size of n can be collected. The maximum
sampling rate is 25 Mega samples per second (16bit length
for each sample). The collected data can be viewed as an
ensemble of large random matrices. When only noise is
present, the output of the receiver for the i−th sample
of the j− node is Xij where Xij i.i.d. standard normal
variables of n× p matrix X defined as

X =


X11 X12 · · · X1p

X21 X22 · · · X2N

...
Xn1

...
Xn2

...
· · ·

...
Xnp


n×p

. (1)

The sample covariance matrix is defined as

Sn =

(
1

n

n∑
k=1

XikXjk

)p
i,j=1

=
1

n
XXH , (2)

where n vector samples of a p−dimensional zero-mean
random vector with population matrix I and H standards
for conjugate transpose (Hermitian) of a matrix.

A. Basic connection and paradigm shift
The classical limit theorem are no longer suitable for

dealing with large dimensional data analysis. The classical
methods make implicit assumption that p is fixed and n
growing infinitely large,

p fixed, n→∞. (3)

This asymptotic assumption (3) was consistent with the
practice of statistics when these ideas were developed,
since investigation of datasets with a large number of vari-
ables was very difficult. A better theoretical framework—
that is, large p— for modern datasets, however, is the
assumption of the so-called “large n, large p” asymptotics

p→∞, n→∞, but
p

n
→ c > 0. (4)

where c is a positive constant
There is a large body of work concerned with the

limiting behavior of the eigenvalues of a sample covari-
ance matrix Sn when p and n both goes to ∞; see (4);
A fundamental result is the Marchenko-Pastur equation,
that relates the asymptotic behavior of the eigenvalues
of the sample covariance matrix to that of the population
covariance in the “large n, large p” asymptotic setting. We
must change points of view: from vectors to measures.

One of the first problems to tackle is to find a
mathematically efficient way to express the limit of a
vector whose size grows to ∞. (Recall that there are
p eigenvalues to estimate in our problem and p goes to
∞). A fairly natural way to do so is to associate to any
vector to a probability measure. More explicitly, suppose
we have a vector (y1, ..., yp) in Rp. We can associate to
it the following measure:

dGp (x) =
1

p

p∑
i=1

δyi(x).

Gp is thus a measure with p point masses of equal weight,
one at each of the coordinates of the vector. The change
of focus from vector to measure implies a change of
focus in the notion of convergence—weak convergence
of probability measure.

In wireless communications, an excellent book by
Couillet and Debbah (2011) [3] has just appeared, joining
Tulino and Verdu (2004) [67] as two major books. The
aim of [2]—about 110 pages on large random matrices—
is to introduce the relevance of random matrix theory
in the context of cognitive radio, in particular spectrum
sensing. Our treatment is more practical than those of
two books, although some theorems are also compiled in
our book. But no proofs are given. We emphasize how to
apply the theory, through a large number of examples.
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B. Sample Covariance Matrix

The study of sample covariance matrix is fundamental
in multivariate analysis. With contemporary data, the
matrix is often large, with number of variables comparable
to sample size (so-called “big data”) [68]. In this setting,
relatively little is known about the distribution of the
largest eigenvalue, or principal component variance. A
surprise of the random matrix theory, the domain of math-
ematical physics and probability, is that the results seem
to give useful information about principal components for
quite small values of n and p.

Let X, defined in (1), be an n × p data matrix.
Typically, one thinks of n observations or cases xi of a
p− dimensional row vector which has covariance matrix
Σ. For definiteness, assume that rows xi are independent
Gaussian N (0,Σ). In particular, the mean has been
subtracted out. If we also do not worry about dividing by
n, we can call XXH a sample covariance matrix defined
in (2). Under Gaussian assumption, XXH is said to have
a Wishart distribution W(n,Σ). If Σ = I, the “null”
case, we call it a white Wishart, in analogy with time
series setting where a white spectrum is one with the same
variance at all frequencies.

Large sample work in multivariate analysis has tradi-
tionally assumed that n/p, the number of observations
per variable, is large. Today, it is common that for p to
be large or even huge, and so n/p may be moderate to
small and in extreme cases less than one.

C. Spectrum Analysis of Large Random Matrices

The first application of random matrix theory we con-
sider is cooperative spectrum sensing in a large cognitive
radio network. The most remarkable fact is that in many
cases the eigenvalues of matrices with random entries turn
out to converge to some fixed distribution, when both
the dimensions of the signal matrix tend to infinity with
the same order [69]. For Wishart matrices, the limiting
joint distribution called Marchenko-Pastur law has been
known since 1967 [70]. Then, most recently, the marginal
distribution of single ordered eigenvalues has been found.
By exploiting these results, we are able to express the
largest and the smallest eigenvalues of sample covariance
matrices using their asymptotic values in closed form
. The closed-form, exact expression for the standard
condition number (defined as the ratio of the largest to
the smallest eigenvalue) is available. Hence, spectrum
sensing using the ratio λmax/λmin can be pursued. These
algorithms can be tested in our testbed.

The asymptotic limiting results for infinitely large
matrices are often valid for finite-size matrices. The real
power of large random matrices lies in that such an
approximation is stunningly precise. If the matrices under
consideration are larger than 8 × 8, those asymptotic re-
sults are accurate enough, when compared with simulated
Monte Carlo results.

Let us consider two common examples: (1) Marchenko-
Pastur law for sample covariance matrices; (2) the law for
information plus noise matrix model. We compare these

theoretical predictions with Monte Carlo simulations,
using the data for CRN collected in our Lab.

Marchenko-Pastur Law [70] Consider a p×N matrix
W, whose entries are independent, zero-mean complex
(or real) random variables, with variance σ2

N and fourth
moments of order O

(
1
N2

)
. As

p,N →∞ with
p

N
→ α, (5)

the empirical distribution of WWH converges almost
surely to a nonrandom limiting distribution with density

f(x) =
(
1− α−1

)+
δ(x) +

√
(x−a)+(b−x)+

2παx ,

a = σ2(1−
√
α)

2
, b = σ2(1 +

√
α)

2
.

(6)

The Additive Spiked Model If signals exist, the
additive spiked model can be exploited. The additive
spiked model (or information plus noise model) [71] is

YN = BN + WN (7)

where BN is a deterministic rank-K matrix such that
λk,N → ρk for k = 1, ...,K, and WN is a L × N
random matrix with independent CN (0, σ2/N) elements.
When L,N →∞, in such a way that cN = L

N converges
to a non-zero constant, denoted as c∗. Let i ≤ K be
the maximum index for which ρi > σ2√c∗. Then, for
k = 1, ..., i,

H0 : λi+1,N
a.s.→
N→∞

σ2
(
1 +
√
c∗
)2
,

H1 : λk,N
a.s.→
N→∞

γk =
(σ2c∗+ρk)(σ2+ρk)

ρk
> σ2

(
1 +
√
c∗
)2
.

(8)
where H1 denotes the presence of signal(s), while H0

the absence of signal(s). Here “a.s.” means convergence
“almost surely”. Eq. (8) is illustrated below.

We use our measured data to verify the validation of
the Marchenko-Pastur law for modeling the CRN. There
are five USRP platforms serving as sensor nodes. The
data acquired from one USRP platform are segmented
into twenty data blocks. All these data blocks are used
to build large random matrices. In this way, we emulate
the network with 100 nodes. Fig. 13 shows the spectrum
with and without signal.

If there is no signal, the spectral distribution of noise
sample covariance matrix is shown in Fig. 13(a) which
follows, as expected, the Marchenko-Pastur law of (6).
When signal exists, the spectral distribution of sam-
ple covariance matrix of signal plus noise is shown in
Fig. 13(b). As predicted from (8), a dense bulk spectrum
that corresponds to white Gaussian noise co-exists with
some—specifically four–isolated eigenvalues. The exper-
imental results are in good agreement with the theoretical
prediction. The support of the eigenvalues is finite. The
theoretical prediction offered by the Marchenko-Pastur
law can be used to set the threshold for detection. This
initial result is encouraging us to pursue this direction
systemically. Preliminary results obtained in our Lab also
show that the observation of Fig. 13 is valid for SNR as
low as -20 dB for practical observation time.
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(a) noise sample covariance matrix.

(b) sample covariance matrix of signal plus noise.

Figure 13. Spectral distribution.

Several promising techniques will be pursued to use
large random matrices for modeling the CRN.

1) Deterministic equivalents Deterministic equiva-
lents for certain functions of large random matri-
ces are of interest. The most important references
are [72]. There exists a deterministic equivalent
TN (z) to the empirical Stieltjes transform of the
distribution of the eigenvalues of YNYT

N . It is also
proved that Tr TN (z) is the Stieltjes transform of
a probability measure. We propose to use this de-
terministic equivalent as a starting point to analyze
the large data sets collected in the Lab.

2) Universal correlations and power-law tails The
global spectral density or individual eigenvalues of
financial covariance matrices are best modeled by
introducing correlations among matrix elements that
lead to a power-law decay [73].

3) Spectrum of Kernel random matrices Uncertain-
ties caused by A/D sampling and power amplifiers
can be modeled as non-linear functions. We propose
smooth [74] and non-smooth kernel functions [75]
to model these devices.

Failure Localization: Random matrix theory will be
applied to local failure localization of large dimensional
systems in the proposed work. These failures include
sensor failure, link failure, and so on. These failures can
be easily identified through the perturbation matrix as well

as its eigenvector properties. The limiting distribution of
the largest eigenvector in the spiked model for Gaussian
sample covariance matrices has been shown in [3], [76].
Meanwhile, the effect of matrix perturbation on singular
vectors can be found in [77].

Besides, we can also monitor the sudden parameter
change in the large-scale cognitive radio network. These
sudden parameter changes can be analyzed through ran-
dom matrix theory. We can infer and extract information
from sudden parameter change for intrusion detection,
anomaly detection, moving target tracking, network to-
mography, and so on. For intrusion detection or moving
target tracking, the perturbations of the received signal
matrices are different due to the different locations of
target of interest and the mobility of target. By random
matrix theory, we can detect the different perturbations
and extract the corresponding features which can be
used to identify and locate the target. In homogeneous
network, the sudden parameter change may lead to similar
amplitudes of the extreme eigenvalues [3]. Thus, leading
eigenvector or leading subspace may be more sensitive to
the change and perturbation than the extreme eigenvalue.
Network tomography is the study of a network’s internal
characteristics using information derived from external
observations. A cognitive radio network is a large com-
plex system with so many nodes. Measured continuous
data flows from all the nodes can be used to build a large
random matrix from which we can infer the properties and
traffic flows in cognitive radio network. These properties
include data loss, link delay, routing state, and network
fault.

VI. SPECTRUM SENSING EXPLOITING QUANTUM
INFORMATION THEORY

Spectrum sensing in the low signal-to-noise ratio (SNR)
situation is a unique challenge in cognitive radio network.
Our goal is to propose new algorithms that work for
the SNRs as low as possible. The GLRT is promising
for spectrum sensing. Its kernel version, Kernel GLRT
[78], performs well, in contrast to Kernel PCA [78].
Leading eigenvectors can be used features for spectrum
sensing [79], [80]. Robust PCA [81] can be also used.

A novel framework for hypothesis detection has been
discovered to exploit the quantum information of noncom-
mutative random matrices. This novel formalism—that
was first proposed in [82], [83]— has led to algorithms
that work at unprecedentedly low SNRs. For SNRs as
low as -30 dB—in sharp contrast with -22 dB (for the
state-of-the-art algorithms below), those novel algorithms
have a detection probability of higher than 90%. This is
practically important when a jamming signal or strong
interference is present. A whole chapter of [2] is dedicated
to this topic. Our objective here is to explore those novel
algorithms in the context of testbeds: FGPA implementa-
tions will be used.

If the “state” matrices (defined as true covariance matri-
ces requiring infinite lengths of data vectors) are commu-
nicative, the quantum hypothesis testing is equivalent to
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Figure 14. Probability of detection.

the classic generalized likelihood ratio test (GLRT) [84]—
related to Shannon’s information. The two alternative
sample covariance matrices (only requiring finite lengths
of data vectors) are, however, noncommunicative—related
to Von Neumann quantum information [85]–[90]. Func-
tions of (sample covariance) matrices for detection (FMD)
may be used [82], [83]. We essentially deal with two ran-
dom matrices. Here, the macroscopic statistical properties
of the algorithms are similar to the quantum system. We
are not dealing with the microscopic level of quantum
mechanics. Quantum information or noncommunicative
probability is a better description for the formalism. The
performance of quantum detection in the example below
has achieved 8 dB better that of the classical GLRT!

Our hypothesis testing problem can be formulated in
the following form:

H0 : A = I + X
H1 : B = SNR (I + aσ) + I + Y

(9)

where X and Y are two random matrices, I identity ma-
trix, σ a low rank deterministic signal matrix and a scaler
parameter. The hypothesis testing problem can be viewed
as a problem of partial ordering of two sample covariance
matrices H0 : A and H1 : B. Matrix inequalities are
the basis of the proposed formalism. Often, Hermitian
matrices are objects of study. The positivity of these
matrices is required for many recent results developed in

quantum information theory [85]–[90]. The fundamental
role of positivity of covariance matrices is emphasized
here.

The preliminary results are shown in Fig. 14. The
proposed algorithm is compared with several state-of-
the-art algorithms: estimator-correlator (EC) based on
GLRT [84], together with arithmetic-to-geometric mean
(AGM) [91], feature template matching (FTM) [79],
maximum-minimum eigenvalue (MME) [92]. A DTV
signal (field measurements) captured in Washington D.C.
will be employed for the simulation in this subsection.
The number of total samples is 100,000. Probability of
false alarm is fixed with Pfa = 10%. For a simulated
sinusoidal signal, the parameters are set the same. The
proposed method can greatly improve the performance
of spectrum sensing in the extremely low SNR situation
(such as -30 dB).

VII. CONCLUSION

At the writing of this paper, TTU has two CRN
testbeds: (1) one based on 8 WARP nodes; (2) one based
on 11 USRP2 nodes. In the near future, the targets are
to increase the numbers of nodes, respectively, to 16
WARP nodes and 100 USRP2 nodes. We have made
some progress, as described by the surveyed recent results
obtained at TTU. Networking for highly-mobile nodes
like UAVs remains a challenge—this motivates us for
the core network development. Another direction is to
increase the numbers of nodes (as mentioned above). It
is believed that the current architecture is scalable, since
we have designed it with supporting a large number of
nodes in mind as the final goal.

In the next stage, the emphasis is to use the expertise of
the CRN as a data acquisition tool; for example, DARPA’s
Advanced RF Mapping (RadioMap) program [93] seeks
to provide real-time awareness of radio spectrum use
across frequency, geography and time. With this informa-
tion, spectrum managers and automatic spectrum alloca-
tion systems can operate much more efficiently, reducing
the problems caused by spectrum congestion. With better
understanding of spectrum use, unexpected transmissions
can be detected locally, enabling better mitigation of
interference problems. The program plans to provide this
information in part by using radios deployed for other
purposes, like data and voice communications systems.
The program aims to develop ways to use the capabilities
of modern radios to sense the spectrum when they are not
communicating.

Another focus is to develop mathematical tools to
process the high-dimensional Big Data. In particular, it
is our belief that large random matrices may be used
for such a purpose. Quantum information, rather than the
classical Shannon information, can be extracted during
this data processing.
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