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Abstract— Wireless multi-hop networks, in various forms
and under various names, are being increasingly used in
military and civilian applications. Studying connectivity and
capacity of these networks is an important problem. The
scaling behavior of connectivity and capacity when the
network becomes sufficiently large is of particular interest.
In this paper, we briefly overview recent development and
discuss research challenges and opportunities in the area,
with a focus on the network connectivity. We demonstrate
some intrinsic connections between the connectivity analysis
and capacity analysis and point out the fundamental pa-
rameters determining the capacity of a wireless multi-hop
network.

Index Terms— Wireless multi-hop networks, connectivity,
capacity

I. INTRODUCTION

Wireless multi-hop networks, in various forms, e.g.
wireless sensor networks, underwater sensor networks,
vehicular networks, mesh networks and UAV (Unmanned
Aerial Vehicle) formations, and under various names,
e.g. ad-hoc networks, hybrid networks, delay tolerant
networks and intermittently connected networks, are being
increasingly used in military and civilian applications.
There are three defining features that characterize a wire-
less multi-hop network:

1) Wireless devices are self-organized or assisted by
some infrastructure to form a network. The for-
mer case corresponds to ad-hoc networks whereas
the latter case corresponds to infrastructure-based
multi-hop networks. Depending on the applications,
the forms of the infrastructure can be quite flexi-
ble, e.g. a subset of devices connected via wired
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connections, a subset of devices with more pow-
erful transmission capability such that they form a
wireless backbone for the network, or in a UAV
formation, the infrastructure may assume the form
of a subset of UAVs with satellite links.

2) Communication is mostly via wireless multi-hop
paths.

3) Packets are forwarded collaboratively from the
source to the destination.

The implication of the first feature is that ad-hoc networks
form an important special case of wireless multi-hop
networks but the concept of wireless multi-hop networks
has much broader meaning. Particularly, the prospect of
including infrastructure into the ad-hoc network addresses
shortcomings of the ad-hoc network in scalability and
providing reliable service. The second feature sets wire-
less multi-hop networks apart from the traditional one-
hop networks, i.e. cellular networks and wireless LANs.
Therefore, there is a unique set of challenging problems
specific to wireless multi-hop networks. The third feature
implies that collaborative communication, either centrally
designed and operated or performed distributedly, is an
important consideration in wireless multi-hop networks.

Studying connectivity and capacity of wireless multi-
hop networks is an important problem [1]–[3]. The scaling
behavior of connectivity and capacity when the network
becomes sufficiently large is of particular interest. In
this paper, we briefly overview recent development and
discuss research challenges and opportunities in the area,
with a focus on the network connectivity. We also demon-
strate some intrinsic connections between the connectivity
results and capacity results and point out the fundamental
parameters determining the capacity of a wireless multi-
hop network.

A network is said to be connected iff (if and only if)
there is a (multi-hop) path between any pair of nodes.
Further, a network is said to be k-connected if there are
k mutually independent paths between any pair of nodes
that do not have any node in common except the starting
and the ending nodes. k-connectivity is often required for
robust operations of the network.

The rest of the paper is organized as follows: Section
II discusses connectivity of large-scale random networks;
Section III discusses connectivity of giant component;
Section IV discusses recent development, research chal-
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lenges and opportunities in mobile networks and Section
V concludes the paper.

II. CONNECTIVITY OF LARGE-SCALE RANDOM
NETWORKS

A. Unit disk model and connectivity

Extensive research has been done on connectivity
problems using the well-known random geometric graph
and the unit disk model, which is usually obtained by
randomly and uniformly distributing n nodes in a given
area and connecting any two nodes iff their Euclidean
distance is smaller than or equal to a given threshold
r(n), known as the transmission range [3], [4]. Significant
outcomes have been achieved for both asymptotically
infinite n [1], [3], [5]–[10] and finite n [11]–[14].

Research on the connectivity of large-scale random ad-
hoc networks under the unit disk model is spearheaded by
Penrose [15], [16] and Gupta and Kumar [1]. Specifically,
Penrose [15], [16] and Gupta and Kumar [1] proved using
different techniques that if the transmission range is set

to r (n) =
√

logn+c(n)
πn , a random network formed by

uniformly placing n nodes on a unit-area disk in <2 is
asymptotically almost surely (a.a.s.) connected as n→∞
iff c (n) → ∞. An event ξn depending on n is said to
occur a.a.s. if its probability tends to one as n→∞. Pen-
rose’s result is based on the fact that in the above random
network, as n → ∞ the longest edge of the minimum
spanning tree converges in probability to the minimum
transmission range required for the above random network
to have no isolated nodes (or equivalently the longest edge
of the nearest neighbor graph of the above network) [3],
[15], [16]. Gupta and Kumar’s result is based on a key
finding in the continuum percolation theory [17, Chapter
6]: Consider an infinite network with nodes distributed in
<2 following a Poisson distribution with density ρ; and
a pair of nodes separated by a Euclidean distance x are
directly connected with probability g (x), independent of
the event that another distinct pair of nodes are directly
connected. Here, g : <+ → [0, 1] satisfies the conditions
of non-increasing monotonicity and integral boundedness
[17, pp. 151-152]. As ρ→∞, a.a.s. the above network in
<2 has only a unique unbounded component and isolated
nodes.

In [6], Philips et al. proved that the average node
degree, i.e. the expected number of neighbors of an
arbitrary node, must grow logarithmically with the area
of the network to ensure that the network is connected,
where nodes are placed randomly on a square according to
a Poisson point process with a constant density. This result
by Philips et al. actually provides a necessary condition
on the average node degree required for connectivity. In
[5], Xue et al. showed that in a network with a total
of n nodes randomly and uniformly distributed on a
unit square, if each node is connected to c log n nearest
neighbors with c ≤ 0.074 then the resulting random
network is a.a.s. disconnected as n → ∞; and if each
node is connected to c log n nearest neighbors with c ≥

5.1774 then the network is a.a.s. connected as n → ∞.
In [8], Balister et al. advanced the results in [5] and
improved the lower and upper bounds to 0.3043 logn
and 0.5139 log n respectively. In a more recent paper
[10] Balister et al. achieved much improved results by
showing that there exists a constant ccrit such that if
each node is connected to bc log nc nearest neighbors
with c < ccrit then the network is a.a.s. disconnected
as n → ∞, and if each node is connected to bc log nc
nearest neighbors with c > ccrit then the network is
a.a.s. connected as n → ∞. In both [8] and [10], the
authors considered nodes randomly distributed following
a Poisson process of intensity one on a square of area n. In
[7], Ravelomanana investigated the critical transmission
range for connectivity in 3-dimensional wireless sensor
networks and derived similar results as the 2-dimensional
results in [1].

In [12], Bettstetter empirically investigated the mini-
mum node degree and connectivity of a finite network
with n (100 ≤ n ≤ 2000) nodes randomly and uniformly
placed on a square of area A. Tang et al. [13] proposed
an empirical formula relating the probability of having
a connected network to the transmission range for a
finite network with n (n ≤ 125) nodes randomly and
uniformly distributed on a unit square. Bettstetter [11]
studied the network connectivity considering different
node placement models, i.e. uniform distribution, Gaus-
sian distribution. Note that most results for finite n are
empirical results.

B. More general connection models and connectivity

All the work described in the last subsection is based on
the unit disk model. This model may simplify analysis but
no real antenna has an antenna pattern similar to it. The
log-normal shadowing connection model, which is more
realistic than the unit disk model, has accordingly been
considered for investigating network connectivity in [18]–
[23]. Under the log-normal shadowing connection model,
two nodes are directly connected if the received power at
one node from the other node, whose attenuation follows
the log-normal model [24], is greater than or equal to a
given threshold.

In [18], Hekmat et al. proposed an empirical formula
for computing the average size of the largest connected
component through simulations, where a total of n nodes
are randomly and uniformly distributed in a bounded area
in <2. In [22], Bettstetter derived a lower bound on the
minimum node density ρ required to ensure that a network
with nodes Poissonly distributed in an area in <2 with
density ρ is k-connected with a high probability. The
analysis is based on the observation that the minimum
node density required for a k-connected network is larger
than that required for the network to have a minimum
node degree k, and the assumption that the event that a
node has a degree greater than or equal to k is independent
of the event that another node has a degree greater than or
equal to k. Using simulations, they showed that the bound
is tight when the node density is sufficiently large. Using
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the same model as in [22], Bettstetter et al. obtained in
[23] a lower bound on the minimum node density required
for an almost surely connected network using essentially
the same technique as that in [22]. The analysis relies on
the assumption that the event that a node is isolated and
the event that another node is isolated are independent,
hereafter referred to as the independence assumption.
Orriss et al. [19] considered nodes uniformly and ran-
domly distributed on a plane and communicating with
each other following the log-normal shadowing model in
the framework of cellular networks. They investigated the
distribution of the number of base stations that commu-
nicate with a given mobile and found that the number of
base stations able to communicate with a given mobile
and lying within a specified range of the mobile follows
a Poisson distribution. In [21], Miorandi et al. presented
an analytical procedure for computing the node isolation
probability in the presence of channel randomness, where
nodes are distributed following a Poisson point process
in <2 (which extends their earlier work in [20]). They
further obtained an estimate of the probability that there
is no isolated node in the network based on the above
independence assumption. The previous results in [18]–
[23] dealing with a necessary condition on the critical
transmission power for connectivity under the log-normal
shadowing model all rely on the independence assumption
that the node isolation events are independent, which has
only been validated by simulations. Realistically however,
one may expect that the event that a node is isolated and
the event that another node is isolated will be correlated
whenever there is a non-zero probability that a third
node may exist which may have direct connections to
both nodes. In the unit disk model, this may happen
when the transmission range of the two nodes overlaps.
In the log-normal model, any node may have a non-
zero probability of having direct connections to both
nodes. This observation and a lack of rigorous analysis
on the node isolation events to support the independence
assumption raised a question mark over the validity of the
results of [18]–[23].

Other work in the area includes [25]–[28], which stud-
ies from the percolation perspective, the impact of mutual
interference caused by simultaneous transmissions, the
impact of physical layer cooperative transmissions, the
impact of directional antennas and the impact of unreli-
able links on connectivity respectively.

C. Random connection model and connectivity

In the more recent work [29], [30], the authors consid-
ered a network where all nodes are distributed on a unit
square A ,

[
− 1

2 ,
1
2

]2
following a Poisson distribution

with known density ρ and a pair of nodes are directly
connected following a random connection model, viz. a
pair of nodes separated by a Euclidean distance x are
directly connected with probability grρ (x) , g

(
x
rρ

)
,

where g : [0,∞) → [0, 1], independent of the event that

another pair of nodes are directly connected. Here

rρ =

√
log ρ+ b

Cρ
(1)

and b is a constant. The function g is required to satisfy
the properties of non-increasing monotonicity and integral
boundedness [17], [31, Chapter 6]. Further, it is required
that g satisfies the more restrictive requirement that

g (x) = ox

(
1

x2 log2 x

)
(2)

in order for the impact of the truncation effect, which
accounts for the difference between an infinite network
and a finite (or asymptotically infinite) network, on con-
nectivity to be asymptotically vanishingly small [29].
Denote the above network by G

(
Xρ, grρ , A

)
.

A number of results were obtained based on the con-
nectivity of G

(
Xρ, grρ , A

)
:

1) Using the Chen-Stein technique [32], [33], it was
shown that as ρ → ∞, the distribution of the
number of isolated nodes in G

(
Xρ, grρ , A

)
asymp-

totically converges to a Poisson distribution with
mean e−b;

2) The number of isolated nodes due to the boundary
effect in G

(
Xρ, grρ , A

)
is a.a.s. zero, i.e. the bound-

ary effect has asymptotically vanishing impact on
the number of isolated nodes;

3) As ρ → ∞, the number of components of finite
order k > 1 in G

(
Xρ, grρ , A

)
asymptotically van-

ishes;
4) As ρ → ∞, the number of components in
G
(
Xρ, grρ , A

)
of unbounded order converges to

one;
5) Finally, based on the above results, it was shown

that as ρ → ∞, a.a.s. there are only a
unique unbounded component and isolated nodes
in G

(
Xρ, grρ , A

)
, and a sufficient and necessary

condition for G
(
Xρ, grρ , A

)
to be a.a.s. connected

is that there is no isolated node in the network. Fur-
ther, the probability that G

(
Xρ, grρ , A

)
has no iso-

lated nodes and the probability that G
(
Xρ, grρ , A

)
forms a connected network both converge to e−e

−b

as ρ→∞. As a ready consequence of these results,
G
(
Xρ, grρ , A

)
is a.a.s. connected iff b → ∞ as

ρ → ∞; and is a.a.s. disconnected iff b → −∞ as
ρ→∞.

The above results extend the earlier work by Penrose [15],
[16] and Gupta and Kumar [1] from the unit disk model
to the more generic random connection model and bring
theoretical research in the area closer to reality. It can be
readily shown that the results on the random connection
model include the work of Penrose [15], [16] and Gupta
and Kumar [1] on the unit disk model and the work on
the log-normal model [18]–[23] as two special cases.

D. Challenges

There remain significant challenges ahead.
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Most results in the area, including the results in [29],
[30], rely on three main assumptions: a) the connection
function g is isotropic, b) the connections are independent,
c) nodes are Poissonly or uniformly distributed.

We conjecture that assumption a) is not a critical
assumption, i.e. under some mild conditions, e.g. nodes
are independently and randomly oriented, assumption a)
can be removed while the above results, particularly the
ones obtained assuming a random connection model, are
still valid. It however remains to validate the conjecture.

The above results however critically rely on assumption
b), which is not necessarily valid in some networks due
to channel correlation and interference, where the latter
effect makes the connection between a pair of nodes
dependent on the locations and activities of other nearby
nodes. In [34], some preliminary work was conducted
on the connectivity of CSMA networks considering the
impact of interference. The work essentially uses a de-
coupling approach to solve the challenges of connection
correlation caused by interference by developing an upper
bound on the interference experienced by any receiver
in the network and then studying the connectivity of the
CSMA network using the bound. Their results suggest
that when some realistic constraints are considered, i.e.
carrier-sensing, the connectivity results, e.g. transmission
power required for a connected network, will be very
close to those obtained under a unit disk model. This
conclusion is in stark contrast with that obtained under
an ALOHA multiple-access protocol [25]. Other work in
the area includes the work of Haenggi and his colleagues
(see e.g. [2], [35]), which characterizes various properties
of multi-hop networks subject to interference by using
Poisson distribution to approximate the distribution of the
set of concurrent transmitters. The major obstacle in deal-
ing with the impact of channel correlation is that there is
no widely accepted model in the wireless communication
community capturing the impact of channel correlation
on connections.

Finally, it is a logical move after the above work to
consider connectivity of networks with nodes distributed
following a generic distribution other than Poisson or
uniform. This remains a major challenge in the area.

III. CONNECTIVITY OF GIANT COMPONENT

A giant component is a component with a designated
large percentage of nodes in the network, say p where
0.5 < p < 1. A component is a maximal set of nodes
where there is a path between any pair of nodes in the
set.

Results on connectivity of large-scale random networks
under both the unit disk model [1], [15], [16] and the more
generic random connection model [29], [30] revealed the
same scaling law. That is, when the number of nodes, de-
noted by n, in a network increases, the transmission range
(or power) has to increase at a rate to maintain an average
node degree of Θ (log n) in order to achieve connectivity.
For two functions f (x) and h (x), f (x) = Θ (h (x))
iff there exist a sufficiently large x0 and two positive

constants c1 and c2 such that for any x > x0, c1h (x) ≥
f (x) ≥ c2h (x). For example, the critical transmission

range for connectivity is r (n) =
√

logn+c(n)
πn under

the unit disk model for a random network formed by
uniformly placing n nodes on a unit-area disk [1], [15],
[16]1. In other words, a connected network poses a very
demanding requirement on the transmission range (or
power). This in turn causes many undesirable effects on
increased interference and reduced throughput.

In the following, we demonstrate the connections be-
tween the results on connectivity and the results on net-
work capacity. In [36], it was shown that the end-to-end
throughput between a randomly chosen source-destination
pair in the above network is Θ

(
W√
n logn

)
, where W is the

link capacity. Refer to [36] for a rigorous definition of net-
work capacity. This result on capacity can be intuitively
explained using the results on connectivity as follows: as
the number of nodes n increases, the average distance,
measured by the number of hops, between a randomly
chosen pair of nodes is Θ

(
1

r(n)

)
= Θ

(√
πn

logn

)
. That

is, for a typical node, for every packet transmitted for
itself, there are Θ

(√
πn

logn

)
relay packets transmitted for

other source-destination pairs. Further, the average node
degree is nπr2 (n) = Θ (log n), which implies that in
a neighborhood of a typical node, at any time there can
only be one out of every Θ (log n) nodes active. It follows
that the end-to-end throughput between a typical source-
destination pair is W

Θ
(√

πn
logn

)
Θ(logn)

= Θ
(

W√
n logn

)
,

hence comes the result in [36]. The above result can
be more rigorously derived by following similar steps
as those in [36] on analyzing the capacity of a random
network. Therefore the reduced capacity as n → ∞ is
attributable to the more demanding requirement on the
transmission range (or power) to maintain connectivity as
n→∞.

The above observation motivates a question: since the
network connectivity is a very demanding requirement,
whether there is any benefit in backing down from such a
demanding requirement and requiring most nodes, instead
all nodes, to be connected?

Indeed in many applications, it is unnecessary for
all nodes to be always connected to each other [37].
Examples of such applications include a wireless sensor
network for habitat monitoring [38], [39] or environmen-
tal monitoring [40], [41] and a mobile ad-hoc network in
which users can tolerate short off-service intervals [42].

In environmental monitoring, there are scenarios where
the size of the monitored phenomenon is very large (e.g.
rain clouds) or the parameters (e.g. temperature, humidity)
that are monitored change slowly both in space and in
time. When the number of nodes for monitoring the
phenomenon or measuring the parameters is very large,

1By scaling, it can be shown that assuming an extended network
model where nodes are distributed on a disk of area n with a constant
density of 1 node per unit area, the critical transmission range for

connectivity is r (n) =
√

logn+c(n)
π

.
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having a few disconnected nodes will not cause a sta-
tistically significant change in the monitored parameters.
One example of such applications is a wireless sensor
network that was deployed underneath the Briksdalsbreen
glacier in Norway to monitor the pressure, humidity,
and temperature of ice to understand glacial dynamics in
response to climate change [40]. In habitat monitoring,
there are scenarios where the number of objects (e.g.
zebras and cane toads [38]) that are monitored is large.
Having a few nodes disconnected or lost may not signifi-
cantly affect the accuracy of the monitored parameter. In
many mobile ad-hoc networks, having a number of nodes
temporarily disconnected is also not critical, as long as
users can tolerate short off-service intervals. For example,
in a campus-wide wireless network, students and staff
can share information using wireless devices (e.g. laptops
and personal digital assistants) around the campus [42].
When a wireless device temporarily loses connection, it
can store the data and complete the work after becoming
connected later.

In [43], [44], considering a network with a total of n
nodes uniformly and i.i.d. on a unit square in <2, it was
shown analytically that under both the unit disk model
[44] and the log-normal model [43], the transmission
range (or power) required for having a designated large
percentage of nodes connected, say p where 0.5 ≤ p <
1, is asymptotically vanishingly small compared to that
required for having a connected network, irrespective of
the value of p. This result implies that significant energy
savings can be achieved if we require only most nodes
(e.g. 95%, 99%) to be connected, instead of requiring all
nodes to be connected; given a network with most nodes
connected, a sharp increase in the transmission range (or
power) is required to connect the few remaining hard-
to-reach nodes; and the transmission range (or power)
required for a large network to be connected is dominated
by these hard-to-reach nodes or rare events. It was further
shown using simulations that under the unit disk model,
in a network with 1000 nodes, the transmission range
required for having 95% nodes connected is only 76% of
that required for having all nodes connected. Based on a
conservative estimate that the required transmission power
increases with the square of the required transmission
range, an energy saving of at least 42% can be achieved by
sacrificing 5% of nodes. That energy saving will further
increase with an increase in the number of nodes in the
network. Other benefits of the reduced transmission range
or power requirement is the reduced interference, hence
better throughput.

It remains to find the value of the transmission range
(or power) required for guaranteeing a designated large
percentage of nodes to be connected in a large scale
network. This problem has some intrinsic connections
to the problem of finding the percolation probability in
the continuum percolation theory [17], which is a well-
known open problem in the area. Further, it remains to
quantitatively characterize the benefit in capacity due to
the reduced transmission range (or power) required for a

giant component.
Other researchers approached the problem caused by

the demanding requirement of a connected network on the
transmission range (or power) from a different perspective
and considered the use of infrastructure instead. Here the
infrastructure can be quite flexible. It can be a subset
of nodes connected through wired connections [45], or a
subset of nodes with possibly more powerful transmission
capability that forms a wireless backbone of the network
[46], [47], or a subset of nodes with satellite links as one
would possibly encounter in UAV formations [48]. The
use of infrastructure does not change the wireless multi-
hop nature of the end-to-end communication, instead the
infrastructure assists the end-to-end communication by
leapfrogging some long hops and reducing the number
of hops between two nodes, hence improving the per-
formance. Accordingly the concept of k-hop connected
networks was proposed and investigated [49]–[52]. In a
k-hop connected network, the maximum number of hops
between any two nodes is smaller than or equal to k.
Some research in the area was also conducted under the
name of hybrid networks [45], [53].

Despite previous research in the area of hybrid net-
works or k-hop connected networks, no conclusive results
have been obtained yet on the role of infrastructure in
wireless multi-hop networks with many problems remain
unanswered. Some examples include: for randomly de-
ployed infrastructure nodes and “ordinary” nodes, how
many infrastructure nodes (versus ordinary nodes) are
required for a k-hop connected network; for determinis-
tically deployed infrastructure nodes and randomly de-
ployed ordinary nodes, how many infrastructure nodes
are required for a k-hop connected network and what is
the optimum deployment of infrastructure nodes; how to
combine the use of infrastructure-based communications
and ad-hoc communications in one network in order to
provide some performance guarantee, in terms of capacity
or delay. These problems are important for wireless multi-
hop networks to provide reliable services, particularly for
wireless vehicular networks in which both infrastructure-
based communications and ad-hoc communications will
co-exist [54].

IV. DEVELOPMENT AND CHALLENGES IN MOBILE
NETWORKS

In [55], Grossglauser and Tse studied the capacity of
mobile ad-hoc networks. Particularly, they considered a
network with a total of n nodes distributed on a unit-area
disk, the trajectories of different nodes are i.i.d. and the
nodes’ movement is such that the spatial distribution of
nodes are stationary and ergodic with stationary uniform
distribution on the disk. They showed that in the above
network with unbounded delay requirement, the through-
put between a randomly chosen source-destination pair
can be kept constant even as n increases. This result is
in stark contrast with its counter-part in static networks
in which the throughout between a randomly chosen
source-destination pair is shown to be Θ

(
W√
n logn

)
[36].
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Following the seminal work of Grossglauser and Tse,
other researchers have conducted further research trying
to quantitatively characterize the relationship between
delay, mobility and capacity in mobile ad-hoc networks
[49], [56]–[59] and the obtained results vary greatly with
the mobility models and network settings.

A fundamental reason why mobility increases through-
put is that in mobile networks message transmissions
generally follow the store-carry-forward pattern versus the
store-forward pattern found in static networks. As nodes
move, new opportunity may arise such that a mobile node
can carry the message until it meets a node, which is in
a better position than itself to transmit the message to the
destination, or until it meets the destination directly. In
this way, the number of relay nodes (number of hops)
involved in transmitting a message to its destination can
be greatly reduced and the required transmission range
(or power) for a node to reach another node via a multi-
hop path can also be greatly reduced, hence the benefit
in improved capacity. The cost in achieving this benefit
in capacity is the increased delay.

Following the techniques demonstrated in Section III,
the results in [55] on the capacity of mobile networks can
also be obtained as follows. In the network model con-
sidered in [55], a two-hop relaying strategy is employed.
Therefore as the number of nodes n increases, the average
distance, measured by the number of relay hops, between
a randomly chosen pair of source-destination is bounded
by 2. Further, the value of the transmission range r does
not have to increase with n because connectivity (in the
sense that every pair of nodes can exchange packets)
can be achieved through node movement. Therefore the
average node degree is also Θ (1). It then readily follows
that the capacity of the mobile network is Θ (1). The end-
to-end delay can be analyzed by evaluating the time that
two balls with radius equal to r/2, representing the source
and the relay node respectively, hit a (randomly chosen)
third ball, representing the destination, with radius r/2.

The above observation motivates us to conclude that
the fundamental factors that determine the capacity of a
mobile (or static) network are:

1) The expected number of simultaneously active
transmissions. This is further determined by the
spatial node distribution and the transmission range
(or power).

2) The average number of relay hops between a source
and its destination. It determines the average num-
ber of times that a packet need to be transmitted
before reaching its destination, i.e. the transmission
capacity consumed for an end-to-end transmission.

Therefore the only difference between mobile and static
networks is that some part of the job involved in moving
a packet, originally taken care of entirely by wireless
transmissions in static network, can now be taken care of
by the physical movement of nodes in mobile networks.
By viewing both the physical movements of nodes and the
wireless transmission as simply a way to move packets
physically over a distance, a unified theory for analyzing

the performance of both mobile and static networks can
be established.

By analogy, mobility can also improve connectivity.
There are three fundamental differences between mobile
networks and static networks [60] from a graph theory
perspective: in mobile networks
• the wireless link between two directly connected

nodes and the end-to-end path only exists temporar-
ily;

• two nodes may never be part of the same connected
component but they are still able to communicate,
i.e. exchange messages, with each other; and

• while any one wireless link may be (or assumed to
be) undirectional, the path connecting any two nodes
is directional, i.e. there is a path from node vi to
node vj within a designated time period does not
necessarily mean there is a path from vj to vi within
the same period.

These are illustrated in Fig. 1. Particularly the last
difference implies that it is important to consider the
temporal order of links when analyzing mobile networks,
which has been incorrectly neglected in some previous
work.

Due to these differences, many established concepts in
static networks must be revisited for mobile networks. For
example, a static wireless multi-hop network is said to be
connected iff there is a path between any pair of nodes
in the network. However a more meaningful definition of
connectivity in mobile networks is to say that a mobile
network is connected in time period [0, T ] if any node can
exchange a message with any other node within [0, T ].
The above definition implies that the tradeoff between
connectivity, mobility and delay is the prime issue when
analyzing the connectivity of mobile networks. Despite
intensive research on the properties of mobile networks,
no conclusive results have been obtained on the above
problem and it remains a major challenge in the area.

V. SUMMARY

Wireless multi-hop networks have attracted significant
research interest. This interest is expected to grow further
with the proliferation of applications, particularly in the
areas of wireless vehicular networks and sensor networks.
In this paper, we briefly overviewed recent development
and discussed research challenges and opportunities in the
area mainly from the perspective of network connectivity.
We also showed how the results on network connectivity
are related to the study of other performance metrics,
i.e. capacity and delay. We pointed out the fundamental
parameters determining the capacity of a wireless multi-
hop network and the fundamental difference between
mobile and static networks.
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Figure 1. An illustration of connectivity in a mobile ad-hoc network. A solid line represents a connection between two nodes. The network is
disconnected at any time instant but there is a path from any node to any other node in the network. For example, nodes v1 and v6 are never part
of the same connected component but a message from v1 can still reach v6 through the following path: t1 : v1 → v2, t2 : v2 → v3, t3 : v3 → v4,
t4 : v4 → v6. Further, a message from v6 can reach v1 at t2 but a message from v1 can only reach v6 at t4.
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