
An Effective Replication Technique
Using Rateless Codes

for Unstructured P2P Networks
Keiichi Endo, Ryosuke Hamabe, Dai Okano, Kaname Amano

Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
Email: endo@cs.ehime-u.ac.jp

Abstract— It is possible to recover the original data from
a certain amount of encoded data by using rateless codes,
which are utilized for multicast streaming. In this paper,
we propose an effective replication technique using rateless
codes for unstructured P2P networks. More specifically, we
propose a method to spread and find chunks generated from
files efficiently. Through simulation experiments, we show
that the proposed technique achieves high search success
ratio and shortens the time required to obtain a file.

Index Terms— unstructured P2P networks, content sharing
systems, replication, rateless codes, erasure codes

I. INTRODUCTION

Various Internet services are available today owing to
the rapid growth of the Internet. Many of these services
use the client/server (C/S) model in which a computer
receiving the service (a client) is connected to a dedicated
computer providing the service (the server). This model
is based on the relationship between a master and a
servant. The C/S model allows client data to be centrally
managed on the server and thus has the advantage of
being easy to design as a business model. In recent years,
the rapid migration of everyday household connections
to broadband has made it possible for such Internet
services to transfer large volumes of content, and high-
quality sophisticated services are expected in connection
with these large-volume communications in the corporate
world. It is extremely costly for the C/S model to provide
such advanced services; the costs arise from the need to
provide backup servers and to invest in equipment that
can keep pace with the newest advances in processing
capacity and can support an increasing number of clients.
Quite simply, it is becoming more and more difficult to
provide stable services using the C/S model.

A new network model that is currently attracting much
attention is the peer-to-peer (P2P) model. In this network
model, computers (peers) on the network communicate
and share files on an equal footing with each peer serving
as both a server and a client. As a result, traffic is not
concentrated only at the server unlike the case in the C/S
model, thereby reducing the cost required for investing in
new equipment.

Manuscript received March 14, 2012; accepted March 28, 2012.

This paper discusses the use of rateless codes for
replica placement on P2P networks and the distributed
placement of multiple chunks generated from files on
network peers. We propose a technique to distribute and
find chunks efficiently. Through a simulation that permits
the participation and removal of peers, we demonstrate
the superiority of our proposed technique in terms of the
time it takes to efficiently search for and obtain files.

This paper is structured as follows. In Section II,
we will outline the P2P model and discuss existing
search methods and replica placement techniques used
in unstructured P2P networks. In Section III, we will
discuss erasure codes, with a focus on rateless codes. In
Section IV, we will explain our proposed technique, and in
Section V, we will present the results of our simulation
experiments. Finally, in Section VI, we will summarize
our research and discuss future research topics.

II. P2P MODEL

The P2P model is structured such that peers communi-
cate on an equal footing. Because each computer switches
its role between a server and a client while exchanging
information in this model, processing is not concentrated
on a specific server as in the case of the C/S model.
As a result, we can reduce the possibility of computer
performance forming a bottleneck in the network, and
provide improved defect resistance and traffic distribution.

P2P models are classified into two types: hybrid P2P
models in which a server manages the entire network
topology and index information, and pure P2P models
in which there is no management server. In this paper,
we concentrate only on pure P2P models because the
management server may become a bottleneck in hybrid
P2P models. Pure P2P models can be categorized into
two: structured P2P models, which conduct the routing
of search queries on an overlay network, and unstructured
P2P models, which do not perform this kind of routing.

In structured P2P models, it is possible to search more
efficiently by constructing a topology for data searches,
which is based on a specific algorithm. Distributed hash
tables (DHTs) [1] are often used in structured P2P
network designs. Chord [2], content-addressable network
(CAN) [3], Pastry [4], and Tapestry [5] are representative
examples of DHTs.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012 349

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcm.7.4.349-356

Requester

 1st hop

Requester

 2nd hop
 3rd hop

Figure 1. Example of flooding search.

In contrast, unstructured P2P networks do not impose
restrictions on the topology, file placement, or the size of
the network. Our research contributes to the literature on
unstructured P2P networks.

A. Search methods for unstructured P2P networks
Flooding [6] and k-walker random walk [7] are com-

mon search methods for unstructured P2P networks. We
explain the flooding method in this subsection.

Flooding is a search method in which a peer that has
a search request (the search request peer) sends a search
request message (query) to all directly connected peers
(adjacent peers), and each peer that receives the query in
turn forwards the query to all its adjacent peers except
the sender of the query (Figure 1). The actual procedure
is described below.

1) The search request peer sends queries to all adjacent
peers. The time-to-live (TTL) indicating the maxi-
mum number of transfers is set in these queries.

2) A peer receiving a query performs the following
processes:

a) If the peer has a file that matches the query, it
sends a response message to the search request
peer.

b) The TTL of the query is reduced by 1.
c) If the TTL is 1 or greater, the peer forwards

the query to all adjacent peers other than the
sender of the query, except that it does not
forward any query that has previously been
received.

An advantage of unstructured P2P networks is that they
can perform flexible searches, i.e., searches in which it is
possible that there are multiple files matching the query,
such as partial match searches and full text searches.
Flexible searches are difficult in structured P2P networks.
Moreover, because there is a high degree of freedom
in the network structure, unstructured P2P networks are
also superior with respect to extensibility and fault re-
sistance, and they are comparatively easy to implement.
Disadvantages of unstructured P2P networks include the
possibility of files disappearing from the network owing
to the removal of peers and the possibility of failing to
discover a file that actually exists in the network. We study
techniques for placing replicated files on unstructured P2P
networks to address these disadvantages.

Requester

Possessor

Copy

Figure 2. Example of owner replication.

Requester

Possessor

Copy

Copy

Copy

Figure 3. Example of path replication.

B. Replication technique for unstructured P2P networks

Replication techniques resolve the aforementioned dis-
advantages of unstructured P2P networks by placing repli-
cas of files on peers. We describe two such techniques.

1) Owner replication: In the owner replication tech-
nique [6], the file downloaded by the search request peer
is published to the network in the same way as the original
file. Since replicas are not placed on any other peers, files
spread slowly. Figure 2 provides an example of replica
placement using the owner replication technique.

2) Path replication: In the path replication technique
[6], the file downloaded by the search request peer is
published on the network in the same way as the original
file, similar to the owner replication technique. Replicas
of the target file are then placed on all the peers along
the query forwarding route (search path) from the search
request peer to the peer in which the target file is found,
and the placed files are published on the network. Figure
3 provides an example of replica placement using the path
replication technique.

The path replication technique allows a file to spread
more quickly than the owner replication technique. How-
ever, high-degree peers (peers with many adjacent peers)
have a high probability of appearing on search paths in
this technique, which makes it more likely that replicas
are placed on high-degree peers, thus increasing load on
high-degree peers.

III. ERASURE CODES

In this section, we discuss erasure codes, which are
error-correcting codes used in the proposed technique
when creating chunks that are placed on a network after

350 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

a target file is downloaded. Then, we discuss our research
on several P2P systems that use erasure codes.

A. Reed-Solomon codes and rateless codes

The Reed-Solomon code [8] is an error-correcting code
that uses Galois field arithmetic. This code is used in
various fields, including DVDs and QR codes. However,
a disadvantage of this code is that encoding and decoding
calculations take a long time. Furthermore, when encod-
ing, it is necessary to determine the number of redundant
blocks to be added, and packet loss must therefore be
estimated when this code is used for communications.

There have been several encoding formats proposed
for rateless codes [9], in which it is not necessary to
determine the number of generated encoded blocks. These
rateless codes are used for applications such as multicast
streaming [10]–[12]. When a sender continually multi-
casts encoded packets using rateless codes, the receiver
can recover the original data when a certain amount of
data is received, regardless of the quality of communica-
tion (the packet loss rate).

Luby transform (LT) codes [13] are a type of rateless
codes. In LT codes, a degree d is initially chosen at
random according to a probability distribution pd (d =
1, . . . , k). Next, d blocks are chosen from k data blocks
at random and an encoded block is created using the
EXCLUSIVE-OR of these blocks. By repeating this pro-
cedure, it is possible to create any number of encoded
blocks. LT decoding utilizes the fact that the encoded
blocks are created using the EXCLUSIVE-OR of some
data blocks. For example, when the encoded blocks C1 =
I3, C2 = I1 ⊕ I2 ⊕ I3, C3 = I1 ⊕ I3 created from data
blocks I1, I2, and I3 are received, it is possible to first
recover I3 from C1, then recover I1 from C3 ⊕ I3, and
finally recover I2 from C2 ⊕ I1 ⊕ I3. If robust soliton
distribution [14] is used for the probability distribution pd,
it is possible to limit the overhead required for decoding
to approximately 5% [9].

In our research, we assume the use of LT codes. When
several encoded blocks are created from k fixed-size data
blocks of a file and are placed on peers in the network,
the file can be restored by collecting any (105/100)k of
these blocks. (In our research, we refer to encoded blocks
as “chunks,” each chunk being the same size as a data
block.) Furthermore, the use of rateless codes makes it
possible to place additional chunks from the same file on
different peers. If (105/100)k chunks generated from the
same file are collected, the file can be restored even if the
chunks were created by different peers.

B. P2P systems using erasure codes

Previous research on structured P2P systems using
erasure codes includes Rodrigues et al., [15] and Ribeiro
et al. [16] Research on unstructured P2P systems that use
erasure codes includes Cuenca-Acuna et al. [17] and Lin
et al. [18] However, each of these studies focuses on the
use of erasure codes for the objective of improving the file

search success ratio; load distribution benefits resulting
from the distributed placement of chunks created using
erasure codes have not been confirmed.

In this paper, we focus not only on the file search
success ratio but also on the time required to obtain a
file, thus verifying the benefits of load distribution. We
adopt a selection algorithm in which among the peers
that have chunks of the target file, priority is given to the
peers that can provide the chunks quickly. We compare
download wait times of cases in which the files are placed
on peers as is, cases in which the files are simply divided
and placed on peers as chunks as in the case of BitTorrent
[19], and cases in which the chunks placed on peers are
created using erasure codes.

IV. PROPOSED TECHNIQUE

In our research, peers that wish to acquire a file use
flooding to conduct searches, in which there may be
multiple files conforming to the query. We propose a
technique for collecting addresses of peers that may be
candidates for chunk placement during the flooding. We
also propose a technique for adding the addresses of peers
on which other chunks created from the same file have
been placed to chunks. We describe these techniques in
the following subsections.

A. Adding address information to chunks

Before chunks are placed, they are augmented with peer
address information that indicates where the other chunks
that were created at the same time will be placed. Then,
when one peer owning a chunk of a file is found, its
address information can be used to identify other peers
on which chunks were placed at the same time.

B. Chunk placement list

One possible technique for determining where to place
file chunks after a file has been received is the path
replication technique in which chunks are placed on peers
in the search path. Another possible technique chooses
among the peers adjacent to the search request peer.
The path replication technique is not realistic because it
concentrates the load on high-degree peers. In addition,
it is inappropriate to use the concept of a search path in
our technique because our technique allows to download
chunks from peers identified through address information
that has been added to chunks rather than from peers
discovered by flooding.

Since the technique that places chunks on peers that
are adjacent to the search request peer entails that any
peer on which the chunk is placed can connect to another
through one peer (two hops), adding address information
to chunks is not effective. Furthermore, in cases where
there are only a small number of adjacent peers, multiple
chunks are placed on the same peer, and this prevents a
fast spreading of the chunks.

In this research, we propose a technique in which a
“chunk placement list” containing the addresses of peers

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012 351

© 2012 ACADEMY PUBLISHER

that are chunk placement candidates is maintained by each
peer, and the locations of placing chunks created from an
obtained file are selected at random from this list. (If it
is discovered that a chosen peer has been removed from
the network, the peer is deleted from the list and another
peer is selected.) The chunk placement list of a newly
participating peer initially consists of the addresses of
adjacent peers, and when the peer searches for a file, peers
obtained from “flooding using flagged queries” are added
to the chunk placement list.

The procedure for flooding using flagged queries is as
follows:

1) The search request peer sends a flagged query to all
adjacent peers.

2) A peer that receives a flagged query processes it in
one of the following ways. (In addition, if a peer
has a file or chunk that satisfies the query, it sends
a response message to the search request peer as in
normal flooding.)

• If the TTL of the query is 0, the peer reports
its own address to the search request peer and
does not forward the query.

• If the TTL is 1 or greater and the peer has pre-
viously received the query, the peer randomly
chooses one peer address from its own chunk
placement list, reports that address to the search
request peer, and does not forward the query.

• In all other cases, the peer forwards the query
to all adjacent peers other than the sender of the
query, and the search proceeds. At this point, a
flagged query is sent to one randomly chosen
adjacent peer and unflagged queries are sent to
all other adjacent peers.

3) A peer that receives an unflagged query processes
it in the same way as normal flooding.

The idea behind this procedure is that the chunk place-
ment list maintained by each peer can store addresses of
peers that are distant (on the overlay network) from that
peer. As peers have large lists of candidate peer addresses,
the distributed placement of chunks is made possible.

Considering the possibility that a peer may participate
in the network for a long period of time, it may be
necessary to limit the number of addresses that can be
stored in the chunk placement lists (with old addresses
deleted first in the case of overflow) or to set an expiry
time. However, we do not impose such restrictions on the
simulation carried out for our research.

V. SIMULATION

We test the performance of our proposed technique
by conducting simulation experiments using a program
written in C++. In this section, we first explain the model
that we use to create the network. Then, we explain the
simulation parameters, and finally, we present the results
of the simulation.

A. Network model

It is known that real-world networks have the follow-
ing three properties: scale-free (the degree distribution
of peers follows the power law), small-world (SW; the
average distance between peers is small), and clustered
(the cluster coefficient is sufficiently large). In the Watts-
Strogatz model [20], it is possible to create a network
that is small-world and clustered, but the property of
being scale-free is not met. The Barabási-Albert model
[21] does not support clustering, and the growth and
deactivation model [22] does not satisfy the small-world
property. The SW growth and deactivation model [23] can
create a network that satisfies all three properties. This
model creates a network as follows.

1) Create a complete graph composed of m0 (≥ 1)
peers in activated states.

2) Add new peers in activated states with m (≤ m0)
links to the network. Each link connects the new
peer and the peer selected by a) with a probability
of µ (0 < µ < 1) and b) with a probability of 1−µ.

a) Select a peer at random from all peers with
the probabilities proportional to their degrees.

b) Select a peer at uniform random from peers in
activated states.

If there is already a link that connects the new
peer and the selected peer, the selection process is
repeated.

3) Among the m0 + 1 peers in activated states (in-
cluding the newly added peer), select one at random
with the probabilities inversely proportional to their
degrees, and put it in a deactivated state.

4) Repeat steps 2 and 3 until the determined number
of peers is reached.

We use this model to create a network for conducting
our simulation experiments.

B. Simulation conditions

For our simulation experiments, we use the SW growth
and deactivation model with m0 = 3, m = 3, and µ =
0.4, creating a network containing 5000 peers. There are
50 search keywords, and 10 unique files conform to one
of these keywords. (No files match multiple keywords.)
When the simulation is initialized, each of the 500 files
is placed on a randomly selected peer.

The simulation progresses by clock ticks (each clock
tick is called a “phase”) and the following operations are
carried out for each peer on the network in each phase.

1) Send a search request with a probability of 1.5%
using the flagged-flooding search with the TTL set
to 3. (One of the 50 search keywords is selected
at random with equal probabilities.) Next, place
files or chunks on other peers according to a chunk
placement technique.

2) Remove the peer from the network with a probabil-
ity of 1%.

If a peer is removed from the network in step 2, a
new peer (a peer without any files or chunks and with

352 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

an initialized chunk placement list) participates in the
network. The new peer is connected to the adjacent peers
of the removed peer, so the network topology during the
experiment remains unchanged.

If a file (or chunks generated from a file) conforming
to the search query is not found in step 1, the search fails.
When conforming files are found, the search request peer
selects a file to download from those files at random with
equal probability. If the selected file is discovered in the
form of a chunk, the chunks necessary for restoring the
file are also collected using the address information in the
discovered chunk, and the file is restored. Because it is
possible that peers identified in the address information
have been removed from the network or do not have the
desired chunks any longer, a query is sent to each peer to
check whether it has the desired chunks. At the same time,
the predicted download completion time for downloading
the chunk from that peer is calculated from the current
file send status of that peer. It is then possible to prioritize
the selection of a peer from which to download, choosing
the peer that can provide the chunk in the shortest time.
In our simulation, the transmission speed for each peer
is fixed, so it is easy to calculate the predicted download
completion time. In a real system, however, it will be
necessary to have a method (such as a test transmission
of a partial chunk) for roughly estimating the download
completion time. In the case where a file is to be directly
downloaded and the same file is found on multiple peers,
one of the peers from which the file can be quickly
downloaded is selected as is the case of a chunk.

Each peer uploads a file or chunk in response to a
request from another peer. In order to observe the effects
of the wide distribution of files and chunks on load dis-
tribution, we add a restriction that prevents simultaneous
uploading to multiple peers. Thus, while a peer is upload-
ing to a search request peer, if an upload request arrives
from another peer, the latter peer is made to wait until the
current upload is complete. (The length of this wait time
is used as one of our evaluation indices.) Furthermore,
uploading to a search request peer has priority over replica
placement such that a peer carries out replica placement
only when it is not currently uploading to a search request
peer. If a peer receives an upload request from a search
request peer while it is placing a replica, the upload
request has priority and is processed, and after that is
complete, the replica placement is restarted. The times
taken for uploading one file and one chunk are counted
as 20 phases and 1 phase, respectively (that is, the size of
a chunk is 1/20 the size of a file). No restriction is placed
on the download side, and so it is possible for a peer to
simultaneously download from multiple peers.

C. Simulation results and discussion

This subsection presents the results of the simulation
experiments and discusses the effectiveness of our pro-
posed technique. The simulation is run 10 times under
the same condition while reconstructing a network, and
the averages for these simulations are plotted on a graph.

The x-axis of the graph represents the phases, and the
following three evaluation index values are plotted for
each area, where an area represents 50 phases.

1) Search success ratio
The “search success ratio” is defined as the ratio of
the searches in which at least one file (or sufficient
chunks for restoring the file) among the 10 files
conforming to the keyword is found.

2) Recall ratio
When a search is successful, the “recall ratio” is
the ratio of discovered files (or sufficient chunks
for restoring files) to the 10 files conforming to
the keyword. For example, a recall ratio of 0.3
indicates that on average, three files conforming to
the keyword are found.

3) Average queueing time
The “average queueing time” is defined as the
average wait time from when a file is requested
until the download begins. (In the case of a file
that must be reconstructed from chunks, the wait
time is defined as the longest time for any of the
chunks to be downloaded.)

1) Comparison of file placement techniques: First,
we perform a simulation experiment (Experiment 1) to
investigate the efficiency of a technique that uses chunk
placement lists as compared with representative replica
placement techniques for placing files such as owner
replication and path replication. As shown below, we
change the number of replicas and placement peers after
obtaining the files, and we compare the performance.

• FileOR: Owner replication (the search request peer
publishes the obtained file).

• FilePR: Path replication (In addition to owner repli-
cation, replicas are placed on all peers in the search
path).

• File1AR: In addition to owner replication, one
replica of the obtained file is placed on an adjacent
peer of the search request peer.

• File2AR: In addition to owner replication, two repli-
cas of the obtained file are placed on two adjacent
peers of the search request peer.

• File1LR: In addition to owner replication, one replica
of the obtained file is placed on a peer in the chunk
placement list of the search request peer.

• File2LR: In addition to owner replication, two repli-
cas of the obtained file are placed on two peers in
the chunk placement list of the search request peer.

Figure 4 shows the search success ratios, Figure 5
shows the recall ratios, and Figure 6 shows the average
queueing times for Experiment 1.

FileOR, which does not place replicas on peers other
than the search request peer, has extremely low search
success and recall ratios compared to the other tech-
niques. There is no major difference between the other
techniques. The search success and recall ratios tend to
increase with the number of replica placements. It is
known from a preliminary experiment that the number
of replica placements (not including a file published by

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012 353

© 2012 ACADEMY PUBLISHER

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
e
a
rc

h
 s

u
c
c
e
s
s
 r

a
ti
o

Phase

FileOR

FilePR

File1AR

File2AR

File1LR

File2LR

Figure 4. Search success ratio in Experiment 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e
c
a
ll

Phase

FileOR

FilePR

File1AR

File2AR

File1LR

File2LR

Figure 5. Recall ratio in Experiment 1.

the search request peer) in FilePR is between one and
two.

There is a large difference between the average queue-
ing time for FilePR and for other techniques. In FilePR,
as replicas are placed on peers in the search path, many
replicas are placed on high-degree peers that tend to be in
the query’s transmission path. Moreover, in searching with
flooding, there is a high probability that a query arrives at
a high-degree peer. For this reason, although a mechanism
for selecting the optimal peer for the download is adopted,
file upload requests are concentrated in high-degree peers
and this increases the wait time.

In Experiment 1, no clear difference is observed
between the techniques for placing on adjacent peers
(File1AR, File2AR) and the techniques based on chunk
placement lists (File1LR, File2LR). However, these tech-
niques are demonstrated to be superior to owner replica-
tion (FileOR) and path replication (FilePR).

2) Comparison of chunk placement techniques: We
execute a simulation experiment (Experiment 2) to verify
the effectiveness of our proposed technique when placing
chunks. To demonstrate the effectiveness of the proposed
technique using rateless codes, the performance of the
proposed technique is compared with the case in which
file replicas are placed and the case in which a file is split

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

Q
u
e
u
e
in

g
 t
im

e
 [
p
h
a
s
e
]

Phase

FileOR

FilePR

File1AR

File2AR

File1LR

File2LR

Figure 6. Average queueing time in Experiment 1.

into 20 equal-sized blocks numbered 1-20. Those blocks
are also referred to as chunks. Address information is
added to this type of chunks, similar to the technique us-
ing rateless codes. Once 20 chunks with different numbers
are collected, the file can be restored, even if they were
created by different peers. The technique using rateless
codes has an overhead of 5% as described above, and the
file can be restored when any 21 chunks created from the
same file are collected.

For each of the three placement techniques, we consider
the case where files and chunks are placed on adjacent
peers and the case where files and chunks are placed on
peers appearing in the chunk placement list. We perform
a comparison of the following six techniques. (Since the
size of one file is the same as the size of 20 chunks, these
techniques are compared fairly in terms of the replica
placement volumes.)

• File1AR: In addition to owner replication, one
replica of the obtained file is placed on an adjacent
peer of the search request peer.

• ChunkD20AR-20: In addition to owner replication,
20 chunks created by splitting the obtained file are
placed on adjacent peers of the search request peer.

• ChunkR20AR-21: In addition to owner replication,
20 chunks created using rateless codes are placed on
adjacent peers of the search request peer.

• File1LR: In addition to owner replication, one replica
of the obtained file is placed on a peer in the chunk
placement list of the search request peer.

• ChunkD20LR-20: In addition to owner replication,
20 chunks created by splitting the obtained file are
placed on peers in the chunk placement list of the
search request peer.

• ChunkR20LR-21: In addition to owner replication,
20 chunks created using rateless codes are placed
on peers in the chunk placement list of the search
request peer (proposed technique).

Figure 7 shows the search success ratios, Figure 8
shows the recall ratios, and Figure 9 shows the average
queueing times for Experiment 2.

Our proposed technique (ChunkR20LR-21) produces

354 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
e
a
rc

h
 s

u
c
c
e
s
s
 r

a
ti
o

Phase

File1AR

ChunkD20AR-20

ChunkR20AR-21

File1LR

ChunkD20LR-20

ChunkR20LR-21

Figure 7. Search success ratio in Experiment 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e
c
a
ll

Phase

File1AR

ChunkD20AR-20

ChunkR20AR-21

File1LR

ChunkD20LR-20

ChunkR20LR-21

Figure 8. Recall ratio in Experiment 2.

the best search success and recall ratios, which suggests
that this technique distributes the chunks in a highly effi-
cient manner. Despite placing the same volume of repli-
cas, the performance of the chunk placement technique
for placing chunks created by splitting a file is inferior
to that of the file placement technique. This is because
when a chunk is absent owing to the removal of peers, it
is not easy to find a chunk with the same number. In the
case of the technique using rateless codes, it is possible
to mitigate the decrease in search success and recall
ratios because a file can be restored as long as chunks
created from identical files are collected. Compared with
ChunkR20AR-21, the proposed technique (ChunkR20LR-
21) allows chunks to be distributed on more different
peers, thus improving the search success and recall ratios.

ChunkR20LR-21 also has the best average queueing
time performance. The wait time in early stages is re-
duced, and there is almost no wait after the distribution
settles down. Since it is necessary to collect chunks
with all numbers in technique ChunkD20LR-20, chunks
must frequently be downloaded from a peer in which
requests are concentrated. In contrast, this requirement
can be avoided with a high degree of probability in
ChunkR20LR-21. Furthermore, queueing time can be
reduced in ChunkR20LR-21 because it is possible to

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

Q
u
e
u
e
in

g
 t
im

e
 [
p
h
a
s
e
]

Phase

File1AR

ChunkD20AR-20

ChunkR20AR-21

File1LR

ChunkD20LR-20

ChunkR20LR-21

Figure 9. Average queueing time in Experiment 2.

distribute chunks in ChunkR20LR-21 more effectively
than in ChunkR20AR-21, thus producing a larger pool
of peers from which chunks can be downloaded. Of
the two techniques for placing chunks created by split-
ting a file, ChunkD20LR-20 produces better results than
ChunkD20AR-20, confirming that queueing time can be
reduced by using a chunk placement list.

In this experiment, by enhancing rateless codes through
the addition of address information to chunks and chunk
placement lists to peers and by making it possible to
restore a file if a certain number of chunks created
from identical files are collected, our proposed tech-
nique demonstrated superior performance on all the per-
formance indices. Furthermore, the proposed technique
demonstrated superior performance in spite of the severe
condition where the number of chunks required to restore
a file exceeds the number of chunks placed at a time. This
fact shows that the proposed technique, which utilizes
rateless codes, is highly effective.

VI. SUMMARY

In this paper, we proposed an effective technique for
replica placement using rateless codes in an unstructured
P2P network. In particular, we proposed a technique for
collecting peer addresses that are candidates for chunk
placement when searching with flooding and a technique
that augments a chunk with the addresses of peers in
which other chunks created from the same file have been
placed. We ran a simulation considering the participation
and removal of peers, demonstrating the superiority of
our proposed technique with respect to the search success
ratio, the recall ratio, and queueing time.

Future research topics include designing a way to
reduce the communication load by eliminating unneces-
sary chunk placement in cases where chunks are already
sufficiently distributed. It would also be beneficial to
study a technique for effectively utilizing rateless codes
in structured P2P networks as well.

REFERENCES

[1] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S.
Lim, A survey and comparison of peer-to-peer overlay

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012 355

© 2012 ACADEMY PUBLISHER

network schemes, IEEE Communications Surveys, Vol.7,
No.2, pp.72–93, 2005.

[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan, Chord: A scalable peer-to-peer lookup
service for Internet applications, Proc. SIGCOMM ’01,
pp.329–350, 2001.

[3] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, A
scalable content-addressable network, Proc. SIGCOMM
’01, pp.161–171, 2001.

[4] A. Rowstron and P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, Proc. Middleware 2001, pp.329–350, 2001.

[5] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing, U. C. Berkeley Technical Report UCB/CSD-01-
1141, 2000.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and
replication in unstructured peer-to-peer networks, Proc.
ACM ICS ’02, 2002.

[7] N. Bisnik and A. Abouzeid, Modeling and analysis of
random walk search algorithms in P2P networks, Proc.
HOT-P2P 2005, 2005.

[8] I.S. Reed and G. Solomon, Polynomial codes over certain
finite fields, Journal of the Society for Industrial and
Applied Mathematics, Vol.8, No.2, pp.300–304, 1960.

[9] D.J.C. MacKay, Fountain codes, IEE Proceedings - Com-
munications, Vol.152, No.6, pp.1062–1068, 2005.

[10] C. Wu and B. Li, rStream: Resilient and optimal peer-to-
peer streaming with rateless codes, IEEE Transactions on
Parallel and Distributed Systems, Vol.19, No.1, pp.77–92,
2008.

[11] T. Schierl, S. Johansen, A. Perkis, and T. Wiegand, Rate-
less scalable video coding for overlay multisource stream-
ing in MANETs, Journal of Visual Communication and
Image Representation, Vol.19, No.8, pp.500–507, 2008.

[12] T. Gasiba, W. Xu, and T. Stockhammer, Enhanced system
design for download and streaming services using Rap-
tor codes, European Transactions on Telecommunications,
Vol.20, No.2, pp.159–173, 2009.

[13] M. Luby, LT Codes, Proceedings of the 43rd Symposium
on Foundations of Computer Science, 2002.

[14] D.J.C. MacKay, Information theory, inference, and learn-
ing algorithms, Cambridge University Press, 2003.

[15] R. Rodrigues and B. Liskov, High availability in DHTs:
Erasure coding vs. replication, Lecture Notes in Computer
Science, Vol.3640, pp.226–239, 2005.

[16] H.B. Ribeiro and E. Anceaume, Exploiting rateless coding
in structured overlays to achieve data persistence, Proc.
the IEEE 24th International Conference on Advanced In-
formation Networking and Application (AINA 2010), 2010.

[17] F.M. Cuenca-Acuna, R.P. Martin, and T.D. Nguyen, Au-
tonomous replication for high availability in unstructured
P2P systems, Proc. the 22nd International Symposium on
Reliable Distributed Systems (SRDS ’03), 2003.

[18] W.K. Lin, C. Ye, and D.M. Chiu, Decentralized replication
algorithms for improving file availability in P2P networks,
Proc. the 15th IEEE International Workshop on Quality of
Service (IWQoS 2007), 2007.

[19] B. Cohen, Incentives build robustness in BitTorrent, Proc.
the 1st Workshop on Economics of Peer-to-Peer Systems,
2003.

[20] D.J. Watts and S.H. Strogatz, Collective dynamics
of ‘small-world’ networks, Nature, Vol.393, No.6684,
pp.440–442, 1998.

[21] A.-L. Barabási and R. Albert, Emergence of scaling in
random networks, Science, Vol.286, No.5439, pp.509–512,
1999.

[22] K. Klemm and V.M. Eguı́luz, Highly clustered scale-free
networks, Physical Review E, Vol.65, No.3, pp.036123-1–
036123-5, 2002.

[23] K. Klemm and V.M. Eguı́luz, Growing scale-free networks
with small-world behavior, Physical Review E, Vol.65,
No.5, pp.057102-1–057102-4, 2002.

Keiichi Endo was born in Osaka, Japan
in 1980. He received his B.S. degree in
Engineering, M.S. and Ph.D. in Infor-
matics from Kyoto University, Japan, in
2003, 2005, and 2008, respectively.

He is currently a Senior Assistant Pro-
fessor at the Graduate School of Sci-
ence and Engineering, Ehime University,
Japan. His current research interests are

in the area of peer-to-peer and wireless networks.
Dr. Endo is a member of IPSJ, IEICE, and JSIAM.

Ryosuke Hamabe was born in Kagawa,
Japan in 1988. He received his B.S. de-
gree in Engineering from Ehime Univer-
sity, Japan in 2010.

He is currently a graduate student at
the Graduate School of Science and En-
gineering, Ehime University, Japan. His
current research interests are in the area
of peer-to-peer networks.

Mr. Hamabe is a student member of IEICE.

Dai Okano had B.Eng. and M.Eng. in
Applied Physics, Dr.Eng. in Information
Science and Technology from the Univer-
sity of Tokyo.

He is currently an Associate Professor
at the Graduate School of Science and
Engineering, Ehime University, Japan.
His research interests are in Mathematics,
Computations, and their applications.

Dr. Okano is a member of JSIAM, IPSJ, and SIAM. He
received the 40th Anniversary Best Paper Award in 2000 from
IPSJ.

Kaname Amano completed the B.Eng.
and the M.Eng. in 1971 and 1974 from
Kyoto University, Japan; then the Dr.Eng.
in 1978 from Hokkaido University, Japan.

He is currently a Professor at the Grad-
uate School of Science and Engineer-
ing, Ehime University, Japan. His cur-
rent research area includes computational
mathematics, cognitive psychology and

computer science.
Prof. Amano is a member of MSJ, JSIAM, IPSJ, JPA, SIAM,

etc. He received the 30th Anniversary Best Paper Award in 1990
and 40th in 2000 from IPSJ, and the Best Paper Award in 1996
from JSIAM.

356 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

