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Abstract— An array antenna based localization using spatial the need of tags/electric devices being carried by him.
smoothing processing (SSP) is proposed for wireless security |n general, passive localization is preferred owing to
and monitoring, referred to as array sensor. The proposed  ygief from stress brought in by carrying tags/devices; this
method is based on the array sensor that exploits an L R . :

array antenna at the receiver to detect the propagation mal_<es this kind of Iocahzatl_on _fea5|ble in a bathroo_m
environment of interest. If an event occurs, e.g., human environment. HOWeVer, localization aCCUracy of paSS|Ve
motion, the propagation environment is changed. Thus the localization techniques is generally lower than that of
eigenvector and eigenvalue spanning the signal subspace gctive ones.

that is inherent to its environment changes as well. Using Several electrical wave-based security systems are re-
a machine learning technique based on the eigenvector and - . o
eigenvalue, we can detect the event accurately. The proposed ported in [8]-[12], where an event Suf:h as.lntrusmn 1S
method is improved from our previous work which uses only ~ detected based on the change of received signal strength
a limited number of signal subspace features. The basic idea (RSS). Electrical waves arrive in every corner of the area
of this work is the extension of the dimension of the signal  of interest, and thus wide sensing range is achieved. In
subspace by using SSP without increasing the number of - 5qgition, there is no need to worry about privacy invasion

array element. In addition, this work investigates the impact .
of the array antenna placement on localization performance. in these systems. However, RSS suffers from the effects

The experimenta| results show that the proposed SSP based of noise and fluctuates even in static conditions. ThUS, a
method achieves a 41.83 % improvement in localization detection error occurs.

accuracy, and a 1.24 m improveme_nt in root mean square A passive sensing system using an array antenna,
error (RMSE) compared to the previous method. referred to as array sensor, for monitoring and security
Index Terms— localization, monitoring, array antenna, spa- is proposed in [13]. The array sensor is based on the

tial smoothing processing change of signal subspace of interest. The array sensor
uses only an array antenna without calibration [15] as the
|, INTRODUCTION receiver and observes wide range with high accuracy. The

o . array signal processing decomposes the received signals

Indoor localization technologies have become one ofyiq " eigenvectors corresponding to direction of arrival
the major teqhnlques for many app||cqt|ons such as MDOA) and eigenvalues corresponding to RSS. Unlike the
truder detection in office/home, and finding people ingtorementioned systems, it can mitigate the effect of noise
emergency situations, and healthcare monitoring for th@ecayse it uses only the signal subspace. Using a machine
elderly people who are living alone [1][2]. With a cameragaming technique, support vector machine (SVM), based
such as a closed-circuit television (CCTV) [3], we can sig-gp, the eigenvector and eigenvalue, we can detect an event
nificantly know the target location. One of the prOblemS’accurately [16].
however, is that it comes at the expense of user privacy. Thjs paper explains the array antenna based localization
For instance, it is difficult to install in a private area suchusing spatial smoothing processing (SSP). Although the
as in a house. Another problem is that the detection aregyentional method [13] can detect human activities,
is limited, and it cannot locate positions behind obstacles; cannot determine the position of the human being in

Recently, electrical wave-based localization techniquegetajl because the number of features (i.e., eigenvector
have attracted attention [4]-{7]. Typically, there are twogng eigenvalue) is limited. Furthermore, it is dependent
kinds of techniques: active localization and passive 104 the number of array elements. The proposed method
calization. The majority of localization techniques fall in ;g improved from our previous work which uses only
the active class, where a person being localized and/o{ |imited number of signal subspace features (up to
tracked, needs to carry tags/electric devices. In passii@e number of array elements). In addition, this paper
localization, a person is localized and/or tracked Withouﬁnvestigates the impact of array antenna placement on

Manuscript received March 1, 2012; accepted March 25, 2012. localization performance. The experlmen_tal results show
This paper is based on “Wireless Security and Monitoring System Usinghat the proposed SSP based method improves the lo-

Array Antenna: Array Sensor,” by T. Ohtsuki, which appeared in the cgjization accuracy and root mean square error (RMSE)
Proceedings of the 2012 International Conference on Computing, Net- d h . hod
working and Communications (ICNC), Hawaii, USA, Jan.-Feb. 2012.compare to the previous method.

© 2012 IEEE. The rest of this paper is organized as follows: Section
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In this paper, we treat the estimat®l., asR.,..

B. Subspace Based Method

Subspace based method [17] decompd®gs into the
orthogonal signal and noise subspaces via the eigenvalue
decomposition (EVD). We can compute thedimension
data correlation matriR,, with the EVD as follows.

L
Figure 1. L-element array antenna R.. = Z >\lVlVlH = VAVH, (8)
=1
vV = [Vl,V2,"',VL], (9)
Il explains array data model. Section Il introduces de- A = diag{Ai, A2, -, AL}, (10)

tection methods, and Section IV presents the proposed . . .
P ProPOSSihere diag{-} is a diagonal matrix,\; and v; are the

localization method. We show the experiment results inl h ei | d ei velv. Whenith
Section V. Finally, we conclude the paper in Section VI. th eigenvalue an elgenvecfcor, rgspectwe y. Whenitne
element array antenna receivissignals, the dimension

. ARRAY DATA MODEL of the signal subspac¥ s and noise subspacéy is K
andL — K, and thenVg andV  are written as follows.

A. Data Model
Consider thelL-element linear array and thi€ narrow Vs = [vi,...,VKk], (12)
band signals as shown in Fig. 1. In the proposed system, Vy = [Vkt1s--.,vi], (12)

there is no need to consider a specific array deployment
because the idea of our system is to use the eigenvethere
tor changes by the propagation environment of interest 2

. . . >0 > > R ~o°.
changes. The signa (u) (k = 1,-- -, K) is received by A2 2 Ak Z Ak AL~ (13)
the array antenna from directiagh, at timew as a plane  Therefore, the eigenvalue matrix is decomposed into
wave owing to the far field assumption. The receivedsignal and noise eigenvalues. We use these components,

signal vector is represented as eigenvector and its eigenvalue spanning signal subspace,
K to detect the change of propagation environment of inter-
x(u) = > a(fy)sk(u) + n(u) (1) est
k=1
As(u) + n(u), ) I1l. DETECTIONMETHOD
A = J[a(by),...,a(0k)], 3)

" When a pair of transmitter and receiver are fixed, the
s(u) = [s1(u),...,sk(u)] (4)  signal subspace spanned by eigenvector changes when
where []” is the transpose operator, ang(u) is an the indoor environment of interest changes. For detecting

additive white Gaussian noise (AWGN) of zero mean anc/MPIe €events, such as intrusion, we can use a simple
variances?. The steering vectoa(6;) is the complex threshold-based detection based on change of first eigen-

vector including a phase shift of a source signal atithe vector. For detecting and classifying more complex states

elementd;, (1 < [ < L) away from the reference point and activities, such as sitting in a bathtub and falling in
it is repreéentgd as a bathroom, we use support vector machine (SVM). We

S o explain detection methods used in the array sensor.
a(ek) — [e—]le s1n9k’ o e—deL smek]T (5)
where ) is the wavelength of the source signal. A. Cost Function

To analyze wave propagation, we use the data correla-
tion matrix obtained by the received signal vecidr).
The data correlation matriR ., is defined as

Ray = Blx(u)x(u)"] (6)

whereE[-] and[-] denote the ensemble average and the

conjugate transpose of vectpt, respectively. TheR,,  Wherev;(u,,), the reference vector, is thith eigenvector
cannot be obtained properly. Therefore we measure a@btained in advance. Ang;(u) is the ith eigenvector
ensemble average of eq. (4) based on the basis of ergodibtained at the observation time Thus, the larger the
hypothesis. The estimatdtl,, is sampled for the number Vvalue of P;(u), the smaller the change of the environment

We use cost functions based on signal eigenvectors and
its eigenvalues to detect events. The cost function based
on the eigenvector is defined as

Pi(u) = [vi! (uno)vi(u)]  (0< Pi(u) <1)  (14)

of snapshotsV, as follows is, and the smalleP;(u) is, the larger the change of the
N, environment is. The eigenvector is stationary even in noise
R,, = S Z x(u)x(u) . @) gnd fad[ng environment, because it does not include RSS
Ns =~ information.

©2012 ACADEMY PUBLISHER



JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 6, JUNE 2012 429

The cost function based on the eigenvalue is defined as _#1 _#2 #M #L
)\iu _)\7, Uno
Qulu) = 1= Al )|, ) < 1) as)
)\1; (Uno) [ —
(N=L-M+1)

Subarray 1 —

Subarray2 00

where \;(uy,) is theith eigenvalue obtained in advance, Subatray N

that is the reference value, ang(u) is theith eigenvalue
obtained at the observation time. Like P;(u), the
larger the value of);(u), the smaller the change of the
environment is, and the smaller the value@f(u), the

Figure 2. L-element array divided intd/-element subarray

. : . M R

larger the change of the environment. The eigenvalue is i p M

less stationary than the eigenvector, howe¢gru) can poogocooco]| R poog

detect even the smallest changes. Therefore, we use both 8 g g g g 8 g g g g 8 8 M

P;(u) and@;(u) as situation demands [15]. . pPedgooo boaaq
ODOoOo OCOQ s

Ry, RZ

OOOOpPOCOQ 558
CO0OODOOJ

B. SVM coobhoao

As mentioned above, in order to detect and classify L

more complex states and activities, such as sitting in a

bathtub and falling in a bathroom, we use SVM [22]. Figure 3. L x L
SVM is one of the most attractive machine learning tech-

nigues. SVM has shown several advantages in prediction,
regression, and estimation over some of the classicahe received
approaches in a wide range of applications owing to its
improved generalization capabilities. Once the SVM has
been trained, then all future unknown samples can be
classified in real time.

correlation matrix and/ x M sub-correlation matrix

signal vector is represented as

I K;
D> ama(Bin)si(t — Bix) + n(u) (16)

i=1 k=1

x(u)

- As(u) +n(u), a7)

In general, the larger the number of training sam- o p 0 18
ples becomes, the more difficult the linear separability = [a(tn), .. altix,), (18)
becomes, and the larger the dimension of the feature a(b21),...,a(0rk,)] (19)

space, the easier the classification process. Howev
mapping into high dimensional feature space causes hiq the reference delay for thith path from the source
complexity. Kernel trick maps the feature vector into

. . . i ) i, with oy, # 0, a1 = 1, and 5;; # 0. In the indoor
high dimensional feature space without computing fea?ﬂnvironment, the difference of propagation delay among

tures in the mapped space. Although the dimension o ultipath waves is negligibly small, that i8;; ~ 8.
the feature space transformed with non-linear mappinguherefOre the rank o — E[5(w)s(w)"] is T and the

function becomes very large, the complexity of SVM doesOlimension of the signal subspaé®; equals tol
not increase because the objective function in the SVM '

depends on the inner product of input patterns only.
i i o8- SSP
In order to use machine learning for a safety syste

hereq;; is the complex attenuation coefficient afg

like an array sensor, the following essential points must be Spatial smoothing processing (SSP) is the method

considered: detection in real time or semi-real time; workhat separates coherent signals [20]. It does not need to
on a non-linear problem; use of as many features as posdpcrease transmitters and receivers to use uncorrelated
ble. Therefore, we use radial basis function (RBF) kernefignals. The fundamental theory of SSP is that the phase
for the mapping function, because it has less numericdelationships among coherent signals are different from

difficulties [23]. The number of kernel parameters thatone element to another, and the cross-correlation value
influences the complexity of model selection is small and*¢comes small owing to average effect by parallel shift

the other kernel functions have more kernel parameter@f the receiving position. Thus, we do not need to increase
than the RBF kernel. Moreover, we use cost functionghe number of array elements.

based on the eigenvector and eigenvalue for the features!f the L-element linear array is divided int/-element

of SVM.

IV. LOCALIZATION METHOD USING ARRAY SENSOR

A. Multiple Signals

If there arel uncorrelated sources and; multipath
signals from theth transmitter in the indoor environment,

©2012 ACADEMY PUBLISHER

subarrays, we geN subarrays, wher& = L — M + 1,
as shown in Fig. 2. The received signal vector in ittle
subarray is obtained by

xct (u)

n
n

(20)
(21)

[Xn(u), ... ,xn_,_M_l(u)]T
1 N.

yeeey

The newM -dimension correlation matrix is obtained by
the spatial average of th& sub-matrices as shown in
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the cost functions without SSI; (u), Q;(u), and those
Receive signals with SSP, PFSF (u), Q55T (u) for each data, where =
] SSp 1,...,Un. That is, we haveNpUy training samples.
Next, all the cost functions are combined to one feature
: : vector as
‘EStlmatERﬂ ‘ ‘Estlmate Rgsp ‘
z, = [Pl(u)a-'-aPI(u)an(u)a"'an(u)aplsSP(u)7
[EVDOfR, | [EVDofRss | PR ). QP (). QE (). (26)
Compute Compute The dimension of,, (the number of features) is
cost function cost function
21 SSP
B(u), 0,(u) P ), 05 () F 2D7$’ VWVI/‘D(; SSP 27)
2(I + Dg). w/o SSP U with SSP
‘SVM Training ‘ Then, z, is mapped into a high dlmensm_nal space by
RBF kernel and the training model is obtained.
2) Localization Phase:ln the localization phase, al-
though we get cost functions and the feature vector
in the same way as in the training phase, we do not
Figure 4. Localization algorithm know what position this feature vector is classified to.

However, once the SVM has been trained, then all future
unknown samples can be classified in real time. We

Fig. 3. localize the unknown position of standing person based
on the algorithm.

N
1
Rl = =Y R 22
sSSP an::l " (22) V. EXPERIMENTAL RESULTS
R! = E[x{(u)xf(u)f] (23) In this section, we show three experimental results

obtained in different environments under various scenar-

There is an improved method, called the forward-jos Before introducing experimental results for localiza-
backward SSP (FB-SSP) [21]. The correlation matrixjon we first introduce an experimental result for the

obtained by FB-SSP is represented as follows. person intruding, stopping, or moving. All experiments
R/ + Rlgp are conducted in a non-line-of-sight (NLOS) condition.
Rpp_gsp = —oo0 (24)  In NLOS there is no direct-path signal that is dominant

2 . .
over the signal subspace spanned by eigenvector and thus

by . . . _ |
whereRggp, is the backward correlation matrix obtained the signal subspace spanned by eigenvector enhances the

b — T . . .
by x5, (u) = [Znyr-1(w), ..., z1(w)]" impact of multipath signals that capture the change of
However, in real multipath environments, there areanyironment.

many incoming signals and it is difficult for a few

elements to separate all coherent signals. The FB-SSP i i , .

can separateN signals per group of coherent signals and_A' Expen_ment 1 Detect_lon of Person’s Activities, Intrud-
the dimension of whole subspace/i$ corresponding to ing, Walking, and Stopping

the rank ofRyg_ssp. Then, the dimension of the signal We show one of our experimental results obtained in

subspaceDy is extended as the room shown in Fig. 5. We use a transmitter and its
) transmission frequency is 2.484 GHz. The size of array
Ds = min{2NI, M}. (25)  antenna i9.0 x 9.0 x 7.3 cm® and the number of array

The proposed method uses the FB-SSP to separate coh8l€ments is 8. _
ent signals and extend the dimension of signal subspace. Fig- 6 shows an experimental result for the person

From here, we describe FB-SSP simply as SSP. intruding, stopping, or moving. In this experiment, a
person opens the door and intrudes, and passes through

points A, B, C, and goes through the door as shown in Fig.

C. Algorithm 5. The person stops for 20 seconds at each point, A, B,
The proposed localization algorithm is shown in FigureC. The cost functior(u) changes significantly when the
4 door opens.P(u) also fluctuates significantly when the

1) Training Phase: If the dimension of the signal person moves and fluctuates moderately when the person
subspace is extended, we can use many cost functiossops. This happens because the change of environment,
as features of SVM. Assume that we classifyy posi- such as the door opening, the existence of the person, and
tions. In the training phase, we get the received signalthe person’s motion, changes the propagation of the radio
x,(u) (p=1,...,Np) when a person stands at position waves and thus the first eigenvector as well. Therefore, the
p for U observation times. From the signals, we computecost function, that is the correlation of the first eigenvector

©2012 ACADEMY PUBLISHER
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9 P Figure 7. The room used for the experiment 2
1 ‘ . .
; TABLE II.
stopping @ A .
095k ! ** stopping @ C J TRANSMISSION FREQUENCIES
walking -
0.9r S 1 Transmitter [ Frequency
stopping @ B Tx1 2.412 GHz
o~ 08s5r ~ opendoor and exit | Tx2 2.417 GHz
= 0.8t " 1 Tx3 2.422 GHz
) walking
075+ - - R~ 1
0.7¢ - - 1 ; ;
open door and intrude a receiver (Rx) was set up on the waI_I side. There are al_so
0.65 N . some obstacles between the transmitters and the receiver
0 10 20 30 40 50 60 70 8 90 100

Observation number to make NLOS situation.
In total, 16 points are selected as candidate points
Figu_re 6. Detect!on performance of person’s activities, intruding,shown as in Fig. 7. In the training phase, we obtained
walking, and stopping 100 observation data (approximately 15 seconds) when a
person stands at each position. Five persons participated
in the experiment. In tota8000 (= 100 x 16 x 5) data
between in the reference and in the observation, alsare collected, then trained by the SVM. We usg =

changes. From this result, we can easily see the person®, (u), ..., Pp,(u), Q1(u),...,Qps(u)] as the feature

movement; intruding, stopping or moving. vector of the conventional method and eq. (26) as that
of the proposed method.

B. Experiment 2: Localization with SSP In the testing phase, a person enters the room from the

. . . door 1, walks from point 1 to 16 in the route indicated
We show the experimental results using multiple coher; . o
by solid arrows, stands at each position for 10 seconds,

ent S|gnaI§ to improve localization accuracy. Fig. 7 Sh.OW§NaIkS from position 16 to the door 2 in the route indicated
this experimental environment. We use three transmitte

r . :
(Tx1, Tx2, and Tx3) in this experiment. Experimental By dot arrows, and exits from the room. The testing data

parameters are listed in Table I. Each transmittertransmit%am be obtained in real time and we localize the person

signal with different frequencies as described in Table pna continuous way with SVM.

Three transmitters were set up on the windows side, an 1) Cost Function in the Testing Phas€ig. 8 shows
P ' t%e change of cost functio®;(u) (i = 1,2,3) without

SSP. The reference eigenvectors are obtained in advance
TABLE I. when there is no person in the room. The dimension of
EXPERIMENTAL PARAMETERS the signal subspace is three and we can use those cost
functions, that isi = 1,2,3, because there are three

Transmission power —10 dBm . ’ .

Modulation method No modulation uncorrelated transmitters in the room. From this figure,
Transmitter Dipole antenna we can see that the proposed method can observe a whole
Sa‘?ﬁ%ﬁ‘éerrate 8'e'em§6‘tw'l':|§ar array room same as the conventional method.

NuUmber of snapshot 1074 Fig. 9 shows the change of cost functiéh(u) (i =

4,5,6) without SSP. These cost functions cannot detect
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Figure 11. Localization accuracy without SSP £ 2)

=)

any events because the 4th, 5th, and 6th eigenvectors are
the basis vectors of the noise subspace. Thus, we can
see that the cost functio®;(u) (i = 4,5,6) includes
noise information. Therefore, the dimension of the signal
subspace is three, we can use oflyu) (i = 1,2,3) as
features.

Fig. 10 shows the change d?*P(u) (i = 4,5,6)
with SSP (V = 3, M = 6). The dimension of the signal
subspace is extended to six as in eq. (25). These cost
functions can also be used as features of SVM, because
the SSP can separate coherent signals into multiple un-
correlated signals.

2) Comparison of Localization Accuracy and RMSE:
Table 11l shows the localization accuracy and root mean
square error (RMSE) of the conventional method (w/o
SSP) and proposed method (w/o SSPw/ SSP). We
define the accuracy as the correct probability that the
estimated position i when the person stands at position
p, and RMSE as the distance error between true position
and estimated positio)s is the dimension of the signal
subspace used for cost functiopy, is the number of
subarrays used for SSP, afidis the number of features
used for SVM.

From these results in each method, we can see that
the largerF’ shows the higher localization accuracy and
lower RMSE. This happens because SVM learning ability
is improved by increasing the number of features. We
can also see that in the same conditidn € 6), the
“w/o SSP” achives higher accuracy than “w/ SSP”. This
happens because SSP reduces the effective aperture of the
array antenna. Compared to “w/ SSP” and “w/o S$P
w/ SSP”, (g), (h) and (i), (j), “w/o SSP w/ SSP” shows
higher accuracy than “w/ SSP”. This happens because we
can observe multiple path. The proposed method achieves
higher accuracy than all the other methods. This happens
because SVM learning ability is improved by increasing
the number of features.

3) Probability Map: Figs. 11 and 12 show one ex-
ample of the estimation probability map for the method
without SSP and the method with SSP, respectively. In
the figures, each small map is divided into 16 blocks
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TABLE III.
COMPARISON OF LOCALIZATION ACCURACY AND RMSE.
Ds = DIMENSION OF THE SIGNAL SUBSPACEN = NUMBER OF SUBARRAYS F' = NUMBER OF FEATURES

I Method [ Ds [ N [ F ] Accuracy (%) [ RMSE (m)
[E)) w/o SSP 1 0 2 25.69 2.71
(b) w/o SSP 2 0 4 41.60 2.40
(c) w/o SSP 3 0 6 52.70 1.92
(d) w/ SSP 3 6 6 12.10 3.22
(e) w/ SSP 4 5 8 41.32 2.11
® w/ SSP 5 4 10 48.85 2.16
@ W/ SSP 6 | 3| 12 54.28 2.06
(h) w/ SSP 7 2 14 48.16 2.29
[0) w/o SSPU w/ SSP 3 6 12 59.89 1.67
0) w/o SSPU W/ SSP| 4 5 14 56.50 1.63
(k) w/o SSPU w/ SSP 5 4 16 62.33 1.66
[0) w/o SSPU w/ SSP 6 3 18 61.47 1.71
(m) || Wio SSPUW/ SSP| 7 | 2 | 20 67.52 1.47

100 (%) - 55m -
HAENEE
P=13 P=12 P=3 P=4 Tx
70
60
P=14 P=1l1 P=6 PE3 50 o o o o o
® 0 0 ' O
P=15 P=10 P=7 P=2
20 -
10 7 @ ® ® © o
(=)
P=16 P=9 P=38 P=1 : @ @ @ @ @
Figure 12. Localization accuracy with SSP & 20) @ @ @ @ @
Tx: Transmitter
Rx:Receiver
related to 16 positions in Fig. 7. Fig. 11 shows the Rx
result of localization using only?; (u) and Q; (u). From E—
this figure, the method without SSP can hardly localize e == L Do p
the POSl_tlon of the _Standmg person. V\_Ie Can see hlg'lgigure 13. The room used for the experiment 3. The numbers in circle
localization accuracies at only three poings= 4,p =  show the points to localize human’s position.
10,p = 13).

Fig. 12 shows the result of localization using twenty
cost functionsp; (u), Qi(u) (1 < i < 3) and P{F (u),
Q35F(u) (1 < j < 7). This method uses two subarrays
of SSP (V = 2). The accuracies of all points except at
the p = 1 are higher than 80 %. Thus, we can see tha
the proposed method that uses with SSP, shows bett
localization performance than the other one.

is same as the experiment 2. The transmitter (Tx) is
placed on the chair of 0.4 m height from the floor. To
evaluate localization performance of receiver position, we
Eonducted two types of experiments; the receiver (Rx) is
B[aced on the desk of 2.6 m (A) and 0.7 m (B) height.
(A) means that higher than a target object’s height, and
(B) means that the lower than the target.
C. Experiment 3: Impact of the Array Antenna Placement e collected training data for three persons. In the
on Localization Performance training phase, we obtained the data for each position
We investigate the impact of the array antenna placewhen a person stands at each position for 15 seconds.
ment on localization performance. If the receiver and/ofThe training data were labeled 25 classes. In the testing
transmitter placed on higher than the target object, th@hase, a person moves from point 1 to 25, standing at
change of propagation by the target is small. Thus, it magach position for 10 seconds.
affect the localization performance of array sensor. There- We compare the RMSE of the two types of Rx
fore, this experiment 3 attempts to find out the impact otheights, (A) and (B). The localization RMSE results
array antenna placement on localization performance. Figare summarized in Table IV. From these results, we
13 shows the experimental environment of the experimentan see that the (B)'s results show higher localization
3. Experimental parameters are listed in Table | whichperformance than (A). This happens because target object
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