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Abstract— An array antenna based localization using spatial
smoothing processing (SSP) is proposed for wireless security
and monitoring, referred to as array sensor. The proposed
method is based on the array sensor that exploits an
array antenna at the receiver to detect the propagation
environment of interest. If an event occurs, e.g., human
motion, the propagation environment is changed. Thus the
eigenvector and eigenvalue spanning the signal subspace
that is inherent to its environment changes as well. Using
a machine learning technique based on the eigenvector and
eigenvalue, we can detect the event accurately. The proposed
method is improved from our previous work which uses only
a limited number of signal subspace features. The basic idea
of this work is the extension of the dimension of the signal
subspace by using SSP without increasing the number of
array element. In addition, this work investigates the impact
of the array antenna placement on localization performance.
The experimental results show that the proposed SSP based
method achieves a 41.83 % improvement in localization
accuracy, and a 1.24 m improvement in root mean square
error (RMSE) compared to the previous method.

Index Terms— localization, monitoring, array antenna, spa-
tial smoothing processing

I. I NTRODUCTION

Indoor localization technologies have become one of
the major techniques for many applications such as in-
truder detection in office/home, and finding people in
emergency situations, and healthcare monitoring for the
elderly people who are living alone [1][2]. With a camera
such as a closed-circuit television (CCTV) [3], we can sig-
nificantly know the target location. One of the problems,
however, is that it comes at the expense of user privacy.
For instance, it is difficult to install in a private area such
as in a house. Another problem is that the detection area
is limited, and it cannot locate positions behind obstacles.

Recently, electrical wave-based localization techniques
have attracted attention [4]–[7]. Typically, there are two
kinds of techniques: active localization and passive lo-
calization. The majority of localization techniques fall in
the active class, where a person being localized and/or
tracked, needs to carry tags/electric devices. In passive
localization, a person is localized and/or tracked without
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the need of tags/electric devices being carried by him.
In general, passive localization is preferred owing to
relief from stress brought in by carrying tags/devices; this
makes this kind of localization feasible in a bathroom
environment. However, localization accuracy of passive
localization techniques is generally lower than that of
active ones.

Several electrical wave-based security systems are re-
ported in [8]–[12], where an event such as intrusion is
detected based on the change of received signal strength
(RSS). Electrical waves arrive in every corner of the area
of interest, and thus wide sensing range is achieved. In
addition, there is no need to worry about privacy invasion
in these systems. However, RSS suffers from the effects
of noise and fluctuates even in static conditions. Thus, a
detection error occurs.

A passive sensing system using an array antenna,
referred to as array sensor, for monitoring and security
is proposed in [13]. The array sensor is based on the
change of signal subspace of interest. The array sensor
uses only an array antenna without calibration [15] as the
receiver and observes wide range with high accuracy. The
array signal processing decomposes the received signals
into eigenvectors corresponding to direction of arrival
(DOA) and eigenvalues corresponding to RSS. Unlike the
aforementioned systems, it can mitigate the effect of noise
because it uses only the signal subspace. Using a machine
learning technique, support vector machine (SVM), based
on the eigenvector and eigenvalue, we can detect an event
accurately [16].

This paper explains the array antenna based localization
using spatial smoothing processing (SSP). Although the
conventional method [13] can detect human activities,
it cannot determine the position of the human being in
detail because the number of features (i.e., eigenvector
and eigenvalue) is limited. Furthermore, it is dependent
on the number of array elements. The proposed method
is improved from our previous work which uses only
a limited number of signal subspace features (up to
the number of array elements). In addition, this paper
investigates the impact of array antenna placement on
localization performance. The experimental results show
that the proposed SSP based method improves the lo-
calization accuracy and root mean square error (RMSE)
compared to the previous method.

The rest of this paper is organized as follows: Section
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Figure 1. L-element array antenna

II explains array data model. Section III introduces de-
tection methods, and Section IV presents the proposed
localization method. We show the experiment results in
Section V. Finally, we conclude the paper in Section VI.

II. A RRAY DATA MODEL

A. Data Model

Consider theL-element linear array and theK narrow
band signals as shown in Fig. 1. In the proposed system,
there is no need to consider a specific array deployment
because the idea of our system is to use the eigenvec-
tor changes by the propagation environment of interest
changes. The signalsk(u) (k = 1, · · · ,K) is received by
the array antenna from directionθk at timeu as a plane
wave owing to the far field assumption. The received
signal vector is represented as

x(u) =
K∑

k=1

a(θk)sk(u) + n(u) (1)

= As(u) + n(u), (2)

A = [a(θ1), . . . ,a(θK)], (3)

s(u) = [s1(u), . . . , sK(u)]T (4)

where [·]T is the transpose operator, andn(u) is an
additive white Gaussian noise (AWGN) of zero mean and
varianceσ2. The steering vectora(θk) is the complex
vector including a phase shift of a source signal at thelth
elementdl, (1 ≤ l ≤ L) away from the reference point,
it is represented as

a(θk) = [e−j 2π
λ d1 sin θk , . . . , e−j 2π

λ dL sin θk ]T (5)

whereλ is the wavelength of the source signal.
To analyze wave propagation, we use the data correla-

tion matrix obtained by the received signal vectors(u).
The data correlation matrixRxx is defined as

Rxx = E[x(u)x(u)H ] (6)

whereE[·] and [·]H denote the ensemble average and the
conjugate transpose of vector[·], respectively. TheRxx

cannot be obtained properly. Therefore we measure an
ensemble average of eq. (4) based on the basis of ergodic
hypothesis. The estimated̂Rxx is sampled for the number
of snapshotsNs as follows

R̂xx =
1

Ns

Ns∑
u=1

x(u)x(u)H . (7)

In this paper, we treat the estimated̂Rxx asRxx.

B. Subspace Based Method

Subspace based method [17] decomposesRxx into the
orthogonal signal and noise subspaces via the eigenvalue
decomposition (EVD). We can compute theL-dimension
data correlation matrixRxx with the EVD as follows.

Rxx =

L∑
l=1

λlvlv
H
l = VΛVH , (8)

V = [v1,v2, · · · ,vL], (9)

Λ = diag{λ1, λ2, · · · , λL}, (10)

where diag{·} is a diagonal matrix,λl and vl are the
lth eigenvalue and eigenvector, respectively. When theL-
element array antenna receivesK signals, the dimension
of the signal subspaceVS and noise subspaceVN is K
andL−K, and thenVS andVN are written as follows.

VS = [v1, . . . ,vK ] , (11)

VN = [vK+1, . . . ,vL] , (12)

where

λ1 ≥ · · · ≥ λK ≥ λK+1 ≈ · · · ≈ λL ≈ σ2. (13)

Therefore, the eigenvalue matrixΛ is decomposed into
signal and noise eigenvalues. We use these components,
eigenvector and its eigenvalue spanning signal subspace,
to detect the change of propagation environment of inter-
est.

III. D ETECTION METHOD

When a pair of transmitter and receiver are fixed, the
signal subspace spanned by eigenvector changes when
the indoor environment of interest changes. For detecting
simple events, such as intrusion, we can use a simple
threshold-based detection based on change of first eigen-
vector. For detecting and classifying more complex states
and activities, such as sitting in a bathtub and falling in
a bathroom, we use support vector machine (SVM). We
explain detection methods used in the array sensor.

A. Cost Function

We use cost functions based on signal eigenvectors and
its eigenvalues to detect events. The cost function based
on the eigenvector is defined as

Pi(u) = |vH
i (uno)vi(u)| (0 ≤ Pi(u) ≤ 1) (14)

wherevi(uno), the reference vector, is theith eigenvector
obtained in advance. Andvi(u) is the ith eigenvector
obtained at the observation timeu. Thus, the larger the
value ofPi(u), the smaller the change of the environment
is, and the smallerPi(u) is, the larger the change of the
environment is. The eigenvector is stationary even in noise
and fading environment, because it does not include RSS
information.
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The cost function based on the eigenvalue is defined as

Qi(u) = 1− |λi(u)− λi(uno)|
λi(uno)

(Qi(u) ≤ 1) (15)

whereλi(uno) is the ith eigenvalue obtained in advance,
that is the reference value, andλi(u) is theith eigenvalue
obtained at the observation timeu. Like Pi(u), the
larger the value ofQi(u), the smaller the change of the
environment is, and the smaller the value ofQi(u), the
larger the change of the environment. The eigenvalue is
less stationary than the eigenvector, however,Qi(u) can
detect even the smallest changes. Therefore, we use both
Pi(u) andQi(u) as situation demands [15].

B. SVM

As mentioned above, in order to detect and classify
more complex states and activities, such as sitting in a
bathtub and falling in a bathroom, we use SVM [22].
SVM is one of the most attractive machine learning tech-
niques. SVM has shown several advantages in prediction,
regression, and estimation over some of the classical
approaches in a wide range of applications owing to its
improved generalization capabilities. Once the SVM has
been trained, then all future unknown samples can be
classified in real time.

In general, the larger the number of training sam-
ples becomes, the more difficult the linear separability
becomes, and the larger the dimension of the feature
space, the easier the classification process. However,
mapping into high dimensional feature space causes high
complexity. Kernel trick maps the feature vector into
high dimensional feature space without computing fea-
tures in the mapped space. Although the dimension of
the feature space transformed with non-linear mapping
function becomes very large, the complexity of SVM does
not increase because the objective function in the SVM
depends on the inner product of input patterns only.

In order to use machine learning for a safety system
like an array sensor, the following essential points must be
considered: detection in real time or semi-real time; work
on a non-linear problem; use of as many features as possi-
ble. Therefore, we use radial basis function (RBF) kernel
for the mapping function, because it has less numerical
difficulties [23]. The number of kernel parameters that
influences the complexity of model selection is small and
the other kernel functions have more kernel parameters
than the RBF kernel. Moreover, we use cost functions
based on the eigenvector and eigenvalue for the features
of SVM.

IV. L OCALIZATION METHOD USING ARRAY SENSOR

A. Multiple Signals

If there areI uncorrelated sources andKi multipath
signals from theith transmitter in the indoor environment,

Figure 2. L-element array divided intoM -element subarray

Figure 3. L×L correlation matrix andM ×M sub-correlation matrix

the received signal vector is represented as

x(u) =
I∑

i=1

Ki∑
k=1

αika(θik)si(t− βik) + n(u) (16)

= Ãs̃(u) + n(u), (17)

Ã = [a(θ11), . . . ,a(θ1KI
), (18)

a(θ21), . . . ,a(θIKI )] (19)

whereαik is the complex attenuation coefficient andβik

is the reference delay for thekth path from the source
i, with αik ̸= 0, αi1 = 1, and βik ̸= 0. In the indoor
environment, the difference of propagation delay among
multipath waves is negligibly small, that isβik ≈ β.
Therefore, the rank of̃S = E[s̃(u)s̃(u)H ] is I and the
dimension of the signal subspaceDS equals toI.

B. SSP

Spatial smoothing processing (SSP) is the method
that separates coherent signals [20]. It does not need to
increase transmitters and receivers to use uncorrelated
signals. The fundamental theory of SSP is that the phase
relationships among coherent signals are different from
one element to another, and the cross-correlation value
becomes small owing to average effect by parallel shift
of the receiving position. Thus, we do not need to increase
the number of array elements.

If the L-element linear array is divided intoM -element
subarrays, we getN subarrays, whereN = L−M + 1,
as shown in Fig. 2. The received signal vector in thenth
subarray is obtained by

xf
n(u) = [xn(u), . . . , xn+M−1(u)]

T (20)

n = 1, . . . , N. (21)

The newM -dimension correlation matrix is obtained by
the spatial average of theN sub-matrices as shown in
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Figure 4. Localization algorithm

Fig. 3.

Rf
SSP =

1

N

N∑
n=1

Rf
n (22)

Rf
n = E[xf

n(u)x
f
n(u)

H ] (23)

There is an improved method, called the forward-
backward SSP (FB-SSP) [21]. The correlation matrix
obtained by FB-SSP is represented as follows.

RFB−SSP =
Rf

SSP +Rb
SSP

2
(24)

whereRb
SSP is the backward correlation matrix obtained

by xb
n(u) = [xn+L−1(u), . . . , x1(u)]

T .
However, in real multipath environments, there are

many incoming signals and it is difficult for a few
elements to separate all coherent signals. The FB-SSP
can separate2N signals per group of coherent signals and
the dimension of whole subspace isM corresponding to
the rank ofRFB−SSP. Then, the dimension of the signal
subspaceDS is extended as

DS = min{2NI,M}. (25)

The proposed method uses the FB-SSP to separate coher-
ent signals and extend the dimension of signal subspace.
From here, we describe FB-SSP simply as SSP.

C. Algorithm

The proposed localization algorithm is shown in Figure
4.

1) Training Phase: If the dimension of the signal
subspace is extended, we can use many cost functions
as features of SVM. Assume that we classifyNp posi-
tions. In the training phase, we get the received signals
xp(u) (p = 1, . . . , NP ) when a person stands at position
p for UN observation times. From the signals, we compute

the cost functions without SSP,Pi(u), Qi(u), and those
with SSP,P SSP

j (u), QSSP
j (u) for each data, whereu =

1, . . . , UN . That is, we haveNPUN training samples.
Next, all the cost functions are combined to one feature
vector as

zp = [P1(u), . . . , PI(u), Q1(u), . . . , QI(u), P
SSP
1 (u),

. . . , P SSP
DS

(u), QSSP
1 (u), . . . , QSSP

DS
(u)]T . (26)

The dimension ofzp (the number of features) is

F =

 2I, w/o SSP
2DS , with SSP
2(I +DS). w/o SSP ∪ with SSP

(27)

Then, zp is mapped into a high dimensional space by
RBF kernel and the training model is obtained.

2) Localization Phase:In the localization phase, al-
though we get cost functions and the feature vector
in the same way as in the training phase, we do not
know what position this feature vector is classified to.
However, once the SVM has been trained, then all future
unknown samples can be classified in real time. We
localize the unknown position of standing person based
on the algorithm.

V. EXPERIMENTAL RESULTS

In this section, we show three experimental results
obtained in different environments under various scenar-
ios. Before introducing experimental results for localiza-
tion, we first introduce an experimental result for the
person intruding, stopping, or moving. All experiments
are conducted in a non-line-of-sight (NLOS) condition.
In NLOS there is no direct-path signal that is dominant
over the signal subspace spanned by eigenvector and thus
the signal subspace spanned by eigenvector enhances the
impact of multipath signals that capture the change of
environment.

A. Experiment 1: Detection of Person’s Activities, Intrud-
ing, Walking, and Stopping

We show one of our experimental results obtained in
the room shown in Fig. 5. We use a transmitter and its
transmission frequency is 2.484 GHz. The size of array
antenna is9.0× 9.0× 7.3 cm3 and the number of array
elements is 8.

Fig. 6 shows an experimental result for the person
intruding, stopping, or moving. In this experiment, a
person opens the door and intrudes, and passes through
points A, B, C, and goes through the door as shown in Fig.
5. The person stops for 20 seconds at each point, A, B,
C. The cost functionP (u) changes significantly when the
door opens.P (u) also fluctuates significantly when the
person moves and fluctuates moderately when the person
stops. This happens because the change of environment,
such as the door opening, the existence of the person, and
the person’s motion, changes the propagation of the radio
waves and thus the first eigenvector as well. Therefore, the
cost function, that is the correlation of the first eigenvector
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Figure 5. The room used for experiment 1

Figure 6. Detection performance of person’s activities, intruding,
walking, and stopping

between in the reference and in the observation, also
changes. From this result, we can easily see the person’s
movement; intruding, stopping or moving.

B. Experiment 2: Localization with SSP

We show the experimental results using multiple coher-
ent signals to improve localization accuracy. Fig. 7 shows
this experimental environment. We use three transmitters
(Tx1, Tx2, and Tx3) in this experiment. Experimental
parameters are listed in Table I. Each transmitter transmits
signal with different frequencies as described in Table II.
Three transmitters were set up on the windows side, and

TABLE I.
EXPERIMENTAL PARAMETERS

Transmission power −10 dBm
Modulation method No modulation

Transmitter Dipole antenna
Receiver 8-element linear array

Sampling rate 60 MHz
Number of snapshots 1024

Figure 7. The room used for the experiment 2

TABLE II.
TRANSMISSION FREQUENCIES

Transmitter Frequency
Tx1 2.412 GHz
Tx2 2.417 GHz
Tx3 2.422 GHz

a receiver (Rx) was set up on the wall side. There are also
some obstacles between the transmitters and the receiver
to make NLOS situation.

In total, 16 points are selected as candidate points
shown as in Fig. 7. In the training phase, we obtained
100 observation data (approximately 15 seconds) when a
person stands at each position. Five persons participated
in the experiment. In total8000 (= 100 × 16 × 5) data
are collected, then trained by the SVM. We usezp =
[P1(u), . . . , PDs(u), Q1(u), . . . , QDs(u)] as the feature
vector of the conventional method and eq. (26) as that
of the proposed method.

In the testing phase, a person enters the room from the
door 1, walks from point 1 to 16 in the route indicated
by solid arrows, stands at each position for 10 seconds,
walks from position 16 to the door 2 in the route indicated
by dot arrows, and exits from the room. The testing data
can be obtained in real time and we localize the person
in a continuous way with SVM.

1) Cost Function in the Testing Phase:Fig. 8 shows
the change of cost functionPi(u) (i = 1, 2, 3) without
SSP. The reference eigenvectors are obtained in advance
when there is no person in the room. The dimension of
the signal subspace is three and we can use those cost
functions, that isi = 1, 2, 3, because there are three
uncorrelated transmitters in the room. From this figure,
we can see that the proposed method can observe a whole
room same as the conventional method.

Fig. 9 shows the change of cost functionPi(u) (i =
4, 5, 6) without SSP. These cost functions cannot detect
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Figure 8. The change of cost functionPi(u) (i = 1, 2, 3) without SSP

Figure 9. The change of cost functionPi(u) (i = 4, 5, 6) without SSP

Figure 10. The change of cost functionPSSP
i (u) (i = 4, 5, 6) with

SSP (N = 3,M = 6)

Figure 11. Localization accuracy without SSP (F = 2)

any events because the 4th, 5th, and 6th eigenvectors are
the basis vectors of the noise subspace. Thus, we can
see that the cost functionPi(u) (i = 4, 5, 6) includes
noise information. Therefore, the dimension of the signal
subspace is three, we can use onlyPi(u) (i = 1, 2, 3) as
features.

Fig. 10 shows the change ofP SSP
i (u) (i = 4, 5, 6)

with SSP (N = 3,M = 6). The dimension of the signal
subspace is extended to six as in eq. (25). These cost
functions can also be used as features of SVM, because
the SSP can separate coherent signals into multiple un-
correlated signals.

2) Comparison of Localization Accuracy and RMSE:
Table III shows the localization accuracy and root mean
square error (RMSE) of the conventional method (w/o
SSP) and proposed method (w/o SSP∪ w/ SSP). We
define the accuracy as the correct probability that the
estimated position isp when the person stands at position
p, and RMSE as the distance error between true position
and estimated position.DS is the dimension of the signal
subspace used for cost function,N is the number of
subarrays used for SSP, andF is the number of features
used for SVM.

From these results in each method, we can see that
the largerF shows the higher localization accuracy and
lower RMSE. This happens because SVM learning ability
is improved by increasing the number of features. We
can also see that in the same condition (F = 6), the
“w/o SSP” achives higher accuracy than “w/ SSP”. This
happens because SSP reduces the effective aperture of the
array antenna. Compared to “w/ SSP” and “w/o SSP∪
w/ SSP”, (g), (h) and (i), (j), “w/o SSP∪ w/ SSP” shows
higher accuracy than “w/ SSP”. This happens because we
can observe multiple path. The proposed method achieves
higher accuracy than all the other methods. This happens
because SVM learning ability is improved by increasing
the number of features.

3) Probability Map: Figs. 11 and 12 show one ex-
ample of the estimation probability map for the method
without SSP and the method with SSP, respectively. In
the figures, each small map is divided into 16 blocks
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TABLE III.
COMPARISON OF LOCALIZATION ACCURACY AND RMSE.

Ds = DIMENSION OF THE SIGNAL SUBSPACE, N = NUMBER OF SUBARRAYS, F = NUMBER OF FEATURES

Method DS N F Accuracy (%) RMSE (m)

(a) w/o SSP 1 0 2 25.69 2.71
(b) w/o SSP 2 0 4 41.60 2.40
(c) w/o SSP 3 0 6 52.70 1.92
(d) w/ SSP 3 6 6 12.10 3.22
(e) w/ SSP 4 5 8 41.32 2.11
(f) w/ SSP 5 4 10 48.85 2.16
(g) w/ SSP 6 3 12 54.28 2.06
(h) w/ SSP 7 2 14 48.16 2.29
(i) w/o SSP∪ w/ SSP 3 6 12 59.89 1.67
(j) w/o SSP∪ w/ SSP 4 5 14 56.50 1.63
(k) w/o SSP∪ w/ SSP 5 4 16 62.33 1.66
(l) w/o SSP∪ w/ SSP 6 3 18 61.47 1.71
(m) w/o SSP∪ w/ SSP 7 2 20 67.52 1.47

Figure 12. Localization accuracy with SSP (F = 20)

related to 16 positions in Fig. 7. Fig. 11 shows the
result of localization using onlyP1(u) andQ1(u). From
this figure, the method without SSP can hardly localize
the position of the standing person. We can see high
localization accuracies at only three points (p = 4, p =
10, p = 13).

Fig. 12 shows the result of localization using twenty
cost functionsPi(u), Qi(u) (1 ≤ i ≤ 3) andP SSP

j (u),
QSSP

j (u) (1 ≤ j ≤ 7). This method uses two subarrays
of SSP (N = 2). The accuracies of all points except at
the p = 1 are higher than 80 %. Thus, we can see that
the proposed method that uses with SSP, shows better
localization performance than the other one.

C. Experiment 3: Impact of the Array Antenna Placement
on Localization Performance

We investigate the impact of the array antenna place-
ment on localization performance. If the receiver and/or
transmitter placed on higher than the target object, the
change of propagation by the target is small. Thus, it may
affect the localization performance of array sensor. There-
fore, this experiment 3 attempts to find out the impact of
array antenna placement on localization performance. Fig.
13 shows the experimental environment of the experiment
3. Experimental parameters are listed in Table I which

Figure 13. The room used for the experiment 3. The numbers in circle
show the points to localize human’s position.

is same as the experiment 2. The transmitter (Tx) is
placed on the chair of 0.4 m height from the floor. To
evaluate localization performance of receiver position, we
conducted two types of experiments; the receiver (Rx) is
placed on the desk of 2.6 m (A) and 0.7 m (B) height.
(A) means that higher than a target object’s height, and
(B) means that the lower than the target.

We collected training data for three persons. In the
training phase, we obtained the data for each position
when a person stands at each position for 15 seconds.
The training data were labeled 25 classes. In the testing
phase, a person moves from point 1 to 25, standing at
each position for 10 seconds.

We compare the RMSE of the two types of Rx
heights, (A) and (B). The localization RMSE results
are summarized in Table IV. From these results, we
can see that the (B)’s results show higher localization
performance than (A). This happens because target object
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TABLE IV.
RMSE RESULTS

RMSE (m)
Method F (A) Rx: 2.3 m (B) Rx: 0.7 m

w/o SSP 2 2.74 2.53
w/o SSP 4 2.77 2.40
w/o SSP 6 2.83 2.43

w/o SSP∪ w/ SSP 16 2.48 1.85
w/o SSP∪ w/ SSP 18 2.44 1.86
w/o SSP∪ w/ SSP 20 2.45 1.85

can impact the eigenvector and eigenvalue spanning the
signal subspace, when the antenna height is lower than
the target object. This happens because the change of
signal subspace feature (i.e., eigenvector and eigenvalue
spanning the signal subspace) is affected by the target
object in the transmission path. Thus, the change of
propagation environment of interest affects by the target
object.

VI. CONCLUSIONS

In this paper, we propose a method that uses SSP to
increase signal subspace feature for passive localization
using array sensor. We show that signal subspace fea-
tures, which include the eigenvector and its corresponding
eigenvalue, can be increased by using the SSP. We apply
the features to a new localization algorithm on array
sensor. The experimental results show that the proposed
SSP based method achieves a 41.83 % improvement in
localization accuracy, and a 1.24 m improvement in root
mean square error (RMSE) compared to the previous
method. We further discuss the impact of the array
antenna placement on localization performance. We find
the array antenna placed lower than the target object can
improve the localization performance.
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