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Abstract— In this paper, we study the problem of modeling
packet dropout for unmanned aerial vehicle (UAV) wireless
communications. A Markov model is proposed, which in-
corporates the effects of Ricean fading. Unlike the classic
Markov channel models, the proposed model is a two-state
hidden Markov model with each state being associated with
a time-varying packet error rate. The model is able to
capture the non-stationary packet dropout characteristics
of wireless channels. Intuitively, we use the time-varying
packet error rate associated with the channels to describe
the non-stationary nature of the packet dropouts, and
the two-state Markov model to capture the correlation of
the packet dropouts. A closed-form solution is provided
for estimating the model parameters from network packet
traces. Computer simulations and analysis are carried out
to demonstrate the performance and effectiveness of the
proposed model.

Index Terms— ad hoc networking, wireless networks, chan-
nel modeling, UAV, Ricean fading, Markov chain, non-
stationary statistics

I. INTRODUCTION

Channel modeling has been widely used in the areas of
wireless communication to study the behavior of wireless
transmissions. Channel models can be used for simulation
and analysis of communication and networking systems.
Network simulators rely on mathematical channel models
to produce data traffics that are representative of the
statistical behaviors of real data traffics. Accurate channel
models are essential to the understanding of network
behavior and to the design of communication protocols.
For example, the performance of an automatic repeat-
request (ARQ) protocol is shown to depend on statis-
tical behaviors of packet loss over a link [1]. Many
network applications such as streaming audio and video
also benefit from a better understanding of the under-
lying network behavior. In UAV applications, channel
modeling has more recently attracted lots of interest
from researchers and engineers in the area of networked
control systems (NCS) owing to the rapid development
of wireless communication technologies [2]. An NCS
is a feedback control system that consists of spatially
distributed components, and the control loops are closed
over a wireless communication network. NCS has become
increasingly popular in many applications such as traf-
fic control, mobile robotics and collaborative networked
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UAV operations etc [3]. Classical control theory has
been focusing on the study of interconnected dynamical
systems under ideal channel assumptions, i.e., systems are
synchronized in time, data between sensors, actuators and
controllers are exchanged without loss and time delays,
and data is sampled uniformly with ignorable jitters.
These assumptions, however, are not valid for NCS with
wireless links due to the use of shared wireless links
with limited bandwidth and imperfect channel conditions.
Wireless links are known to be prone to errors and
failures. Packet dropouts occur due to a number of factors
that may include occasional hardware failures, degrada-
tion in link quality, and channel congestion etc. Although
many network protocols have re-transmission mechanisms
embedded, for real-time feedback control data, it may be
advantageous to discard the failed packets on their first
transmission because re-transmitted packets may have too
large latency to be useful [4]. Re-transmission may also
delay the transmission of new packets. In a typical NCS,
due to limited computing power of the communication
modules, error correction techniques are not common on
the lower network levels. One of the challenges for NCS
applications is the stability analysis of the control systems
and how the overall control system’s performance degrade
in the presence of packet dropouts. All these require
accurate modeling of the wireless links and detailed
understanding of their error behavior.

In this paper, we focus on wireless channel modeling
for packet dropouts for UAV applications. In general,
there are two types of approaches for modeling packet
dropouts for wireless applications. The first approach is
to derive a channel model by computing the signal-to-
noise (SNR) ratio based on the channel conditions [6]
[5]. In theory, this type of models is optimum since
they allow for accurate reproduction (depending on the
chosen model complexity) of radio propagation between a
transmitter and a receiver. However, they are computation-
ally complex for network simulations, since they would
involve the simulations of modulation, transmission, re-
ception and demodulation of huge amounts of packets
with each containing thousands of bits. Furthermore, the
performance of these models depends on the accuracy of
the propagation and receiver models assumed. The second
approach is to construct channel models from simulated
or collected network traffic traces [7] [8] [5] [9] [10] [12].
The resulting mathematical models are able to provide a
simple but approximate solution. In this approach, certain
models are selected, which contains a set of unknown
parameters. The model parameters are then estimated
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using simulated or collected network traffic data. This
approach requires that appropriate models be selected
and representative network traffic data be available. The
Bernoulli model (independent channel model) and the
Gilbert-Elliot model are the two most popular models
for wireless channels [7] [8]. The Gilbert-Elliot model
is able to more accurately represent wireless channels
with burst errors. These models, however, are based on
the assumption that the error statistics are stationary
over time, and are not suitable for UAV applications.
UAVs typically have good line-of-sight (LOS) conditions
between them, and there usually exists a dominant direct
path between two UAVs. In addition, wireless links be-
tween UAVs experience time-varying effects due to the
highly dynamic movements. In other words, the error
statistics of the wireless channels exhibit non-stationarity.
In [10], Konrad et al. studied the time-varying effects of
wireless channels, and demonstrated that time-varying ef-
fects result in wireless traces with non-stationary behavior
over small window sizes. They presented a Markov-based
Trace Analysis (MTA) algorithm that extracts stationary
components. The stationary components are each modeled
independently using a two-state Markov model. A more
recent result is the model proposed by Kung et al.,
where the authors used a finite-state model to predict
the performance of the Transmission Control Protocol
(TCP) over a varying wireless channel between a UAV
and ground nodes [11]. By capturing packet run-length
and gap-length statistics at various locations on the flight
path, a location-dependent model was proposed to predict
TCP throughput over a varying wireless channel. The
model was trained by using packet traces from flight tests
in the field and validated by comparing TCP throughput
distributions for model-generated traces against those for
actual traces randomly sampled from field data. Both
approaches are able to show improved performance in
generating artificial traces that closely match collected
traces’ statistics. However, since these approaches are ad
hoc and the resulting models are application specific, they
have limited applications.

In this paper, we propose a novel channel model that
is capable of handling the non-stationary packet dropout
characteristics for UAV applications. A two-state Markov
model is proposed, which incorporates the effects of
Ricean fading. Unlike the classic Markov channel models,
a time-varying packet error rate is associated with each
channel state. The model is able to capture the non-
stationary packet dropout characteristics of the channels.
Intuitively, we use the time-varying packet error rate
associated with the channels to describe the non-stationary
nature of the packet dropouts, and the two-state Markov
model to capture the correlation of the packet dropouts.
A closed-form solution is provided for estimating the
model parameters from packet traces. The new model
has the advantages of flexibility and simplicity, and is
suitable for modeling UAV wireless channels. The rest
of paper is organized as follows. In Section II, some
commonly used channel models for wireless channels are

discussed, which include the Bernoulli model and the
Markov chain governed models. Section III is devoted to
the development of the new Markov model for packet
dropout for UAV applications. A closed-form solution
is provided for estimating the model parameters from
a trace of packets. Finally, in Section IV, computer
simulations and analysis are carried out to demonstrate
the performance and effectiveness the proposed model.

II. PACKET DROPOUT MODELS

In this section, we discuss some of the common
channel models for wireless communications including
the Bernoulli model and the Markov governed models.
Note that traditional channel models have been mostly
developed at the bit or symbol level. Bit level channel
models are computationally complex for network sim-
ulation purposes because modulation/demoduation and
detection need to be performed for each bit transmitted.
For a network of multiple nodes, the run-time of net-
working simulations would increase by orders of mag-
nitude. Thus, from the point of view of computational
complexity, it is desirable to develop channel models at
the packet level for network simulations. Packet level
channel models have the advantage of computational
efficiency since simulation of networking protocols only
requires a few simulation events for each packet instead
of each bit. In addition, since most networking protocols
are implemented at the packet level, there is considerable
interest in studying the error statistics at the packet level.
However, development of accurate channel models at the
packet level is difficult since packet errors or dropouts
depend not only on channel conditions but also on source
characteristics and packet length distribution. For that
reason, channel models constructed at the packet level
are usually considered an approximate solution.

A. Bernoulli Model

The Bernoulli model is based on the use of the
Bernoulli process in probability and statistics. A Bernoulli
process is a sequence of independent identically dis-
tributed (i.i.d.) trials, where each trial has a probability
of failure, p, and a corresponding probability of success,
(1 − p) [13]. The Bernoulli model has the advantage of
simplicity and is mathematically tractable for analysis.
However, the Bernoulli model is a memoryless model
and is not capable of characterizing the correlation among
packet dropouts.

B. Markov Models

In practice, packet dropouts are correlated or occur in
bursts. When a packet dropout occurs, it is likely that
the next packet is a dropout. Packet dropouts are caused
mainly by receiver faults and channel conditions such
as degraded link quality and channel congestions. Since
channel conditions typically change at a slow pace when
compared to packet transmission rate, packet dropouts
are likely to occur in bursts. Markov models for burst
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errors have been widely used in the past for modeling and
simulation of communication systems. One popular model
is the Gilbert-Elliot (G-E) model [7] [8]. The G-E model
uses a two-state discrete Markov process. The two states
are referred to as the good and the bad state, respectively.
Each state corresponds to a specific channel condition,
and is assigned an independent error probability that
represents the channel quality. The Markov process is
characterized by transition probabilities, pgg , pgb, pbb and
pbg , which denote the one-step transition probabilities of
staying in the good state, from the good to the bad state,
staying in the bad state, and from the bad to the good
state, respectively. In addition,

pgg = 1− pgb, pbb = 1− pbg. (1)

The parameters pgb and pbg are also referred to as the
failure and the recovery rate, respectively. In general,
a large pbg and a small pgb means that the state of
the Markov process is more likely to stay in the good
state. The independent error probabilities associated with
the good and the bad state are denoted by pg and pb,
respectively. The error probabilities identify the quality of
their associated channels or states. They are determined
by frequency, waveforms, fading and environmental con-
ditions. This class of Markov models is also referred
to as a Hidden Markov Model (HMM) [14] since the
channel state is hidden and only observable through the
status of the packets. For a time-homogeneous Markov
process, there exist stationary distributions that describe
the probabilities of the process staying in each state when
t → ∞ (or the process is in the steady state). The
stationary distributions for the good and the bad state are
given by [13]

πg =
pbg

pgb + pbg
and πb =

pgb
pgb + pbg

, (2)

respectively. The mean error rate, which has been tradi-
tionally used in the area of networking, is related to the
limiting probabilities by

pe = πgpg + πbpb. (3)

The correlation or burst status of packets are character-
ized by the transition probabilities of the Markov process.
Consider the state sojourn time for the two-state Markov
process. The sojourn time of a state is defined as the
time duration that the process remains in the state. The
sojourn time of a state can be shown to be geometrically
distributed [13], and the mean sojourn time of the good
and the bad state is given by

Tg =
1

1− pgg
and Tb =

1

1− pbb
, (4)

respectively. It should be noted that the Bernoulli model
is a special case of the G-E model, where the transition

probability matrix has identical rows, and the error prob-
abilities are pg = 0 and pb = 1.

The Markov model contains unknown parameter, e.g.,
the transition probabilities and the error probabilities
associated with each state. In the construction of a channel
model, one of the major tasks is to determine the model
parameters from observed error traces so that the resulting
channel model can represent the underlying channel char-
acteristics accurately. Gilbert [7] considered the special
case of an error-free good state with pg = 0. In his
method, the model parameters are estimated using three
measurements of a binary error process. This method
is effective for long traces of traffic and may fail to
provide meaningful results for short traces [15]. Yajnik
[16] considered a simplified Gilbert method, where pg =
0 and pb = 1, and estimated the transition probabilities
using a maximum likelihood estimator. In [9] [17], a
more intuitive way was used for estimating the model
parameters by assuming error free state, and measuring
the average error rate and error length of an error process.
In [18], improved results were obtained by treating the
G-E model as an HMM and applying the Baum-Welch
algorithm [14]. The Baum-Welch algorithm consists of a
recursive procedures for computing the maximum likeli-
hood state sequence corresponding to a given observation
sequence (the error process) [18] [19] [14]. A shortcoming
of the Baum-Welch algorithm is that the algorithm is
computationally intensive. In [19], a faster procedure was
proposed for estimating the parameters of Markov models
for burst errors from a given observation sequence. The
method is based on the decomposition of an arbitrary
transition matrix into a unique block diagonal transition
matrix.

The G-E model contains two states and may not be
suitable when the channel quality varies dramatically.
The use of a finite state Markov model [5] is seen to
be a natural extension. In [20] [21], experiments were
shown, which support the use of the finite state model
for wireless links. In [5], by partitioning the range of
the received SNR into a finite number of intervals, a
finite state Markov model was constructed for the case
of BPSK signals over Rayleigh fading channels. The
model parameters are then obtained based the physical
channel properties and error statistics. In general, the
problem of determining the parameters of a finite state
Markov model can be considered the one of estimating the
parameters of an HMM. The Baum-Welch algorithm and
techniques that are based on gradient-search principles
[22] can be applied. Computationally efficient algorithms
are available when certain HMM model structures are
assumed. The Fritchman model, for example, assumes
that a channel can be in one bad state and more than
one good states.

III. MODELING PACKET DROPOUT FOR UAV
APPLICATIONS

In this section, we propose a Markov model for packet
dropout for UAV applications. The model combines a

420 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



two-state Markov model and the effects of the Ricean
fading, which is typically observed in multiple UAV
scenarios.

A. Wireless Channel and Ricean Fading

Wireless channels in UAV applications have two unique
characteristics. First, the error statistics of the wireless
channels are non-stationary. As discussed before, tradi-
tional channel models all assume that the packet error
statistics are constant over time. For UAVs, the error
statistics (e.g., error rate) varies as the distance between
a pair of UAVs changes. Secondly, UAVs have relatively
good LOS conditions between them, and there is typically
a direct path between a pair of UAVs and scattering
is considered less significant. The existence of a direct
path means that the received power caused by the direct
path will be dominant, and the received signal power
depends on the relative locations of the transmitting and
receiving UAVs. Multipath effects may exist when UAVs
fly in low altitudes, and signals may arrive at the receiver
from different paths due to reflection from ground and
other UAVs. There are various models for multipath
effects in radio propagation in the literature including
Rayleigh fading, Ricean fading and Nakagami model
[23]. In general, Rayleigh fading is suitable for modeling
channels when there is no dominant LOS propagation
between a transmitter and a receiver while Ricean fading
is applicable to scenario where there is a strong LOS path.
For UAV applications, Ricean fading is seen to be an
appropriate model for describing the wireless channels.

In Ricean fading, the amplitude of the received signal
is characterized by a Rice distribution with parameters
[24]

ν2 =
K

1 +K
and σ2 =

Ω

2(1 +K)
, (5)

where K is the ratio of the received signal power in the
direct path to that from the scattered paths, and Ω denotes
the mean of the total received signal power. When K = 0,
the Ricean fading model turns into the Rayleigh fading
model, and K =∞ means that the does not have fading
at all. For a Ricean fading channel, the Rice distribution
for the received amplitude can be written as

fR(r) =
r

σ2
exp

{
−r

2 + ν2

2σ2

}
I0

(rν
σ2

)
, (6)

where I0 denotes the 0th order modified Bessel function
of the first kind. From the propagation theory of elec-
tromagnetic waves, it is known that the power of elec-
tromagnetic waves attenuates as they propagate. In free
space, the power of propagated electromagnetic signal
decays proportional to d2, where d denotes the distance
between transmitter and receiver. In real world, RF signal
propagation varies depending on the environment and is
affected by many factors such as multipath and shadowing
[23]. Shadowing refers to the power attenuation of signal

error normal

pg(t) pb(t)

good bad
pgg pbb

pgb

pbg

Figure 1. State transition diagram of the proposed two-state Markov
process.

due to obstructions between the transmitter and receiver.
Signals must pass through or diffract around the objects
to arrive at the receiver. The mean received signal power
in the direct path is determined by the distance between
transmitter and receiver and can be computed as [23]

P (d) = P0

(
d

d0

)−α
, (7)

where α is the path-loss exponent used to represent the
non-ideal environment, d0 is a reference distance from
the transmitter and P0 is the received power level at
the reference distance d0. The path-loss exponent α is
typically between 2 and 4, and α = 2 represents the ideal
free space model [23]. In UAV applications, since UAVs
typically have good LOS conditions between them, the
free space model, α = 2, is considered a reasonable
propagation model and can be used to compute the
received signal power in the direct path.

B. Markov Based Channel Model

The proposed Markov model consists of two states: a
good and a bad state. When the channel is in the bad state,
the probability of packet drops, or the error rate associated
with the bad state, is 1. When the channel is the good
state, however, the associated error rate is determined
by the Rice distribution assuming that the channels are
Ricean fading. Figure 1 is the block diagram of the two-
state Markov model.

The two-state Markov is similar to the classic model
except that in the proposed model, the associated error
rates are time-varying. Intuitively, the time-varying error
rates are used to describe the time-varying nature of
packet dropout due to the relative movements of the UAVs
while the Markov model captures the correlation of the
packet dropouts. By doing so, the Markov process is able
to provide improved accuracy of modeling the channel
states.

Given the distance between a pair of UAVs, d, the mean
received signal power via the direct path can be computed
by (7). If the channel is assumed to be Ricean fading, the
PDF of the amplitude of the received signal at the receiver
is given by (6). Since the Ricean distribution depends
on the received signal power in the direct path and the
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Figure 2. Rice distribution and the error probability associated with the
good state.

ratio K, we use fR(r | P (d),K) to denote the Ricean
distribution function. Denote the receiver sensitivity by
Smin. The sensitivity of a receiver is normally taken as the
minimum input signal required to successfully produce a
desired output signal. The error probability is computed
as the following cumulative distribution function (CDF)

pg(t) =

∫ √2Smin

−∞
fR(r | P (d),K)dr. (8)

The error probability pg(t) can be written as [25]

pg(t) = 1−Q1

(
ν

σ
,

√
2Smin
σ

)
, (9)

where Q1 is the Marcum Q-function. In Figure 2, the error
probability pg(t) is the shaded area between (−∞, a]
under the PDF curve. Assuming that the Markov process
in Figure 1 is time-homogeneous, then, limit distributions
exist for the good and the bad state, which are given

πg =
pbg

pgb + pbg
and πb =

pgb
pgb + pbg

, (10)

respectively. The average error rate can be computed as

pe =
1

N

∑
t

[πgpg(t) + πb] = ϕ0πg + πb, (11)

where N is total number of observations and

ϕ0 =
1

N

∑
t

pg(t) (12)

is the averaged pg(t) over time. Denote the observation
sequence as

{x(t); t = 1, 2, . . . , N},

where x(t) = 1 indicates that the corresponding packet is
successfully transmitted at time instance t, and x(t) = 0
means that the packet is a dropout. Let s(t) denote the
Markov state corresponding to x(t), where s(t) takes
the value of 1 or 0, indicating that the corresponding
state is in the good and the bad state, respectively. In
the following, we show that, given a sequence of trace

observation, the parameters of the Markov model can be
estimated based on two statistical parameter estimates:
average packet dropout rate and the correlation coefficient
of packet dropout. The average packet dropout rate can
be approximated by

ε̂ = 1− 1

N

N∑
t=1

x(t) = ϕ0πg + πb. (13)

where ε̂ is the averaged packet error rate from the packet
trace. Equation (13) can be re-written in terms of pgg and
pbb as

a0pgg + (a0 − 1)pbb = 2a0 − 1, (14)

where a0 = (1 − ε̂)/(1 − ϕ0). In order to solve for
the model parameters pgg and pbb, a second relation is
required. Consider the following expectation

E{x(t)x(t+M)}
= E{E{x(t)x(t+M) | x(t)}}
= E{x(t)E{x(t+M) | x(t)}}
= πg[1− pg(t)][1− pg(t+M)]pgg. (15)

where x(t) and x(t + M) correspond to two adjacent
state of the Markov process (M packets are assumed
between two adjacent states). From the packet trace, we
can estimate the correlation as

r̂ =
1

N −M

N−M∑
t=1

x(t)x(t+M) = πgpggϕ1, (16)

where

ϕ1 =
N−1∑
t=1

[1− pg(t)][1− pg(t+ 1)]. (17)

From (13) and (16), we can obtain the following quadratic
equation in pgg

− a0ϕ1

a0 − 1
· p2gg +

a0ϕ1 + r̂

a0 − 1
· pgg −

r̂

a0 − 1
= 0. (18)

It can be verified that quadratic equation (18) has two
roots with one being identically equal to 1. Since pgg is
a probability, it is positive and less than one. It follows
that the estimate of pgg is given by

p̂gg =
r̂

a0ϕ1
,

and pbb can be obtained from the linear relationship (14)

p̂bb = − a0
a0 − 1

· p̂gg +
2a0 − 1

a0 − 1
. (19)
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IV. COMPUTER SIMULATION STUDY

In this section, we use computer simulations to demon-
strate the effectiveness and performance of the proposed
Markov models for simulating packet dropout for UAV
applications. Two UAVs are simulated with their initial
positions at the origin of the coordinate system and
(4000, 0) m, respectively. Both UAVs are assumed to
move at a speed of 80 km/h or 22.22 m/s. Their heading
directions are simulated to be π/2 and 3π/4, respectively,
with reference to the x axis.

The transmission rate is assumed to be 2Mbps, and the
packet size is 512 bytes. A slot is defined, which consists
of a number of packets. The Markov model changes its
state only at slot boundaries. The distance between the
two UAVs is sampled in a time interval of ∆. In the
simulation, ∆ is assumed to be equal to the length of
5 slots. The transmission power of the communication
module on each UAV is assumed to be 2 watts, which is
measured at one meter from the transmitter. The ideal free
space model is used for signal propagation. The Ricean
factor K is selected to be 10, which is also 10 in dB. The
transition probabilities of the Markov model are given by
pgg = 0.995 and pbb = 0.96. The initial state is selected
to be in the good state.

Figure 3 shows how error statistics of packet dropout
change with the distance between two UAVs. In the
simulation, ∆ is about 0.4 seconds, and the total number
of ∆ is 2500. The duration of the packet trace is 976.56
seconds. Figure 3(a) shows the variation of distance
between the two UAVs as they move along. Figure 3(b)
plots the variation of the received power level in dBm
versus time. The red line in the figure indicates the
receiver sensitivity, which is −50 dBm in this case. Due
to the effects of Ricean fading, the received signal power
perturbs around its mean values. In general, the received
signal power decreases as the distance between the UAVs
increases. Figure 3(c) shows the error probability associ-
ated with the good state versus time. The error probability
increases as the distance between the UAVs increases.
When the received signal power is close to and below
the receiver sensitivity, the error probability is seen to
approach 1. This shows that the packet trace simulated for
UAVs has non-constant error statistics over time. The non-
constant phenomenon can be further observed from the
averaged packet dropout rate versus time in Figure 3(d),
where the averaged packet dropout rate is computed by
sliding a window consisting of 3125 packets. The packet
dropout rate varies over time as the distance between
UAVs changes. Again, when the UAVs are far away, the
packet dropout rate approaches 1.

Figures 4 and 5 show the sample means and root
mean squared errors (RMSE) of the estimated transition
probabilities, Pgg and Pbb, versus the receiver sensitivity.
The popular Gilbert method is used for the purpose of
comparison. The Gilbert method assumes that one state
of the Markov model is error free and the other state has a
constant but unknown error rate. The receiver sensitivity
varies from −40 to −50 dBm with a step size of −1
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Figure 3. Variation of error statistics of packet dropout versus distance
between two UAVs.

dBm. The duration of the packet trace is 1000∆, which
is about 390.63 seconds. The packet trace consists of
25000 packets. The link speed is assumed to be 256
kbps. Figures 4(a) and (b) plot the means of the estimated
pgg and pbb by the proposed approach and the Gilbert
method. The probability estimates by proposed approach
are seen to be unbiased while the estimates by the Gilbert
method are biased when the receiver sensitivity is low.
At high receiver sensitivity levels, both methods are able
to produced unbiased estimates. Intuitively, when the
receiver sensitivity is high, the error probability associated
with the good state tends to be small and the all states
have near-constant error probability. The Gilbert method
still works since all the assumptions are not completely
invalid. However, when the receiver sensitivity is low, the
Gilbert method tends to produce biased estimates due to
the fact that the error probability associated with the good
state varies over time. The estimates are usually under-
estimated due to its inability of isolating the error statistics
of the trace from the Markov process. Figure 5(a) and
(b) plot the RMSEs of the estimated pgg and pbb by the
proposed approach and the Gilbert method. It shows that
the proposed approach outperforms the Gilbert method
with lower RMSEs at low receiver sensitivities.

Figures 6 and 7 show the sample means and RMSEs of
the estimated transition probabilities, respectively, versus
the number of packets. The number of ∆ is fixed to 200,
and the time duration of the packet trace is 312.5 seconds.
The variation of the number of packets is achieved by
varying the number of packets in each slot from 1 to
20. Since the total time of the packet trace is fixed,
the variation of the packets in a slot means changes
of link speed. The link speed varies from 12.8 kbps
to 256 kbps. The receiver sensitivity is assumed to be
−40 dBm. In Figures 6(a) and (b), the proposed solution
is able to produce unbiased estimates for pgg and pbb
for all numbers of packets (except for Pgg when the
number of packet is 100). The Gilbert method, on the
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Figure 5. RMSE of the estimated transition probabilities.

other hand, produces biased estimates for all numbers
of packets. The biased estimates by the Gilbert method
may be partially due to the low receiver sensitivity, which
results in time-varying error probabilities associated with
the good state. The proposed approach outperforms the
Gilbert method with smaller RMSEs for pgg , as shown in
Figures 7(a). The two methods both perform well for pbb
as the number of packet increases. However, the proposed
solution outperforms the Gilbert method for low numbers
of packets, indicating that the proposed solution is more
robust.

V. CONCLUSIONS

In this paper, the problem of packet dropout modeling
for UAV communications was discussed. A novel model
was proposed, which is able to capture the non-stationary
characteristics of wireless channels between UAVs. A
closed-form solution is provided for estimating the model
parameters. The proposed model has the advantages of
flexibility and simplicity, and is suitable for modeling
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Figure 6. Sample means of the estimated transition probabilities versus
number of packets.
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Figure 7. RMSE of the estimated transition probabilities versus number
of packets.

wireless channels in UAV applications. Computer sim-
ulations were carried out and compared to the popular
Gilbert method. The simulation results showed that the
proposed solution outperformed the Gilbert method in
the estimation of model parameters. From the simulation
viewpoint, the proposed model is able to simulate packet
dropouts with non-stationary error statistics.
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