
Ensemble of Bayesian Predictors and Decision

Trees for Proactive Failure Management in

Cloud Computing Systems
Qiang Guan, Ziming Zhang and Song Fu

Department of Computer Science and Engineering

University of North Texas

Denton, Texas 76203, USA

Email: {QiangGuan, ZimingZhang}@my.unt.edu; Song.Fu@unt.edu

Abstract— In modern cloud computing systems, hundreds
and even thousands of cloud servers are interconnected
by multi-layer networks. In such large-scale and complex
systems, failures are common. Proactive failure management
is a crucial technology to characterize system behaviors
and forecast failure dynamics in the cloud. To make failure
predictions, we need to monitor the system execution and
collect health-related runtime performance data. However,
in newly deployed or managed cloud systems, these data
are usually unlabeled. Supervised learning based approaches
are not suitable in this case. In this paper, we present an
unsupervised failure detection method using an ensemble of
Bayesian models. It characterizes normal execution states
of the system and detects anomalous behaviors. After the
anomalies are verified by system administrators, labeled
data are available. Then, we apply supervised learning based
on decision tree classifiers to predict future failure occur-
rences in the cloud. Experimental results in an institute-
wide cloud computing system show that our methods can
achieve high true positive rate and low false positive rate
for proactive failure management.

Index Terms— Cloud computing, Dependability assurance,
Failure prediction, Unsupervised and supervised learning,
Ensemble of Bayesian models, Decision tree.

I. Introduction

As data centers and cloud computing systems are

growing more and more complex, they are also changing

dynamically due to the addition and removal of system

components, changing execution environments, frequent

updates and upgrades, online repairs, mobility of devices,

and the system and network complexity. Classical relia-

bility theory and conventional methods do rarely consider

the actual state of a system and are therefore not capable

to reflect the dynamics of runtime systems and failure

processes. Such methods are typically useful in design for

long term or average behavior modeling and comparative

analysis.

With ever-growing complexity and dynamicity of cloud

computing systems, proactive failure management is an

effective approach to enhance system dependability [1].

Failure prediction is the key to such techniques. It fore-

casts future failure occurrences in the cloud using runtime

Manuscript received August 15, 2011; accepted October 5, 2011.

execution states of the system and the history information

of observed failures. It provides valuable information

for resource allocation, computation reconfiguration and

system maintenance [2]. In contrast to classical reliability

methods, failure prediction is based on runtime monitor-

ing and a variety of models and methods that use the

current state of a system and the past experience as well.

Most of the existing failure prediction methods are

based on statistical learning techniques [3]. They use

supervised learning models to approximate the depen-

dency of failure occurrences on various performance

features [1], [4]–[6]. The underlying assumption of those

methods is that the training dataset is labeled, i.e. for each

data point used to train a predictor, the designer knows if

it is corresponded to a normal execution state or a failure.

However, the labeled data are not always available in

real-world cloud computing systems, especially for newly

deployed or managed systems. How to accurately forecast

failure occurrences in such systems is challenging.

In this paper, we propose two learning approaches that

use Bayesian methods and decision trees to predict failure

dynamics in cloud computing systems. First, we tackle

the problem from an anomaly detection viewpoint, for

which we introduce an ensemble of Bayesian models.

It works in an unsupervised learning manner and deals

with unlabeled datasets. This model estimates the proba-

bility distribution of runtime performance data collected

by health monitoring tools when cloud servers perform

normally. After the detected anomalous behaviors are

verified by the system administrators, labels are added

to these data points. The second method is supervised

decision tree classifiers, which explore the labeled data

and predict failure occurrences in the cloud. We imple-

ment a prototype of our proactive failure management

framework and evaluate its performance on an institute-

wide cloud computing system. Experimental results show

that our proposed methods can forecast failure dynamics

with high accuracy.

The rest of this paper is organized as follows: Section II

describes an ensemble of Bayesian models for unsuper-

vised failure detection. Section III presents decision tree

classifiers for supervised failure prediction. Experimental

52 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcm.7.1.52-61

results are included in Section IV. Section V discusses the

related works. Conclusion and remarks on future work are

presented in Section VI.

II. Unsupervised Failure Detection by Ensemble of

BayesianModels

A recent system reliability study on a 512-node LLNL

ASC White machine showed that the mean time to failure

of a node was about 160 days [7]. We may label the

runtime health related data with one of two classes, Class

0 for normal behavior and Class 1 for situations with

failures. Then, Class 1 is very rare compared with Class

0. For Class 1, there many not be enough data available to

allow a supervised learning algorithm to estimate a good

probability model for that class. In addition, data from the

rare class may be incomplete because of some collection

problems. This is especially true when a node suddenly

crashes which leaves no time for the monitoring tools to

retrieve and save its performance data.

An alternative to supervised learning that tackles the

unbalanced dataset is to build a probabilistic model of the

majority class and use failure detection methods to cluster

and characterize health-related data. Failure detection

algorithms classify data as normal or not based on a

probability model of normal behavior. A failure is a data

point to which the majority class model assigns a very

low probability of occurring. A failure detection algorithm

can build a probability model and learn its parameters

in (1) an unsupervised manner in which both normal

and failure data are learned (This approach assumes the

failure data are too rare to affect the model parameters

significantly.) or (2) a semisupervised manner in which

only data of normal behavior are learned to construct a

model. Semisupervised learning is in general preferable

because it may generate a more accurate model for the

normal class. However, in real-world cases most collected

data are not labeled and the failure class is a rare one.

As a result, the unsupervised learning approach is more

practical and useful.

A. Dimensionality Reduction

Health-related data are collected across a cloud system

and the data transformation component assembles the data

into a uniform format. A feature in the dataset refers

to any individual measurable variable of a cloud server

being monitored. It can be the system or user-level CPU

utilization, CPU idle time, memory utilization, volume

of I/O operations, and more. There may be hundreds

or even thousands of features for large data centers

and cloud systems. The large number of performance

metrics that are measured and the overwhelming volume

of data collected by health monitoring tools make the

data model extremely complex. Moreover, the existence

of interacting metrics and external environmental factors

introduce measurement noises in the collected data.

To make failure detection tractable and practical and

yield high detection accuracy, we apply dimensionality

reduction, which transforms the collected health data to a

new feature space with only the most relevant attributes

preserved [8]. The resulting data are input to an ensem-

ble of Bayesian submodels which generates probability

models of the data and performs failure detection.

1) Relevance Deduction: For probabilistic modeling

and failure detection, large feature sets introduce high

dimensionality. Moreover, with unsupervised learning,

high dimensionality makes features less distinctive to each

other. Usually, features with high similarity impede the

performance of grouping and characterizing in unsuper-

vised learning. Similarity of features can be evaluated by

using the mutual information. In the following discus-

sions, we denote discrete random variables of different

features by X1, X2, · · · , Xn.

The mutual information for two features is defined as

follow.

I(Xi; X j) =
∑

xi

∑

x j

p(xi, x j)log
p(xi, x j)

p(xi)p(x j)
(II.1)

It quantifies how much information is shared between Xi

and X j. Mutual information has been widely used as a

feature selection method [9]. I(Xi, X j) can measure the

goodness of a term globally between two features. Those

feature pairs with high co-relevance have large mutual

information. If Xi and X j are independent, their mutual

information has a minimum value as zero. If Xi and

X j are the same feature, their mutual information has a

maximum value as one. The objective of utilizing mutual

information is to reduce the relevance of a selected subset

of features. Therefore, a feature, which has high mutual

information with other features, should be excluded from

the subset. The index for evaluation of the relevance is

defined as follow.

Index(Xi) =

i−1
∑

j=1

I(Xi; X j) +

n
∑

j=i+1

I(Xi; X j) (II.2)

It can be proved that two features with linear relation

have high index, which shows evidently high relevance.

2) Redundancy Deduction: For feature selection, it

has been known that the combination of individually

independent features does not necessarily lead to a good

performance on grouping and probabilistic analysis. The

existence of redundant dimensions can bring problems.

PCA (principle component analysis) has been widely used

and proved to be powerful in eliminating redundancy of

a subset of features [10]. By using PCA, a matrix A is

generated from the health-related dataset. It is constructed

as an m×n matrix, where m is the number of instances in

the dataset and n refers to the number of attribute values.

Then, the covariance matrix of A is calculated, which is

denoted by C. Each element in C is defined as

ci, j = covaraince(a∗,i, a∗, j), (II.3)

where ci, j is the covariance of the ith and jth attributes of

the health data. The covariance of two attributes measures

the extent to which the two attributes vary together.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 53

© 2012 ACADEMY PUBLISHER

PCA performs a coordinate rotation that aligns the

transformed axes with the directions of maximum vari-

ance. The first principal component accounts for as much

of the variability in the data as possible, and each suc-

ceeding component accounts for as much of the remaining

variability as possible. This means if the summation of

the principal components possesses most of variability of

the whole dataset, such as 90% or above, the components,

which contribute to the most of the variability, can take the

place of the original dataset. These components constitute

the selected subset.

B. Ensemble of Bayesian Submodels

In order to detect possible failures, we analyze the

health-related data and construct statistical models. A

probabilistic model f is chosen for the data with reduced

dimensionality. It takes a data point d as input and outputs

a probability for that data point. The parameters of f are

learned from training data in an unsupervised manner.

Then d is detected as an failure if and only if f (d) < t,

where t is a threshold, whose value can be determined

based on assumptions of the rarity of failure data or from

learning experiments if failures are labeled in the collected

health-related data. A data point is labeled as normal or

failure based on its probability of appearance as a normal

data point.

To construct the probabilistic model and assure high

detection accuracy, we develop an ensemble of Bayesian

submodels to represent a multimodal probability distribu-

tion. Each submodel is a nonparametric data model, in

which no single simple parameterized probability density

is assumed. Its probability distribution is determined from

the frequency counts of the training data. Each submodel

has an estimated prior probability p(m), where m is the

submodel index. The probability estimate assigned to a

data point d is

p(d) =
∑

m∈submodels

p(d|m)p(m), (II.4)

where p(d|m) is the probability that submodel m generates

data point d. Therefore, all submodels contribute to the

probability of each data point. Also, a data point d

is assigned to a submodel m with probability p(m|d),

whose value can be determined by using the Bayes’

rule. This approach allows our model to fit the collected

data better when it is unknown which submodel should

be used to characterize the probability of a data point.

After relevance reduction and redundancy reduction as

described in Section II-A, the features of a data point are

conditionally independent in each submodel. Therefore,

for a data point d with k features after dimensionality

reduction, the conditional probability of the data point on

a submodel m follows

p(d|m) =

k
∏

i=1

p(di|m). (II.5)

We use discrete Bayesian submodels, where the values

of each feature are placed in a finite number of intervals.

The discrete indexes of intervals replace the original

value of a feature. We adopt the Bayesian expectation-

maximization (EM) algorithm to estimate the probability

that a feature di takes a given value v based on the counted

frequency in the training dataset.

p(di = v|m) = count(di = v and m)/count(m), (II.6)

p(m) = count(m) /
∑

n∈submodels

count(n), (II.7)

where count(·) is the number of data points in the training

dataset that satisfy a specified condition. In Equations

(II.6) and (II.7), count() is calculated as

count(di = v and m) =
∑

d∈trainingset

p(m|d) · I(di, v), (II.8)

count(m) =
∑

d∈trainingset

p(m|d), (II.9)

I(di, v) =

{

1, if di = v

0, if di , v
(II.10)

To train the ensemble model, we choose the num-

ber of submodels. We initialize the model by assigning

data points randomly to submodels. The Expectation-

Maximization algorithm is performed to determine the

submodel and conditional data probabilities, p(m) and

p(d|m) respectively. Then, Equation (II.4) is applied to

calculate the data probability. The EM algorithm proceeds

in rounds of an expectation step (E-step) followed by

a maximization step (M-step). For a data point d, the

E-step calculates the probability of each submodel m

generating d. In the calculation, we use the Bayes’ rule,

p(m|d) = p(d|m)p(m)/p(d), where the right-hand side is

computed by Equations (II.4) and (II.5). After an E-step

completes, an M-step updates probabilities p(di|m) and

p(m) by Equations (II.6) and (II.7). It maximizes the

likelihood of the model given the expected probability.

The E-step and M-step continue until the likelihood does

not change.

III. Supervised Failure Prediction by Decision Trees

The failure detection method based on unsupervised

learning presented in the preceding section identifies

anomalous behaviors in a cloud system. The anomalies

are reported to the system administrations for verification.

If they are confirmed as failures or as normal, the corre-

sponding data points are labeled. As the cloud system

continues operation, more data points will be labeled.

These labeled data provide valuable information about the

system states under failures. They should be exploited in

failure prediction. In this section, we present a supervised

learning based method for failure prediction. An ensemble

of decision tree classifiers is proposed to forecast failure

occurrences using health-related performance data with

labels.

54 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Figure 1. Runtime performance data collected by health monitoring tools in an institute-wide cloud computing system.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 55

© 2012 ACADEMY PUBLISHER

Figure 2. Database schema for storing performance data.

A. Learning Decision Trees

A decision tree is a hierarchical nonparametric model

with local regions identified in a sequence of recursive

splits [11]. A decision tree is composed of internal de-

cision nodes and terminal leaves. Each decision node n

implements a test function fn(d) with discrete outcomes

labeling the branches. When a test hits a leaf node, the

classification labeled on the leaf is output. There are

many possible machine learning approaches for failure

prediction. While decision trees are not always the most

competitive classifiers in terms of prediction, they enjoy

the crucial advantages of a fast localization of the region

covering an input and yielding human interpretable re-

sults, which is important if the method is to be adopted

by real cloud operators.

Learning a decision tree involves deciding which split

to make at each node, and how deep the tree should be.

Let X denote the feature set. For binary classification,

the class label ∈ {0, 1}, where 1 denotes a failure and 0

normal. The root node of the decision tree contains all

of the health-related performance data. At each node, the

dataset is split according to the values of one particular

feature. Splits are selected in order to maximize the gain

in information. This process continues until no further

split is possible or the node contains only one class. After

the tree is built, sub-branches with low overall gain value

are pruned to avoid overfitting.

The goodness of a split is measured by impurity. A

split is pure if after the split, for all branches, all the data

taking a branch belong to the same class. We use entropy

to quantify impurity. For a node n in the decision tree,

the entropy is calculated by

H(n) = −

j
∑

i=1

pi
nlog2 pi

n, (III.1)

where j is the number of classes and j = 2 representing

the normal and failure classes, and pi
n is the probability

of class Ci (0 or 1), given that a data point reaches node

n. Then the gain function G for feature xi at node n is

defined as

G(xi, n) = H(n) − H(xi, n), (III.2)

where H(xi, n) denotes the sum of entropy of children

nodes after making the split based on feature xi.

The algorithm for building a decision tree works as

follows. It begins with the root node which includes all the

features. For each feature xi, the gain value from splitting

on xi is calculated using Equation (III.2). Then, the feature

xbest with the highest gain value is selected. A decision

node that splits on xbest is created. Repeat the preceding

process on the sublists obtained by splitting on xbest and

add those nodes as children nodes.

B. Failure Prediction

We grow the decision tree full until all leaf nodes are

pure and we have zero training error. The tree might be

too deep and complex. We then find subtrees that cause

overfitting and we prune them. From the initial labeled

health-related data, we set aside a pruning dataset, unused

in training. For each subtree, we replace it by a leaf

node labeled with the training data points covered by the

subtree. If the leaf node does not perform worse than the

subtree on the pruning set, we prune the subtree and keep

the leaf node because the additional complexity of the

subtrees is not necessary; otherwise, we keep the original

subtree.

After the decision tree is built and pruned, we exploit it

for failure prediction. For a new and unlabeled data point,

the failure predictor traverses the decision tree from the

root. At each internal decision node, the predictor reads

the value of the feature associated with the node from

the input data point and selects a path to a child node

accordingly. This process is repeated until a leaf node is

hit. The predictor outputs the label (normal or failure) of

the leaf. To achieve high prediction accuracy, we apply

boosting to the decision tree classifiers and obtain an

ensemble of trees. A voting is performed and the majority

is selected as a failure prediction decision.

IV. Performance Evaluation

We have designed a proactive failure management

framework, in which runtime performance data of a cloud

computing system are collected by health monitoring

tools and failure events are forecast by an ensemble of

Bayesian predictors and decision tree classifiers. As a

proof of concept, we implement a prototype of the failure

manager. In this section, we evaluate the performance of

our framework for autonomic failure management in a

production cloud computing system.

56 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

TABLE I.

NormalizedMutual InformationMatrix for CPU Time Statistics Features.

Features proc/s %user %system %iowait %idle

proc/s 0 0.681 0.745 1.000 0.089
%user 0.681 0 0.656 0.714 0.042
%system 0.745 0.656 0 0.609 0.127
%iowait 1.000 0.714 0.609 0 0.118
%idle 0.089 0.042 0.127 0.118 0

TABLE II.

NormalizedMutual InformationMatrix forMemory Utilization Statistics Features.(F1:kbmemfree; F2:kbmemused; F3:%memused; F4:kbbuffers;

F5:kbcached; F6:kbswpfree; F7:kbswpused; F8:%swpused; F9:kbswpcad; F10:pgpgout/s; F11:fault/s)

Features F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

F1 0 0.687 0.711 0.593 0.661 0.054 0.019 0.041 0.038 0.094 0.071
F2 0.687 0 0.862 0.602 0.771 0.040 0.037 0.036 0.040 0.088 0.067
F3 0.711 0.862 0 0.515 0.627 0.038 0.022 0.028 0.041 0.090 0.069
F4 0.593 0.602 0.515 0 0.609 0.078 0.051 0.078 0.055 0.047 0.034
F5 0.661 0.771 0.627 0.609 0 0.075 0.080 0.072 0.096 0.052 0.041
F6 0.054 0.040 0.038 0.078 0.075 0 0.728 1.000 0.598 0.017 0.079
F7 0.019 0.037 0.022 0.051 0.080 0.728 0 0.789 0.727 0.017 0.081
F8 0.041 0.036 0.028 0.078 0.072 1.000 0.789 0 0.612 0.016 0.073
F9 0.038 0.040 0.041 0.055 0.096 0.598 0.727 0.612 0 0.015 0.080
F10 0.094 0.088 0.090 0.047 0.052 0.017 0.017 0.016 0.015 0 0.732
F11 0.071 0.067 0.069 0.034 0.041 0.079 0.081 0.073 0.080 0.732 0

A. Experimental Environment

We test our failure manager in an institute-wide cloud

computing environment which consists of 11 Linux server

clusters on campus. Two clusters contain 116 servers

each, while others host 32, 16, 22, 20, 10 and 8 servers in

them. In total, there are 362 high-performance servers in

the cloud. Among all the servers, 89.2% of them were up

most of the time from September 5, 2009 to December

28, 2010. The cloud servers are equipped with 4 to 8 Intel

Xeon or AMD Opteron cores and 2.5 to 16 GB of RAM.

Within each cluster, servers are interconnected by gigabit

Ethernet switches (The two clusters with 116 servers

each are equipped with 2 gigabit Myrinets). Connections

between clusters are through gigabit Ethernet. The two

largest clusters are equipped with SANs.

Faculty and students submit application jobs using a

web based interface. The cloud resource management

software chooses server node(s) to instantiate virtual

machines for the jobs. Typical applications running on

the cloud include large database applications, molecular

dynamics simulations, genome and proteome analysis,

chemical kinetics simulations, materials and metallodrugs

property analysis, and more. The cloud is also open to

institute students to execute their sequential and parallel

programs.

B. Health Data Collection and Dimensionality Reduction

We use sysstat [12] to collect runtime performance

data on each server in the cloud. The values of 83

performance metrics are recorded every five minutes.

They cover the statistics of every components of each

cloud server, including CPU usage, process creation, task

switching activity, memory and swap space utilization,

paging and page faults, interrupts, network activity, I/O

and data transfer, power management, and more. Figure 1

shows the major features. The collected data are pushed

to master servers in the cloud for system-wide health

analysis.

The collected data are cleaned first. Missing values

of features in the data are filled by the average of two

adjacent values. Then the data are parsed and transformed

into a uniform format. A C# program is written to parse

the collected data. The parsing program is written using

regular expressions and is about 1,500 lines of code. After

getting parsed, the data are formatted into the CSV format

and then inserted into a database. Figure 2 depicts the

database schema.

After the health-related data are cleaned, the training

dataset is passed to the feature selection component. A

mutual information-based feature selection algorithm is

used to choose independent features that capture most

information. Table I and Table II list the mutual infor-

mation for each pair of features in the CPU time statis-

tics category and memory utilization statistics category

respectively. Figure 3 shows the normalized relevance

of the sixteen CPU and memory related features. Based

on the results, eight features, %user, %system, %idle,

kbbbu f f er, pgpgout/s, f ault/s, rxpck/s, txpck/s, and

tps, whose dependency is below the threshold, are se-

lected by the relevance deduction process.

Then, the PCA algorithm is applied to reduce redun-

dancy among the selected eight features. The results are

shown in Figure 4. From the figure, we can see the first

and second principal components account for more than

94.54% of variability of the original dataset. Therefore,

we reduce the dimension further to two.

C. Failure Prediction Performance

We measure the true positive rate and false positive

rate in failure detection and prediction.

true positive rate =
true positives

true positives + f alse negatives
,

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 57

© 2012 ACADEMY PUBLISHER

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

N
or

m
al

iz
ed

 R
el

ev
an

ce

Figure 3. Mutual Information of CPU and Memory Related Features.
The 16 features are F1:represent proc/s; F2: %user; F3: %system; F4:
%iowait; F5: %idle; F6: kbmemfree, F7: kbmemused; F8: memused;
F9: kbbuffers; F10: kbcached; F11: kbswpfree; F12: kbswpused; F13:
%swpused; F14: kbswpcad; F15: pgpgout/s F16: fault/s.

f alse positive rate =
f alse positives

f alse positives + true negatives
.

We conduct a ten-fold cross validation to obtain the

average prediction performance because of the random-

ized initialization performed by the failure detectors in

Section II-B. In the training set, 10% of the normal

data points are used for testing of cross-validation. We

calculate the true positive rates and false positive rates

and plot ROC curves, which show prediction accuracy

with different threshold values. Figures 5 and 6 show the

results for failure detection by an ensemble of Bayesian

submodels and failure prediction by decision trees. Opti-

mal performance would be at the top left of each figure,

that is with high true positive rate and low false positive

rate. Each point in Figure 5 is the average taken over all

folds of ten-fold cross validation. From the figures, we

can see both the ensemble of Bayesian submodels and

the decision tree classifiers are able to predict failures in

the health-related dataset while avoiding forecasting too

many normal instances as failures. Moreover, by using all

of the eight significant features selected by the relevance

deduction procedure, the prediction accuracy is better than

that by using only two most significant features chosen

from both relevance and redundancy reduction proce-

dures, while the computational overhead is not increased

by much.

V. RelatedWorks

Failure management is a crucial technique for un-

derstanding emergent, system-wide phenomena and self-

managing resource burdens for system-level dependability

and productivity assurance.

The conventional method for failure management and

fault tolerance relies on checkpointing/restart mecha-

nisms, which periodically save a snapshot of a system

to a stable storage and use it to recover the system

from failures reactively; see [13] for a comprehensive

review and [14]–[17] for examples. However, this method

does not prevent systems from failures, and work loss

is inevitable due to its rollback process [13]. Moreover,

checkpointing a job in a large-scale system could incur

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PCA

Components

P
er

ce
nt

ag
e

Figure 4. Redundancy Deduction by Principle Component Analysis.

significant overhead. The LANL study [18] estimates the

checkpointing overhead based on the current techniques to

run a 100 hour job (without failure) by an additional 151

hours in petaflop systems. As a result, frequent periodic

checkpointing often proves counter-effective.

As the scale and complexity of production systems

continue to grow, research on system dependability has

recently shifted onto failure prediction and proactive

management technologies [5], [19]–[29]. Recent stud-

ies [30]–[36] apply execution migration techniques to

enhance resource management by avoiding possible fail-

ures. They demonstrate the feasibility of exploiting proac-

tive management methods for dependability assurance in

networked computer systems. In this work, we exploit

learning technologies to characterize system behaviors

and forecast failure occurrences in cloud computing en-

vironments. Statistical learning has also been widely

applied to resource management in computer systems and

networks [37], [38].

To realize proactive failure management, it is impera-

tive to understand the characteristics of failure behaviors.

Research in [39]–[42] studied event traces collected from

clusters and supercomputers. They found that failures are

common in large-scale systems and their occurrences are

quite dynamic, displaying uneven distributions in both

time and space domains. There exist the time-of-day

and day-of-week patterns in long time spans [39], [41].

Weibull distributions were used to model time-between-

failure in [43]. Failure events, depending on their types,

display strong spatial correlations: a small fraction of

nodes may experience most of the failures in a coalition

system [41] and multiple nodes may fail almost simulta-

neously [40].

Noticeable progress has been made on failure man-

agement research, and failure analysis [39]–[42] reveals

failure characteristics in high performance computing sys-

tems. Zhang et al. evaluated the performance implications

of failures in large scale clusters [44]. Sahoo et al. [1]

inspected the eventset within a fixed time window before

a target event for repeated patterns to predict the failure

event of all types. Liang et al. [19] profiled the time-

between-failure of different failure types and applied a

heuristic approach to detect failures by using a monitoring

window of preset size. Mickens and Noble [4] assumed

the independency of failures among compute nodes and

58 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

False Positive Rate

0.000 0.004 0.008 0.012 0.016 0.020

T
ru

e
P

os
iti

ve
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

With two most significant features

With eight significant features

Figure 5. Performance on failure detection by the ensemble of Bayesian
submodels.

False Positive Rate

0.000 0.004 0.008 0.012 0.016 0.020

T
ru

e
P

os
iti

ve
 R

at
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

With two most significant features

With eight significant features

Figure 6. Performance on failure prediction by decision tree classifiers.

used the per-node uptime data to predict whether a failure

might occur on that node in the next time window of

fixed size. Fu and Xu [21] exploited the temporal and

spatial correlations among failure events to predict the

occurrence time of next failures in HPC systems. Gokhale

and Trivedi [45] forecast the software reliability by using

Markov chains to represent software architecture. Most

of these works focused on improving the prediction ac-

curacy, and few of them considered how to leverage their

prediction results for resource management in practice.

Data mining and statistical learning technologies have

received growing attention for failure diagnosis and diag-

nosis. They do not require a priori model or knowledge

of failure distributions. Failure patterns are learned and

discovered from normal system behaviors. They use the

learned patterns to detect anomalous behaviors [46]. For

example, the group at the Berkeley RAD laboratory

applied statistical learning techniques for failure diagnosis

in Internet services [47]. Similar techniques were applied

to automate failure management in information technol-

ogy systems [48]. Statistical approaches were studied in

forecasting failure events on the BlueGene/L supercom-

puter [19].

VI. Conclusion

Large-scale and complex data centers and cloud com-

puting systems are susceptible to software and hardware

failures and administrators’ mistakes, which significantly

affect the system performance and management. In this

paper, we present an integrated proactive failure manage-

ment framework. At the initial stage of health monitoring

and control, no labeled data are available. We propose

to use an ensemble of Bayesian models to characterize

normal states of the system and to detect anomalous

behaviors in an unsupervised learning manner. After the

anomalies are verified, either confirmed as failures or

classified as normal, by the system administrators, labeled

data are available. We explore these health-related data

with labels and apply supervised learning based on deci-

sion tree classifiers to forecast future failure occurrences

in the cloud. We implement a prototype of our proactive

failure management system and test its performance in a

production cloud computing environment. Experimental

results show our methods can achieve high true positive

rate and low false positive rate for failure prediction.

In this work, we use Bayesian classifiers and decision

trees for failure detection and prediction. We plan to

explore other advanced statistical learning techniques for

proactive failure management. We also note that even

with the most advanced learning algorithms the prediction

accuracy could not reach 100%. As a remedy, reactive

failure management techniques, such as checkpointing

and redundant execution, can be exploited to deal with

mis-predictions. As a future work, we will integrate these

two failure management approaches and enhance the

cloud dependability further.

Acknowledgment

We would like to thank the anonymous reviewers

for their constructive comments and suggestions. This

research was supported in part by U.S. NSF grant CNS-

0915396 and LANL grant IAS-1103. A preliminary ver-

sion of this paper was published in the proceedings of

the 20th IEEE International Conference on Computer

Communications and Networks (ICCCN), 2011 [49].

References

[1] R. K. Sahoo, A. J. Oliner, I. Rish, and et al., “Critical
event prediction for proactive management in large-scale
computer clusters,” in Proceedings of ACM International
Conference on Knowledge Discovery and Data Dining
(SIGKDD), 2003.

[2] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and et al., “Fault-
aware job scheduling for BlueGene/L systems,” in Pro-
ceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

[3] F. Salfner, M. Lenk, and M. Malek, “A survey of online
failure prediction methods,” ACM Computing Surveys,
vol. 42, pp. 10:1–10:42, 2010.

[4] J. W. Mickens and B. D. Noble, “Exploiting availabil-
ity prediction in distributed systems,” in Proceedings of
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2006.

[5] S. Fu and C. Xu, “Quantifying event correlations for
proactive failure management in networked computing
systems,” Journal of Parallel and Distributed Computing,
vol. 70, no. 11, pp. 1100–1109, 2010.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 59

© 2012 ACADEMY PUBLISHER

[6] J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B.-
H. Park, “Dynamic meta-learning for failure prediction in
large-scale systems: A case study,” in Proceedings of IEEE
International Conference on Parallel Processing (ICPP),
2008.

[7] H. Song, C. Leangsuksun, and R. Nassar, “Availabil-
ity modeling and analysis on high performance cluster
computing systems,” in Proceedings of IEEE Interna-
tional Conference on Availability, Reliability and Security
(ARES), 2006.

[8] J. Han, Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., 2005.

[9] T. Cover and J. Thomas, Elements of Information Theory.
John Wiley & Sons, 1991.

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifi-
cation. Wiley-Interscience, 2001.

[11] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Clas-
sification and Regression Trees. Wadsworth and Brooks,
1984.

[12] “sysstat,” available at: http://sebastien.godard.pagesperso-
orange.fr/.

[13] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son, “A survey of rollback-recovery protocols in message-
passing systems,” ACM Computing Surveys, vol. 34, no. 3,
pp. 375–408, 2002.

[14] O. Laadan and J. Nieh, “Transparent checkpoint-restart
of multiple processes on commodity operating systems,”
in Proceedings of USENIX Annual Technical Conference
(USENIX), 2007.

[15] Y. Li and Z. Lan, “Fast restart mechanism for check-
point/recovery protocols in networked environments,” in
Proceedings of IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2008.

[16] A. Agbaria and R. Friedman, “Model-based performance
evaluation of distributed checkpointing protocols,” Perfor-
mance Evaluation, vol. 65, no. 5, pp. 345–365, 2008.

[17] G. Bronevetsky, D. J. Marques, K. K. Pingali, R. Rug-
ina, and S. A. McKee, “Compiler-enhanced incremental
checkpointing for openmp applications,” in Proceedings
of ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2008.

[18] I. Philp, “Software failures and the road to a petaflop ma-
chine,” in Proceedings of Symposium on High Performance
Computer Architecture Workshop, 2005.

[19] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and
R. K. Sahoo, “BlueGene/L failure analysis and predic-
tion models,” in Proceedings of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN),
2006.

[20] F. Salfner, P. Tröger, and S. Tschirpke, “Cross-core event
monitoring for processor failure prediction,” in Proceed-
ings of IEEE International Conference on High Perfor-
mance Computing & Simulation, Workshop on Dependable
Multi-Core Computing(DMCC), 2009.

[21] S. Fu and C. Xu, “Exploring event correlation for failure
prediction in coalitions of clusters,” in Proceedings of
ACM/IEEE Supercomputing Conference (SC), 2007.

[22] S. Fu and C. Xu, “Quantifying temporal and spatial
correlation of failure events for proactive management,” in
Proceedings of IEEE International Symposium on Reliable
Distributed Systems (SRDS), 2007.

[23] S. S. Gokhale and K. S. Trivedi, “Analytical models
for architecture-based software reliability prediction: A
unification framework,” IEEE Transactions on Reliability,
vol. 55, no. 4, pp. 578–590, 2006.

[24] F. Salfner and M. Malek, “Using hidden semi-markov
models for effective online failure prediction,” in Proceed-
ings of the 26th IEEE International Symposium on Reliable
Distributed Systems (SRDS), 2007.

[25] F. Salfner and M. Malek, “Proactive fault handling for sys-
tem availability enhancement,” in Proceedings of the 19th
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Workshop on Dependable Parallel
Distributed Network-centric Systems, 2005.

[26] Z. Zhang and S. Fu, “Failure prediction for autonomic
management of networked computer systems with avail-
ability assurance,” in Proceedings of IEEE Workshop
on Dependable Parallel, Distributed and Network-Centric
Systems in conjunction with IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2010.

[27] Z. Zhang and S. Fu, “A hierarchical failure manage-
ment framework for dependability assurance in compute
clusters,” International Journal of Computational Science,
vol. 4, no. 4, pp. 313–326, 2010.

[28] Q. Guan and S. Fu, “auto-AID: A data mining frame-
work for autonomic anomaly identification in networked
computer systems,” in Proceedings of IEEE International
Performance Computing and Communications Conference
(IPCCC), 2010.

[29] Q. Guan, D. Smith, and S. Fu, “Anomaly detection in
large-scale coalition clusters for dependability assurance,”
in Proceedings of IEEE International Conference on High
Performance Computing (HiPC), 2010.

[30] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott, “Proactive fault tolerance for HPC with Xen virtual-
ization,” in Proceedings of ACM International Conference
on Supercomputing (ICS), 2007.

[31] A. Polze, P. Tröger, and F. Salfner, “Timely vir-
tual machine migration for pro-active fault tolerance,”
in Proceedings of IEEE International Workshop on
Object/component/service-oriented Real-time Networked
Ultra-dependable Systems (WORNUS), at IEEE 14th
International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC), 2011.

[32] S. Fu, “Failure-aware construction and reconfiguration of
distributed virtual machines for high availability comput-
ing,” in Proceedings of IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid), 2009.

[33] S. Chakravorty, C. Mendes, , and L. Kale, “Proactive
fault tolerance in MPI applications via task migration,”
in Proceedings of IEEE International Conference on High
Performance Computing, 2006.

[34] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive process-level live migration in HPC environ-
ments,” in Proceedings of ACM/IEEE Conference on Su-
percomputing (SC), 2008.

[35] S. Fu, “Failure-aware resource management for high-
availability computing clusters with distributed virtual ma-
chines,” Journal of Parallel and Distributed Computing,
vol. 70, no. 4, pp. 384–393, 2010.

[36] S. Fu and C. Xu, “Proactive resource management for
failure resilient high performance computing clusters,” in
Proceedings of IEEE International Conference on Avail-
ability, Reliability and Security (ARES), 2009.

[37] S. Muppala, X. Zhou, and L. Zhang, “Regression based
multi-tier resource provisioning for session slowdown
guarantees,” in IEEE International Performance Comput-
ing and Communications Conference (IPCCC), 2010.

[38] S. Muppala and X. Zhou, “Coordinated session-based
admission control with statistical learning for multi-tier
internet applications,” Journal of Network and Computer
Applications, Elsevier, vol. 34, no. 1, pp. 20–29, 2011.

[39] B. Schroeder and G. Gibson, “A large-scale study of
failures in high-performance-computing systems,” in Pro-
ceedings of IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), 2006.

[40] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo,
J. Moreira, and M. Gupta., “Filtering failure logs for
a BlueGene/L prototype,” in Proceedings of IEEE/IFIP

60 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

International Conference on Dependable Systems and Net-
works (DSN), 2005.

[41] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and
Y. Zhang, “Failure data analysis of a large-scale heteroge-
neous server environment,” in Proceedings of IEEE/IFIP
International Conference on Dependable Systems and Net-
works (DSN), 2004.

[42] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Se-
sha, “Beyond availability: Towards a deeper understanding
of machine failure characteristics in large distributed sys-
tems,” in Proceedings of USENIX WORLDS, 2004.

[43] T. Heath, R. P. Martin, and T. D. Nguyen, “Improv-
ing cluster availability using workstation validation,” in
Proceedings of ACM Conference on Measurement and
modeling of computer systems (SIGMETRICS), 2002.

[44] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K.
Sahoo, “Performance implications of failures in large-scale
cluster scheduling,” in Proceedings of the 10th Workshop
on Job Scheduling Strategies for Parallel Processing, 2004.

[45] S. S. Gokhale and K. S. Trivedi, “Analytical models for
architecture-based software reliability prediction: A uni-
fication framework,” IEEE Trans. on Reliability, vol. 55,
no. 4, pp. 578–590, 2006.

[46] W. Peng, T. Li, and S. Ma, “Mining logs files for
computing system management,” in Proceedings of IEEE
International Conference on Automatic Computing (ICAC),
2005.

[47] A. Zheng, J. Lloyd, and E. Brewer, “Failure diagnosis
using decision trees,” in Proceedings of IEEE International
Conference on Automatic Computing (ICAC), 2004.

[48] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase, “Correlating instrumentation data to system states:
a building block for automated diagnosis and control,” in
Proceedings of USENIX Symposium on Opearting Systems
Design and Implementation (OSDI), 2004.

[49] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian pre-
dictors for autonomic failure management in cloud com-
puting,” in Proceedings of IEEE International Conference
on Computer Communications and Networks (ICCCN),
2011.

Qiang Guan is currently a Ph.D. candidate in Computer Sci-
ence and Engineering at the University of North Texas. He
received the BS degree in Communication Engineering from
Northeastern University, China, in 2005, and the MS degree
in Information Engineering from Myongji University, South
Korea, in 2008. He was a Ph.D. student in Computer Science at
Mexico Institute of Mining and Technology from January 2010
to July 2010. His research interests include failure modeling and
management, dependable assurance, resource management, and
virtual machines in distributed and cloud computing systems.

Ziming Zhang is currently a Ph.D. candidate in Computer
Science and Engineering at the University of North Texas. He
received the BS degree in Computer Science from Beihang
University, China, in 2009. He was a Ph.D. student in Computer
Science at Mexico Institute of Mining and Technology from
August 2009 to July 2010. His research interests include energy
efficiency, power profiling, power-aware resource management,
dependable computing, and virtual machines in distributed and
cloud computing systems.

Song Fu is currently an Assistant Professor in the Department

of Computer Science and Engineering and the Director

of the Dependable Computing Systems Laboratory at the

University of North Texas. He was an Assistant Professor in

Computer Science and Engineering at New Mexico Institute

of Mining and Technology from August 2008 to July 2010.

He received his Ph.D. degree in Computer Engineering from

Wayne State University in 2008, M.S. degree in Computer

Science from Nanjing University, China, in 2002, and B.S.

degree in Computer Science from Nanjing University of

Aeronautics and Astronautics, China, in 1999. His research

interests include distributed, parallel and cloud systems,

particularly in dependable computing, self-managing and

reconfigurable systems, power management, energy-efficient

systems, system reliability and security, resource management,

and virtualization. His research projects have been sponsored

by the U.S. National Science Foundation, Los Alamos National

Laboratory, and the University of North Texas. He is a member

of the IEEE and a member of the ACM.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 61

© 2012 ACADEMY PUBLISHER

