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Abstract— A cooperative ratio-based scheduling scheme with
minimal signaling that enhances network throughput and
fairness in a wireless ad hoc network is presented in this
paper. Throughput maximization problem under fairness
constraint in a finite horizon is formulated as a novel multi-
window optimization problem. Through analysis users’
thresholds are shown to be time variant for throughput
maximization with fairness in each time window. Simulation
results clearly show that compared with non decision-based
strategy, simple ratio-based scheme (SR) achieves within
1.6% of the global optimal value in terms of throughput
and is scalable in terms of the number of nodes. Fairness
index performance is marginally better than non decision-
based strategy. Next, we show throughput degradation of
SR scheme for asymmetric channels, and introduce general
ratio-based scheme (GR) that adapts to provide higher
throughput than fairness in a fully distributed manner for
asymmetric channel conditions.

Index Terms— ad hoc network, finite horizon, ratio-based
scheduling, optimal linear scheduling.

I. INTRODUCTION

Extensive research has been done in the area of wireless
opportunistic scheduling, where multiuser time varying
channel environment is exploited to schedule users to
satisfy their QoS requirements [1], [2]. However, one
fundamental requirement is timely feedback from users
so that multiuser diversity can be effectively used to
enhance users’ QoS requirements. In centralized wireless
networks, central controller (base station) has relevant
information (channel statistics and QoS requirement)
of all the users to make optimal scheduling decisions.
However, in wireless ad hoc network environment, users
autonomously contend for the channel resource(s) based
on sensing their local environment or limited exchange
of signaling to gather local information. Thus, distributed
network environment creates unique challenges; such as,
time varying channel conditions, random channel con-
tention among users, interference between distant users,
limited resources, imprecise network information, dy-
namic topology, etc., for users to effectively schedule
transmissions to achieve optimal throughput and latency.
Specifically, multimedia streaming users with short term
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throughput and latency requirements face greater chal-
lenges to meet such stringent QoS requirements [3]. The
QoS assurance problem becomes even more formidable
in a distributed ad hoc network where users have multiple
QoS requirements. Clearly, lack of central controller leads
to reduced QoS performance and this obviously necessi-
tates some form of control in ad hoc networks [4].

Furthermore, end-to-end multi-hop flow in an ad hoc
network is fundamentally limited by the single hop con-
straints. [5] shows that multi-hop congestion and through-
put performance are closely coupled to MAC contentions.
Hence, it is apparent from the above discussion that we
need some form of MAC level control and coordination
in short term opportunistic scheduling for enhanced per-
formance.

This provides a major motivation for our work to devise
a partially controlled opportunistic scheduling method
for distributed networks to optimize network throughput
in a finite horizon. A scheduling method to maximize
short term throughput in a centralized network for a
single channel resource was proposed in [6]. Each user
is scheduled opportunistically in a frame such that star-
vation time does not exceed two consecutive frames.
In distributed environment it is difficult to fully control
slot assignment opportunistically for all the users due
to heavy signaling and user coordination requirements.
However, if users cooperate and coordinate transmissions,
then we can achieve partial control over the network
performance [7]. One main issue that arises out of this
coordination between users in a single channel distributed
environment is that signaling to exchange information
can create extra load on the network traffic and thus,
potentially reduce throughput. As such, in this paper we
address two questions:

1) How to establish partial control in a distributed
network with minimal signaling between users?

2) What is the short term (finite horizon) stopping
strategy for scheduling to maximize throughput,
improve scalability and fairness of the network in
a time varying channel environment?

We consider a slotted environment in which users con-
tend for slots in a probabilistic manner as in IEEE 802.11
ad hoc networks. The main idea of this research is to
divide the finite horizon duration into a number of shorter
time windows in which probabilistic control actions are
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taken to optimize throughput. Therefore, due to multi-
window optimization structure, the problem then naturally
breaks down into a sequence of stopping problems. Note
that stopping in this paper implies the target rate limit per
window. Thus, a user cannot transmit more than allowed
target rate limit in a window.

The rest of the paper is organized as follows. In Section
II, related work is covered; Section III presents sys-
tem preliminaries; Section IV presents two-user optimal
policy; Section V presents our simple ratio (SR) based
algorithm; Section VI presents simulation results; Section
VII introduces general ratio based scheme (GR); and
finally, Section VIII concludes the paper.

II. RELATED WORK

Over the last decade, significant work has been done
in opportunistic scheduling for wireless networks. Con-
tributions and ideas in centralized scheduling (downlink)
have been extensively adopted for scheduling in dis-
tributed networks. Therefore, we categorize our overview
of related work as centralized and distributed scheduling
techniques. An in-depth survey of earlier centralized
wireless scheduling schemes, such as channel-state depen-
dent packet scheduling (CSDPS), class-based scheduling
(CBS), weighted fair queuing (WFQ), channel indepen-
dent fairness (CIF), and many variants of the algorithms
are discussed in [8]. Many new scheduling techniques
are derived from the combination of the above algorithms
for realistic wireless channels. Many of these algorithms
use channel states to make long term or short term per-
formance guarantees. The proposed wireless scheduling
schemes provide various degrees of performance guaran-
tees, including short-term and long-term fairness bounds.
However, they mainly focus on scheduling in centralized
networks.

A scheduling scheme based on picking user with
maximum signal-to-noise ratio (SNR) in a time slot was
proposed in [9]. [10] proposed a scheduling scheme based
on picking user with maximum normalized SNR. This
method gives higher priority for users with higher instan-
taneous and lower average SNR. A proportional fairness
scheduling (PFS) algorithm for HDR/CDMA (High Data
Rate/Code Division Multiple Access) system, where the
product of throughput delivered to all the users is maxi-
mized was proposed in [11]. The PFS provides long term
throughput maximization with poor delay performance
for data services which is analyzed in detail in [12]. A
Modified largest weighted delay first (M-LWDF) method
for real time applications which is throughput optimal
and is stable in terms of queue backlog was proposed
in [13], [14]. User with largest product of weighted
channel rate and packet wait time is scheduled first at
the expense of increased queuing delays for other users.
Delay related issues with opportunistic scheduling were
introduced in [15].

However, this proposed scheme is designed for
HDR/CDMA fixed wireless network where each slot
is accessible without any possibility of contention. A

throughput optimal exponential scheduling scheme that
modifies M-LWDF by giving more weight to queue when
delay differences between users is large and shifts to PFS
when delay differences are small was proposed in [16].
In [17] PFS bias is discussed with respect to asymmetric
fading and a new score based scheduler is proposed for
fixed wireless network.

A frame work for opportunistic scheduling to maximize
wireless system performance to satisfy QoS requirements
was proposed in [18]. The paper investigates scheduling
problems with respect to temporal and utilitarian fairness
requirements and derives optimal solution to be index-
based policies. A weighted throughput based scheduling
for HDR throughput optimization that basically schedules
user with maximum rate-reward product was proposed
in [19]. The scheme is roughly a combination of PFS
and M-LWDF techniques using on-line iterative weight
adjustment algorithm to compensate for observed devia-
tions from the target throughput. Our work parallels this
paper in terms of dynamic weight adaptation. However in
our work, we calculate myopic weights based on relative
backlog ratios in each window to minimize backlog differ-
ences and maximize throughput. Furthermore, our work
significantly differs in terms of defining finite horizon
multiple stopping framework for backlog minimization in
wireless ad hoc networks. In [20], opportunistic schedul-
ing policy for short-term fairness constraint is proposed
for HDR/CDMA system. Besides, a large volume of
scheduling schemes can be found in [21]–[27] and the
references therein.

Significant contributions made in distributed networks
are discussed hereafter. A dynamic control strategy to
achieve optimal fairness for heterogeneous multi-hop
network was proposed in [28]. The strategy decouples
into separate algorithms for flow control, routing and
scheduling, and resource allocation. However, the paper
only discusses longterm optimal data rate performance in
multi-hop ad hoc wireless networks. A cooperative rate
adaptation (CRA) and QoS aware opportunistic schedul-
ing schemes to reduce overall energy consumption in
a multiuser ad hoc network was proposed in [7]. This
paper loosely relates to our work in terms of coopera-
tive strategy. An opportunistic scheduling for single hop
ad hoc network using optimal stopping framework was
proposed in [2]. It mainly considers scheduling from
network centric aspect and shows that optimal strategy
is pure threshold-based policy. However, this paper deals
with throughput maximization for infinite horizon only.
In contrast, we consider throughput maximization in finite
horizon using multi-window framework. Plethora of work
in transmission policies using Markov decision process
(MDP) for infinite horizon can be found in [29], [30] and
the references therein.

III. SYSTEM ASSUMPTIONS AND
PRELIMINARIES

Consider wireless ad hoc network environment where
users in a small cluster share and randomly contend for a
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Figure 1. Timing Sequence Illustration.

single channel. We assume that all the users are homoge-
neous. In this context, it means that all the users have the
same priority. Further, for all users’ finite horizons end at
the same time T due to synchronization.

A. Network Model

Consider time-slotted system, where time slot synchro-
nization is assumed to be provided by the virtual cluster
head ( [31], Section I in [32]). We envision a hierarchical
network model, where all the nodes contend for a single
channel resource in order to transmit to a single virtual
cluster head receiver. Alternatively, we can visualize this
problem as multiple flows coming in to the router (virtual
cluster head) that later on forwards the data on its pre-
established outgoing flows to other virtual cluster heads.
We further assume for simplicity that slot size is large
enough to accommodate request-to-send (RTS), clear-to-
send (CTS) and data packets. Hence, if a user successfully
transmits in a slot it implies that the user has successfully
exchanged RTS and CTS signals, and has transmitted the
data as well. The RTS and CTS signals in the context of
this paper represent exchange of control information be-
tween the sender and receiver nodes; provides information
to other neighboring nodes (backlog and channel), and
further help avoid any hidden node problems. Users use
CPW (cooperation window) phase to retrieve information
and attain slot synchronization. It is also assumed that
average channel condition does not change during the data
transmission window.

In our system model, finite horizon T refers to a
deadline for ith user to transmit η

(i)
t amount of data

remaining at tth window, where t is defined to be in the
range [1, T ]. Thus, a finite horizon consists of T number
of windows, where each window comprises w slots.
Further, each window is separated by a “Cooperation
Window” (CPW), which marks the end of the current
window and the start of the new window (Fig. 1). The
CPW duration can be extremely short compared to the
window size w since it broadcasts total traffic information
for the users. We define the duration of window and the
CPW as one cycle. In this network model, the virtual
cluster head has the responsibility of providing periodic
slot timing during the CPW phase and it further defines
start of a new window. The cluster head also uses this
CPW to provide total traffic information ηttot at the tth
window to the users so that users can contend for slots

in this new window with updated strategies for network
throughput maximization. This also requires that new
users in a cluster can initiate communication only at the
beginning of the new window, once they have informed
the cluster head of their backlogs.

The question that is still remaining to be answered
is how does cluster head know about the total traffic
information. Actually, we assume here that when a user
joins the cluster it informs the cluster head with a single
registration packet (may include backlog data amount to
be transmitted within T windows) which should not be
larger in size than the RTS type packet. Similarly, when
a user leaves it sends a deregistration packet. However,
we do not attempt to focus on this problem in this paper.
Thus, in an ideal case, the cluster head is aware of users
entering and leaving, and the total pending traffic of the
users. This helps provide partial control of wireless ad
hoc distributed network. The partial control also creates
room for coordination between the users.

B. Queue and Channel Behavior

Assume that network has been operational for some
time. Consider that each user fills up the lower level queue
with data packets that have to be transmitted within the
finite horizon T . The queue is not filled by higher level
queue until the lower level queue is emptied. This way we
are only concerned with the amount of data remaining in
the lower level queue rather than the arrivals in the upper
level queue within the finite horizon. We can think of
the higher level queue as the network layer queue and
the lower level queue as the data link layer queue. The
lower queue state then represents the amount of data that
needs to be transmitted within the finite horizon T . For
the ith user in the tth window (t is a discrete time at the
start of the window), the queue state is denoted by η

(i)
t =

[0, . . . , U ]. The queue state evolves as η(i)t = η
(i)
t−1

−λ
(i)
t−1

,
where λ

(i)
t−1

is the random number of slots out of w slots
on which user i transmitted in the t− 1 window. We will
also refer to λ as the rate in subsequent sections.

The probability of λ
(i)
t successfully transmitted slots

out of w slots for user i in tth window is given by,

P (λ
(i)
t ) =

(
w

λ
(i)
t

)
(P (i)

st )λ
(i)
t (1− P (i)

st )w−λ
(i)
t . (1)

Next we need to define probability of success P
(i)
st for

user i in the tth window. A user successfully transmits
in a slot when no other neighboring user transmits in
that same slot and the channel is in a good state; or
when other neighboring nodes transmit but relatively their
channels are in bad states (diversity gain). For simplicity,
we assume that the channel is stationary over the win-
dow and it follows a 2-state channel model [33]. It is
further assumed that users’ statistics are independent and
identically distributed (i.i.d.), and the process is ergodic
so that pathwise statistics is sufficient for optimization.
The probability that the channel is good in a slot depends
on receiver signal-to-interference (SIR) threshold of the
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user [33]. The channel fading is invariant over the slot
duration, but it varies from slot to slot in a given window.
So, the probability that a user i is successful in a given
slot in the tth window is given by,

P (i)
st = τ

(i)
t · P (i)

gt · {
n∏

j=1;j ̸=i

(1− τ
(j)
t P (j)

gt )}, (2)

in which P
(i)
gt is the ith user’s probability that its channel

is in a good state in the tth window of a slot, τ
(i)
t is

the probability that the ith user transmits in a randomly
chosen slot. The probability of the ith user’s channel
being in a good state in the tth window is given by
P

(i)
gt =

∫∞
γ
(i)
t

f
(i)
t (r)dr, in which γ

(i)
t is the SIR threshold

for the ith user in the tth window and f
(i)
t (r) is the

density function for the SIR. Distribution for f
(i)
t (r) is

a bit complicated and is based on the ratio of users’
Rayleigh distributed signal fading. Plugging (2) into (1)
gives us the probability of γ

(i)
t successfully transmitted

slots which further defines the state transition probability.
It is apparent that for any ith user, if we need we can vary
the probability of transmission τ

(i)
t in the slot to control

the probability of success P
(i)
st in the network for en-

hanced throughput, scalability and fairness performance.
Note that n in (2) is the number of contending users and is
given by n = πA2ρ, where A is the coverage area of the
node and ρ is the node density. As such, controlling the
probability of success Ps to maximize throughput in every
window forms the central idea of our proposed approach.

C. Window Requirement

As mentioned already we divide finite horizon into T
windows, where each window consists of w slots. The
cluster head provides for the timing synchronization as
explained above. The main reason for having windows
is to control and coordinate transmissions in a coop-
erative manner over window-based time scales so that
network throughput is maximized in each window until
the horizon is reached. We consider worst case situation,
where random maximal scheduling for a specific single-
hop interference model touches lower bound and achieves
only 50% throughput [34]. So if we wish to allocate each
of the n users at least η̄ number of slots on the average
in the window, then the window size w should satisfy,
w ≥ 2nη̄. Thus, from implementation point of view, this
provides lower bound for the window size based on the
number of users and the average backlog per user in a
window.

IV. TWO-USER OPTIMAL POLICY

Given the information about the states of the users
in the system, backward induction is used recursively to
evaluate the optimal sequence of actions for finite horizon
problems. However, backward induction technique ren-
ders itself impractical due to unpredictability of channel
and high computational complexity [35]. The structure
of our problem is in the form of control limit policy

form [36], whereby each user starts and continues random
transmissions when it is below its rate limit and stops
when it reaches the required rate limit in a window.

Users contend for slots in a window based on their
backlogs and channel states. Thus, multiuser diversity
is created due to diverse channel and backlogs between
the users. In order to exploit the diversity and maximize
network throughput (minimize network backlog) oppor-
tunistically in a finite horizon T , users dynamically adapt
and coordinate the access probability in a slot based on
their own backlogs and the total backlog at the start of
every window. This means that a user opportunistically
transmits in a certain number of slots based on the rate
threshold setting in each window.

Consider two users in tth window with large backlogs
η
(1)

t > w and η
(2)

t > w. Assume network has been oper-
ational for some time and all users are synchronized. As
already mentioned our objective is to minimize backlogs
in the t+1 window, or maximize throughput for both the
users in the window as follows,

min{E[η
(1)

t − λ
(1)

t ]+ + E[η
(2)

t − λ
(2)

t ]+}, (3)

note that [x− y]+ = max{x− y, 0}.
For large backlogs, η

(1)

t − λ
(1)

t and η
(2)

t − λ
(2)

t are
always positive, and therefore, min{E[η

(1)

t − λ
(1)

t ]+ +

E[η
(2)

t − λ
(2)

t ]+} ≈ min{E[η
(1)

t − λ
(1)

t ] + E[η
(2)

t −
λ
(2)

t ]. Taking expectation, we reduce our objective
function to min{

∑w
0
η
(1)

t P (λ
(1)

t ) +
∑w

0
η
(2)

t P (λ
(2)

t ) −∑w
0
λ
(1)

t P (λ
(1)

t )−
∑w

0
λ
(2)

t P (λ
(2)

t )}. Since η
(1)

t and η
(2)

t

are known at the start of the tth window, and both P (λ
(1)

t )

and P (λ
(2)

t ) are binomial distributions (1), the objective
function then simplifies to min{η(1)t + η

(2)

t − wP
(1)

st −
wP

(2)

st }. Hence, our final objective function that needs to
be minimized with the fairness constraint takes the form,

min{η(1)t + η
(2)

t − wP (1)

st − wP (2)

st },
subject to (η

(1)

t − η
(2)

t − wP (1)

st + wP (2)

st )2 ≤ ∆2, (4)

where ∆ ≪ w is the backlog difference bias. The
Lagrangian using Kuhn-Tucker theorem is then given by
(5), in which u ≥ 0.

Taking derivatives of L with respect to τ
(1)

t and τ
(2)

t ,
we get (6) and (7).

For u ≥ 0, the point at which objective function is
minimum satisfies P

(1)

gt τ
(1)

t + P
(2)

gt τ
(2)

t = 1. For the
case when the constraint is inactive, i.e., u = 0, the
optimal probabilities are given by, τ

(1)∗
t = 1

2P
(1)

gt

and

τ
(2)∗
t = 1

2P
(2)

gt

. It is noteworthy that when the solution lies
inside the constraint region, the transmission probabilities
are independent of the backlogs (η(1)t and η

(2)

t ). This
provides direct comparison between two users based on
their respective channel conditions. However, an interest-
ing case arises when the constraint is active, i.e., u > 0
and the minimum that is achievable is at the constraint
boundary. To determine optimal transmission probabilities
in this case we substitute P

(2)

gt τ
(2)

t = 1−P
(1)

gt τ
(1)

t into the
complementarity condition given by u{∆2−[η

(1)

t −η
(2)

t −
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L(τ
(1)

t , τ
(2)

t , u) = η
(1)

t + η
(2)

t − wP (1)

gt τ
(1)

t (1− P (2)

gt τ
(2)

t )− wP (2)

gt τ
(2)

t (1− P (1)

gt τ
(1)

t )− u{∆2 − [η
(1)

t − η
(2)

t

−wP (1)

gt τ
(1)

t (1− P (2)

gt τ
(2)

t ) + wP (2)

gt τ
(2)

t (1− P (1)

gt τ
(1)

t )]2}, (5)

∂L

∂τ
(1)

t

= 0 → 2u·[η(1)t −η
(2)

t −wP (1)

gt τ
(1)

t (1−P (2)

gt τ
(2)

t )+wP (2)

gt τ
(2)

t (1−P (1)

gt τ
(1)

t )] =
wP

(2)

gt τ
(2)

t P
(1)

gt − wP
(1)

gt (1− τ
(2)

t P
(2)

gt )

wP
(1)

gt

,

(6)

∂L

∂τ
(2)

t

= 0 → 2u·[η(1)t −η
(2)

t −wP (1)

gt τ
(1)

t (1−P (2)

gt τ
(2)

t )+wP (2)

gt τ
(2)

t (1−P (1)

gt τ
(1)

t )] =
wP

(2)

gt (1− τ
(1)

t P
(1)

gt )− wP
(2)

gt τ
(1)

t P
(1)

gt

wP
(2)

gt

.

(7)

wP
(1)

gt τ
(1)

t (1−P
(2)

gt τ
(2)

t )+wP
(2)

gt τ
(2)

t (1−P
(1)

gt τ
(1)

t )]2} =
0. A minor simplification gives us the optimal values of
τ
(1)∗
t and τ

(2)∗
t . Therefore, user 1 and user 2 set their

linear optimal transmission probabilities in each slot as,

τ
(1)∗
t =

1

2P
(1)

gt

+
η
(1)

t − η
(2)

t −∆

2wP
(1)

gt

(8)

and

τ
(2)∗
t =

1

2P
(2)

gt

+
η
(1)

t − η
(2)

t −∆

2wP
(2)

gt

. (9)

Note that an offset adds to the optimal transmission
probabilities compared to the case when the constraint
is inactive. This allows us to pick a user who is rela-
tively unfortunate, or resource starved. It is important to
understand that for short term throughput maximization
with fairness, the access probability is increased when a
user is behind its share of resource (see refs. in [17]).
Further, note that the optimal values of τ

(1)∗
t ≥ 0 and

τ
(2)∗
t ≥ 0 should satisfy P

(1)

gt τ
(1)∗
t + P

(2)

gt τ
(2)∗
t = 1.

Ideally, we would prefer to set the bias (∆) to a negligible
value or zero. Thus, optimal probabilities of success are
given by, P

(1)∗
st = ( 1

2
+

η
(1)

t −η
(2)

t −∆

2w )2 and P
(2)∗
st =

( 1
2
+

η
(1)

t −η
(2)

t −∆

2w )2. The optimal stopping rates for user
1 and user 2 are λ

∗(1)
t = wτ

(1)∗
t and λ

∗(2)
t = wτ

(2)∗
t ,

respectively. It is obvious from optimal transmission prob-
ability equations that when user 2 backlog is greater than
user 1 then P

(2)∗
gt > P

(1)∗
gt . When user 1 and user 2 have

equal backlogs, then P
(2)∗
gt = P

(1)∗
gt .

In realistic ad hoc networks with more than two users,
it becomes very complex to find backlog differences based
optimal values and therefore such approach is infeasible.
Hence, in Section V we propose a simple ratio-based (SR)
scheduling algorithm where users only need to know the
total backlog in the network which can be easily obtained
during the CPW phase. The transmission probabilities
in our SR scheduling scheme depends on the relative
backlogs’ ratios only as opposed to backlog differences
in a linear scheme.

Figure 2. Two-user probability of transmission comparison between
linear and SR schemes with w = 30, P (1)

gt = P
(2)

gt = 1 and ∆ = 0.

A. SR Versus Linear Optimal Strategy

For SR scheme, the transmission probability for the ith

user in the tth window is given by τ
(i)∗
t =

η
(i)
t∑n

k=1
ηk
t

and
the probability of success for the ith user comes out to
be as,

P (i)∗
st =

P
(i)
gt η

(i)
t {

∏n
j=1;j ̸=i(

∑n
k=1

η
(k)
t − η

(j)
t P

(j)
gt )}

(
∑n

k=1
η
(k)
t )n

,

(10)
for n ≥ 2 (proof is not shown due to space). In Fig.
2, we compare the SR scheme and linear scheme for
the identical condition when users’ backlog difference
increases from 0 to 30. Fig. 2 shows that when the backlog
difference is 15 (50% of the window size), user 1 gets
75% of the slots in the window relative to user 2 for the
linear scheme, while for the ratiobased scheme user 1 gets
about 65% of the slots. We observe that SR reduces the
backlog difference more conservatively compared to the
linear scheme. However, SR is far simpler to implement
than linear optimal strategy. We assume that links are
symmetric. Any random channel variations (fast fading)
or temporary bad channel (asymmetric) conditions that
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affect user’s success rate in a window shows up as
an increase in users backlog in the following window.
Consequently, threshold values are adapted accordingly
and coordinated between the users to compensate for any
change in relative backlogs. The threshold requirement for
maximizing network throughput (minimizing backlog) in
a fair manner is proposed.

Proposition: The myopic optimal stopping rule is a
time variant threshold which maximizes network through-
put with fairness.

Proof: Consider the probability of success under the
same channel conditions (P (1)

gt ≈ P
(2)

gt ) for two users.
Suppose each user has a backlog η

(1)

t and η
(2)

t at the start
of window t. Further assume that η

(1)

t

η
(2)

t

= α, such that α ≥
11. After minor simplification, users are set to achieve the
probability of success as P

(1)∗
st ≈ { α

1−P
(1)

gt

}P (2)∗
st . This

implies that we expect λ
(1)

t > λ
(2)

t . However, due to
slot contentions and channel fading assume that user 1
achieves the same random rate as user 2, i.e., λ

(1)

t =

λ
(2)

t = λ and assume that λ < η.
Then the new backlogs for user 1 and 2 become

η
(1)

t+1

η
(2)

t+1

=
η
(1)

t − λ
(1)

t

η
(2)

t − λ
(2)

t

≈ α− (λ/η
(2)

t )

1− (λ/η
(2)

t )
≈ α

1− (λ/η
(2)

t )
.

(11)

Since 1 − ( λ

η
(2)

t

) < 1, this implies that
η
(1)

t+1

η
(2)

t+1

> α. So

as the backlog gap widens between user 1 and 2, so

does the threshold gap increase to
P (1)∗

st+1

P
(2)∗
st+1

>
P (1)∗

st

P
(2)∗
st

. This

proves that the optimal thresholds will change in the
next window if users’ backlog ratio changes in the next
window. Hence, it is very intuitive that as the backlog
of one user increases due to severe fading on its link
compared to other users, the optimal threshold setting
would be to give more weight to that user with bad link in
the next window. This will maximize network throughput
with fairness in a finite horizon.

V. SR SCHEDULING STRATEGY

Consider a single cluster-based homogeneous environ-
ment. Homogeneous environment in the context of this
scheme means that all users have same priority. The ratio-
based scheduling strategy for a user i in the tth window
entails the following steps:

Step 1: Calculate the weight for the tth window given
by τ

(i)∗
t =

η
(i)
t∑n

k=1
η
(k)

t

.
Step 2: Set the target rate in the tth window to

λ
(i)∗
t (τ

(i)∗
t ) = wτ

(i)∗
t .

Step 3: Transmit packets in slots until the threshold
rate ⌊λ(i)

t (τ
(i)∗
t )⌉ (round to nearest integer) is

1If users’ backlogs gap increases then the respective thresholds will
be adapted accordingly to reduce the backlog. Thus, user 1 having
larger backlog than user 2 shows that due to initial backlog or due
to bad channel condition, if user 1 has larger backlog and channel is
consistently bad then the backlog gap between the two users will widen
and thresholds will have to adapted accordingly to reduce backlog gap.

achieved or the slots in the current window
finish.

Step 4: Repeat Steps 1-3 in every window.

VI. SIMULATION RESULTS AND DISCUSSION

A single hop time-slotted distributed wireless environ-
ment in a finite horizon T is simulated to validate the
performance of SR scheduling scheme. CPW duration
is assumed to be 2 slots (which is subdivided into mini
slots for synchronization and traffic information dissem-
ination) compared to the data transmission window. Our
SR scheme, henceforth termed as decision-based scheme,
is compared with the non decision-based scheduling as
the bench mark. In non decision-based scheme, all users
transmit at a fixed rate without adapting rates in each
window up to the finite horizon. Aggregate throughput
comparison is made under no fading and independent
Rayleigh fading channel conditions. Further, scalability,
average throughput variance per window and Jain’s fair-
ness index [37] comparisons between the two schemes
are made under independent Rayleigh fading channel
conditions. It is noteworthy that in no fading condition,
only slot contentions determine successful transmission
and under Rayleigh fading channel condition contentions
and relative SIR determine successful transmission. We
assume that the fast fading does not change during the slot
duration and furthermore average received signal remains
constant during the finite horizon duration. Details of the
simulation parameters are listed in Table 1.

TABLE I.
SIMULATION PARAMETERS.

Parameter Value
Finite horizon duration (T) 3000 slots

Slot duration 1 ms
Transmitting nodes 4

Channel access Random
Frequency 2.4 GHz

Doppler shift 80 Hz
Window duration 100 slots

Node data rate per horizon 100-1300 packets
SIR thresh 10 dB

TABLE II.
JAIN’S FAIRNESS INDEX COMPARISON.

Data Rate Decision-Based (SR) Non Decision
(packets per horizon) (%) (%)

1200 99.9 99.8
2000 99.9 99.8
2800 99.7 99.6

Simulation experiment is run more than 1000 times so
that data is averaged over 3,000,000 slots. Fig. 3 shows the
aggregate throughput comparison results of our decision-
based and non decision-based scheduling schemes. In non
decision-based scheme all nodes set their rates at the
start of the finite horizon duration and no transmission
probability adaptation is performed. Since the rates are
set for the finite horizon duration the non decision-based
scheme with fading achieves a global maximum aggregate
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Figure 3. Aggregate Throughput per Finite Horizon.

Figure 4. Aggregate Throughput Scalability (Each node transmits 100
packets).

throughput of 1300 packets at the total data rate of
3600 packets per horizon. This corresponds to about 43%
utilization within the finite horizon duration of 3000 slots.
Fig. 3 shows that non decision-based scheme fails to meet
the total data rate requirement even when the total data
rate required is 50% (i.e., 1600 packets) of the finite
horizon duration. This is due to the fact that it sets its
rate based on the finite horizon duration.

Hence, it does not achieve maximum aggregate
throughput in each window. On the other hand, decision-
based scheme myopically adapts in each window to
maximize aggregate throughput with fairness. For total
data rate from 2800 to 4400 packets per horizon, decision-
based scheme performs as well as non decision-based
scheme. When the total data rate is below 2800 or above
4400 packets, the performance of decision-based scheme
is better than the non decision-based scheme.

As expected, decision-based scheme does not achieve
global maximum aggregate throughput of 1300 packets,
but on average remains within 1.6% of the maximum
aggregate throughput for fading case. Fig. 4 compares
the scalability performance of the two schemes for fad-
ing case only. The decision-based scheme’s aggregate
throughput clearly scales well with the number of nodes.

Figure 5. Average Throughput Variance per Window.

Figure 6. Aggregate Throughput Performance for SR and GR at 5 dB
and 7 dB of Channel Asymmetry.

The reason is that we adapt transmission probabilities
of all users in proportion to their relative backlogs and
fading effects to maximize utilization in a current window.
Average throughput variance per window for the two
schemes is compared in Fig. 5 for the feasible data
rates of 1200, 2000 and 2800 packets. It is apparent
that our decision-based scheme in addition to enhancing
aggregate throughput within the finite horizon, also keeps
the average throughput variance within 1 slot in the case
of fading. To measure fairness, we use Jain’s fairness
index [37]. For n nodes, the fairness index (f ) is given by,
f =

(
∑n

i=1
xi)

2

n
∑n

i=1
x2

i
. Fairness index value of 1 indicates ideal

fairness and 1

n indicates no fairness. In Table 2, Jain’s
fairness index calculated over the finite horizon clearly
indicates that the proposed scheme fairness is relatively
better than the non decision-based scheme. This is due
to the reason that decision-based scheme minimizes the
backlog gap between users in each window in addition to
maximizing the utilization in each window.

VII. GENERAL RATION BASED SCHEME

The SR algorithm performs well compared to non
decision-based scheme in terms of network throughput,
scalability and fairness for symmetric channel conditions.
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However, if a couple of users on average encounter bad
channel conditions in every window, relative to other
users, then the access probabilities for these users would
continue to increase monotonically until the finite horizon
is reached. This would lead to a significant network
throughput degradation of SR scheme. As such, user will
consume a large amount of resource in every window and
consequently may starve other users with better channel
conditions. This necessitates users’ channel states to be
taken in to consideration along with the users’ backlogs
for setting the threshold rates.

In this section, we generalize the simple-ratio based
(SR) scheduling to general ratio-based (GR) scheme by
considering the channel states in each window. The gen-
eral transmission probability of ith user is mathematically
represented as, τ (i)∗t =

Ciη
(i)
t∑n

k=1
Ckη

(k)

t

. Where, Ci represents
general weight of the user. In this work, it represents a
product of ith user priority and channel condition. Since
we consider homogeneous network where all users have
the same priority, the transmission probability of the ith
user simplifies to

τ
(i)∗
t =

η
(i)
t

∫∞
γt

f
(i)
t (r)dr∑n

k=1
[η

(k)
t

∫∞
γt

f
(k)
t (r)dr]

;

C(i) =

∫ ∞

γt

f
(i)
t (r)dr. (12)

Let P (i)
g ≡

∫∞
γt

f
(i)
t (r)dr, where P

(i)
g is the probability

of a channel being in a good state and γt is the SIR
threshold that is considered same for all the users. The
P

(i)
g can be updated by each user i for every window

using well-known exponential averaging technique based
on the past history of the user (see section 6.4.3.1 of [38]).

Each user in the GR scheme cooperatively sets the
access probability by taking the ratio of the product of
its backlog and the probability of its channel being in
good state in a given window to the sum of products
(of backlogs and channel states) of all the users in the
network (8). The sum of the products of all the users is
broadcast to the users by the cluster head that monitors the
network. Note that users can easily provide their backlogs
and channel states products information through RTS and
CTS portion of the slot. The GR scheduling algorithm for
a user i in the tth window entails the same steps as the
SR scheme with τ∗t as in (12).

Simulations under same settings are performed to
demonstrate throughput degradation of the SR scheme.
For simulation purpose we assume that the precise value
of P

(i)
g is known to the ith user. Specifically, two cases

are simulated: in the first case, two users have an equal
average SIR that is 5 dB below the other two users
in the network during the entire finite horizon duration.
In the second case, the average SIR of the two users
is set 7 dB below the other two users in the network.
From Fig. 6, it is clear that for 5 dB channel asymmetry
the SR scheme’s aggregate throughput degrades by 2%
on the average, and for the 7 dB channel asymmetry it
degrades by 4%. The reason for throughput degradation

is due to the fact that the two users with consistent bad
channels (i.e., with lower average SIR) cannot get rid of
their backlogs and consequently lead to starvation of the
other users with better channel conditions. The proposed
GR scheme considers relative channel states of the users
along with the backlogs to give higher precedence to
users with relatively larger backlogs and better channel
states products. Note that when users’ channels are sym-
metric then GR scheme transforms to SR scheme. The
dotted lines in Fig. 6 clearly show aggregate throughput
improvement when GR scheme is employed in case of
asymmetric channels. For 5 dB channel asymmetry, GR
improves aggregate throughput by 1% and for 7 dB
channel asymmetry the aggregate throughput improves by
about 2%. Furthermore it is noteworthy to point out that
for SR and GR scheduling schemes, each user always gets
some share of slots in a window and is not starved, unless
the product of their backlog and the channel state is zero.

VIII. CONCLUSION

A novel approach of multi-window adaptation for
throughput maximization with fairness in a finite horizon
has been presented. Besides an SR (termed decision-
based) scheme is proposed in which thresholds are my-
opically adapted for optimization in each window. Simu-
lation results clearly show that compared to non decision-
based strategy, throughput performance of our decision-
based scheme comes very close to the optimal throughput
of the non-decision based scheme, achieves comparable
fairness, and is highly scalable (stable). The proposed GR
scheme is shown to outperform the SR scheme in case of
asymmetric channels by considering users backlogs and
channel states in a window.
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