
Scalable Network Emulation -
The NET Approach

Andreas Grau, Klaus Herrmann, Kurt Rothermel
Universität Stuttgart, Institute of Parallel and Distributed Systems (IPVS), Stuttgart, Germany

Email: {grau,herrmann,rothermel}@ipvs.uni-stuttgart.de

Abstract— Network emulation is an efficient method for
evaluating distributed applications and communication pro-
tocols by combining the benefits of real world experiments
and network simulation. The process of network emulation
involves the execution of connected virtual nodes running
the software under test in a controlled environment. Our
Network Emulation Testbed (NET) achieves high scalability
by combining efficient node virtualization and adaptive
virtual time.

In this paper, we provide an overview of our system. First,
we introduce our efficient emulation architecture. Second,
we present our approaches (NETplace and NETbalance) to
minimize the runtime of the network experiments. The idea
of NETplace is to minimize the load of the testbed by calcu-
lating an initial placement of virtual nodes onto the testbed
nodes. During the runtime of the experiment NETbalance
adapts this placement to changed resource requirements of
the software under test. Finally, we introduce NETcaptain,
a graphical user interface to setup, control and visualize
network experiments.

Index Terms— Scalable Network Emulation, Placement, Mi-
gration, Node Virtualization, Virtual Time

I. INTRODUCTION

Performance evaluation is an integral part of the soft-
ware development process. In the field of distributed
systems, there are mainly three types of performance eval-
uation methodologies: network simulation [1]–[3], real-
world testbeds [4], and network emulation [5]–[7]. Net-
work emulation, which combines the benefits of network
simulation and real-world testbeds, allows for running
reproducible experiments for evaluating the performance
of distributed applications and communication protocols
in user-defined networks. These networks are modeled
by connecting routers and hosts running instances of
the software under test (SuT). Using our emulation tool

This paper is based on “NETbalance: Reducing the Runtime of
Network Emulation using Live Migration” by A. Grau, K. Herrmann,
and K. Rothermel, which appeared in the Proc. of the 20th Int. Conf.
on Computer Communications and Networks (ICCCN), USA, 2011.
c© 2011 IEEE; “NETplace: Efficient Runtime Minimization of Network

Emulation Experiments” by A. Grau, K. Herrmann, and K. Rothermel,
which appeared in the Proc. of the Int. Symp. on Performance Evalua-
tion of Computer and Telecommunication Systems (SPECTS), Canada,
2010; c© 2010 IEEE; “Efficient and Scalable Network Emulation using
Adaptive Virtual Time,” by A. Grau, K. Herrmann, and K. Rothermel,
which appeared in the Proc. of the 18th Int. Conf. on Computer
Communications and Networks (ICCCN), USA, 2009; c© 2009 IEEE.

This work was supported in part by the Deutsche Forschungsgemein-
schaft (German Research Foundation) grant DFG-GZ RO 1086/9-3.

Manuscript received August 15, 2011; revised October 15, 2011;
accepted November 25, 2011.

NETshaper [6], the parameters of these network links are
adjustable and include bandwidth, delay, and loss rate. In
our Network Emulation Testbed (NET), the experiments
are executed on a cluster of commodity PC-nodes. To
enable large-scale experiments, we run multiple instances
of the SuT (encapsulated in so-called virtual nodes) on
each of these PC-nodes (called physical nodes).

The CPU-load of a physical node directly depends on
the number of virtual nodes running on it. Overload of
a physical node may bias the results of an experiment,
because, for example, messages between virtual nodes
experience additional, undesired delays. Virtual time [8],
which decouples the time experienced by the virtual nodes
from the real time, allows for avoiding such overload
situations. Slowing down the virtual time reduces the
execution speed of an experiment and, thus, reduces
the load on the physical nodes. However, a constant
slowdown increases the runtime of an experiment with
fluctuating resource requirements unnecessarily. There-
fore, NET provides an extended concept, called Adaptive
Virtual Time [9]. By adapting the speed of the virtual
clocks to the current system load, NET prevents system
overload as well as system underload of the physical
nodes in the testbed. When the system load is low, the
virtual time is accelerated to speed up the experiment and
when the system load is high, it is slowed down to prevent
overload.

Using adaptive virtual time, the runtime of experiments
is determined by the physical node with the highest
load. Minimizing this load minimizes the runtime of the
experiment. In order to reach this goal, we have developed
NETplace [10]. The basic idea is to calculate, based on
an average experiment load including the network and
CPU usage of virtual nodes, an initial placement of virtual
nodes onto physical nodes that minimizes the load of
the physical nodes. In order to compare the experiment
runtime of different placements of virtual nodes during
this calculation, we have developed an accurate testbed
model [10] to predict the load of the physical nodes based
on a placement of virtual nodes.

Due to the principle of an initial placement, exper-
iments with scenarios with varying and unknown load
result in suboptimal runtime. To achieve also in these
scenarios minimal runtime, we developed an extended
approach called NETbalance [11]. NETbalance monitors
the load of the virtual nodes to detect load changes
and trigger the migration of virtual nodes during the

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 3

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcm.7.1.3-16

experiment runtime. This migration allows for balancing
the load between the physical nodes and, thus, avoids a
high load on single nodes, which is the main reason for a
suboptimal experiment runtime. A new placement is only
deployed if the resulting speed-up outweighs the cost for
the migrations.

Finally, the time required for running networks exper-
iments is influenced by the time to design and setup
the experiment. To minimize also this time, we have
developed NETcaptain. NETcaptain is a plug-in for the
common used integrated development platform Eclipse
and, provides an graphical user interface for modeling
the network topology, deploying the software under test,
gathering the generated log files, monitoring and visual-
izing the state of the virtual nodes and links. The virtual
topology can be manually modified during the running
experiment or using a powerful scripting engine.

The contributions of this paper are as follows:
1) an overview of NET system and the interaction of

the NET components,
2) extended evaluation results of the NET components
3) introduction of our control component NETcaptain
The remainder of this paper is structured as follows. In

Section II we present related work of the NET system.
The architecture of NET, including the basic concepts of
node and time virtualization are introduced in Section III.
In Section IV, we present our Testbed model followed
by our concepts used for the inital placement and the
dynamic reconfiguration of the testbed. The section closes
with a brief discussion of the management software
for our system. Detailed evaluation results of the NET
components are discussed in Section V. In Section VI,
we give a summary and conclusions.

II. RELATED WORK

1) Node Virtualization: The resources of a testbed
node can be partitioned on different layers. The spectrum
ranges from emulating the entire hardware [12] including
processor architecture over virtual machines (VMs) [13]
and virtual protocol stacks [14] to process memory sep-
aration [15] where each process runs in exclusive virtual
memory as is provided by common operating systems.

VM-based emulators [7], [8], [16] allow for running a
complete operating system as software under test. How-
ever, this flexibility introduces a significant computation
and memory overhead. Emulators [17], [18] like NET [6]
based on a lightweight virtualization like virtual protocol
stacks, avoid this overhead by only virtualizing network
specific resources of the operating system.

2) Time Virtualization: A constant slowdown [8], [19]
of the virtual clocks can be used to avoid overloading the
testbed. However, varying resource requirements of the
software under test leads to temporary unused resources
and, thus, an extension of the experiment runtime.

Hybrid systems [1] combine network simulation [2],
[20] and time-virtualized network emulation [18] to run
unmodified implementations. However, a constant clock

rate is used here too. The necessary synchronization in
the simulation produces additional overhead.

Weingärtner et. al. [16] used a barrier synchronization
to conservatively synchronize multiple virtual machines
to a simulation framework. This allows for running the
experiment with adaptive virtual time. However, the VM-
based node virtualization increases the overhead intro-
duced by the synchronization schema.

Emulation of arbitrarily powerful virtual resources can
be achieved by adapting the Linux protocol stack to
use virtual time instead of real time. While Wang et.
al. [21] use only a simulation framework running on
a single physical node, dONE [17] uses a distributed
simulation environment. In contrast to our system, dONE
only supports testing of application layer implementations
using the BSD socket interface.

All existing approaches either have additional synchro-
nization overhead or only support a constant clock rate
which both results in a suboptimal experiment runtime.
NET solves these problems, by dynamically adjusting the
clock rate to the current load of the system.

3) Initial Testbed Configuration: The assignment of
virtual nodes to physical nodes is essential to achieve
good emulation performance. In the following, we give
a brief outline of related assignment strategies.

In real-time testbeds [4], [5], [7] the assignment is con-
straint by limited processing capabilities of the physical
nodes and the bandwidth and delay of the links in be-
tween. This constraint satisfaction problem can be solved
using evolutionary algorithms [22], [23], backtracking
[24], or bin-backing [25]. Since the experiments run in
real-time, the goal of the approaches is to find a solution
that satisfies the constraints. Therefore, these approaches
can hardly be used to minimize the experiment runtime
of a virtual time-based network emulator.

In parallel computing [26] as well as in network
simulation [27] the execution time is minimized by mini-
mizing the total bandwidth between physical nodes using
graph partitioning frameworks [28]. However, the basic
assumption of these approaches is not valid in our system.
For minimal runtime we need to minimize the bandwidth
per physical node and not the overall bandwidth.

4) Dynamic Testbed Reconfiguration: Up to now, the
migration of virtual nodes is not used by any network
emulator to reduce the experiments runtime. Approaches
from other areas using similar concepts are investigated
for their applicability to our problem in the following.

The migration of virtual nodes is similar to task mi-
gration to achieve load balancing [29], [30]. In contrast
to our problem, here, the placement of one task does not
influence the execution costs of another task.

The migration time can be minimized by transferring
the memory state before suspending [31] or after resum-
ing [32] the process. However, applied to network emula-
tion, in both approaches the state is transfered in parallel
to the running experiment and, therefore, will increase the
CPU usage which leads to a slower experiment execution.

Therefore, none of the existing approaches can mini-
mize the runtime of experiments.

4 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Physical Node
 Virtual Machine: Guest OS with

Protocol Stack Virtualization

Virtual Node

Virtual Node

Virtual Machine Monitor / Hypervisor

Virtual Time Layer

Virtual Machine: Guest OS with
Protocol Stack Virtualization

Virtual Node

Virtual Node

Network Layer

Transport Layer

Application Layer

Network Emulation Layer (NETshaper)

Software
under Test

(SuT)

Figure 1. TVEE architecture: Multiple virtual protocol stack instances
inside one virtual machine

III. SYSTEM ARCHITECTURE

A. Efficient Node Virtualization

In order to support highly scalable network experiments
in NET, we have developed the Time Virtualized Emu-
lation Environment (TVEE) [6]. As shown in Figure 1,
TVEE is based on two building blocks: node virtual-
ization and time virtualization. Node virtualization [6]
allows for executing multiple virtual nodes running the
Software under Test (SuT) on a single physical node.
Time virtualization [9] provides a real-time-independent
virtual time to the virtual nodes. The quotient of real time
and virtual time is called time dilation factor τ . Slowing
down the clocks of the virtual nodes by τ reduces the load
of the physical nodes by the same factor. A closed-loop
controller [9] running on a central coordinator adapts τ to
the load of the physical nodes. This adaption maximizes
the execution speed of an experiment without overloading
the physical nodes. A detailed discussion of the adaption
is provided in the following section.

In order to provide virtual time transparently to the SuT,
we make use of the virtual machine (VM) abstraction
[13]. For maximum efficiency, we run one VM on each
CPU of a physical node [10]. Virtual protocol stacks [14],
[33] allow for creating virtual nodes [6] by partitioning the
operating system running inside the virtual machine. All
virtual nodes running in the same VM share a common
operating system. This approach minimizes the memory
overhead per virtual node and allows virtual nodes to
communicate efficiently using reference passing. Using
our network emulation tool NETshaper [34], we are
able to build arbitrary network topologies with user-
definable parameters (bandwidth, delay, loss rate). Since
the network emulation is located on the Data Link layer,
our emulation architecture supports evaluations on the
Network, Transport, and Application layer.

B. Adaptive Virtual Time

To adapt the virtual clock rate to the resource demand
of the experiment we introduce the Time Dilation Factor
τ . Equation 1 shows how the virtual time (Rv) and the
real time (Rr) are related by means of the τ .

Rv = 2−
τ
10 ·Rr (1)

In order to allow an efficient implementation using
integer arithmetic, we use (in contrast to Gupta et. al.

CPU Utilization

new TDF

Load
Reports

TDF Change
Requests

Epoch Switcher

Load Monitor
Virtual Machine

with Virtual Nodes

TDF Adaptor
(coordinator)

Figure 2. TDF adaptation schema

[8]) a logarithmic relation between the rate of virtual time
and the real time. Using only integer arithmetics, we can
adjust the rate of the virtual clock with a step width of
about 7%. This granularity is sufficient for the adaptation
algorithm that we will introduce in Section III-B.2. In
addition, without a logarithmic relation, this granularity
depends on the virtual clock rate. For fast rates the
granularity is coarse and it increases with slower rates.

In order to perform the adaption of τ , we propose the
concept of epoch-based virtual time [6]. The experiment
is divided in epochs of different length where τ is con-
stant within each epoch. Whenever the resource demand
changes, an epoch switch is triggered to adapt τ .

Figure 2 shows the TDF adaptation schema. Each
physical node of the emulation system runs a load monitor
that monitors the node’s load and reports it to a central
coordinator who calculates the overall system load. The
overall load is defined as the maximum over all individual
node load values. Since each node may run multiple VMs
(one VM per CPU), the load of a node is defined as
the load of the maximum loaded CPU of the node. This
definition is chosen to ensure that no CPU of the physical
node is overloaded at any time.

Using the overall load, the coordinator determines a
new τ and initiates an epoch switch. The epoch switcher
is used to distribute the new τ to the physical nodes and
to perform an epoch switch. In the following, each com-
ponent (load monitor, TDF adaptor and epoch switcher)
is discussed in detail.

1) Distributed Load Monitoring: The load monitor is
used to measure the load of a physical node and report
the load to the TDF adaptor. The virtual machine monitor
(VMM) provides a per virtual machine statistic, which
counts the number of used CPU cycles c(t). Requesting
this value at 2 points in time (c(t1) and c(t2)) allows
for calculation of the load l = c(t2)−c(t1)

t2−t1 . To meter the
time between the measurements with a sub-microsecond
granularity, we use the time stamp counter register of
processor (TSC), which is increased on every CPU clock
cycle.

The length of the sampling interval has a large effect
on the performance of load monitoring. Short intervals
are required for a fast reaction to load changes, but also
result in a large number of load reports. Transmission
and processing of large amounts of load reports would
overload the coordinator and, therefore, limit scalability.
To limit the amount of load reports, we use 3 mecha-
nisms: adaptive sampling, threshold-based discretization
and hysteresis-based state changes. These mechanisms
effectively reduce communication overhead for reporting

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 5

© 2012 ACADEMY PUBLISHER

load panic

load warning

reasonable load

underload
LU

LP

Load (CPU Utilization)

100%

0%

Hysteresis

Time

LW

Figure 3. Load Monitoring Thresholds

substantially.
Adaptive sampling adjusts the length of the sampling

interval (time period between two consecutive load re-
ports) to the currently used τ . For a higher τ (slower
virtual time) a longer sampling interval is chosen. The
ratio behind this is that overload situations develop pro-
portionally slower when the virtual time runs slower.
Therefore, the sampling interval may be increased without
taking the risk of missing any relevant change. The effect
is that as a system increases in size (number of virtual
nodes) and the load increases as a result, the message
overhead resulting from load reports decreases. Therefore,
we increase the sampling interval linearly with τ .

Threshold-based discretization maps the possible load
values of a physical node to the 4 states load panic, load
warning, reasonable load, and underload (see Figure 3)
using 3 thresholds (LP , LW , and LU). The load mon-
itor determines the state locally and only in case of a
state change, a load report is sent to the TDF adaptor.
Underload indicates that there are unused resources and,
therefore, virtual time could be accelerated. Analogous,
the two states load panic and load warning signal that
resource consumption is becoming too high. When the
system is in one of these states, virtual time has to be
slowed down. The two thresholds LP and LW are used to
differentiate between slight and heavy load. The different
reaction on these states is described in the next section.

Hysteresis-based state changes are used to avoid os-
cillation between two states which causes a high number
of load reports. A state change is only triggered if load
exceeds the threshold and its surrounding hysteresis range
(see Figure 3).

2) TDF Adaptation: The TDF adaptor achieves this
adjustment by means of a very simple proportional feed-
back control mechanism that is shown in Algorithm 1.
Whenever the system load is outside the reasonable range,
the algorithm adapts τ to reach the reasonable load state.
As long as the system load is in state load warning
or underload, a small adjustment Ss is applied (added
or subtracted) to avoid overshooting the reasonable load
state. If there is a fast increase in load, this adjustment
will not suffice and the system will eventually reach the
load panic state. In this situation, a larger step size Sl
is used for the adjustment in order to decrease the load
quickly and avoid overload. If this results in an underload
situation, the algorithm will gradually decrease τ again to
speed up virtual time.

After each adjustment, the algorithm needs to wait for

input: state, τprev
1 while true do
2 if state != reasonable_load then
3 if state = load_panic then
4 setTDF(τprev + Sl)
5 else if state = load_warning then
6 setTDF(τprev + Ss)
7 else if state = underload then
8 setTDF(τprev - Ss)
9 end

10 sleep Ts
11 else if state = reasonable_load then
12 setTDF(τprev - Ss)
13 sleep Tl
14 end
15 end

Algorithm 1. TDF Adaption Process

feedback from the load monitor to see whether the load
is back in the state reasonable load. Due to the adaptive
sampling of the load monitor, the time until the feedback
arrives depends on the current value of τ . Therefore, we
dynamically adjust the waiting time (Ts) to the half of
the used sampling interval.

In case of temporarily constant resource demands, the
utilization can keep steady at any level between the LU
and LW thresholds in the state reasonable load. For good
resource usage, however, the system utilization should be
near the LW threshold. Therefore, we decrease τ in the
reasonable load state, too. However, the speed of this
adjustment is very low, through a waiting time Tl of an
order of magnitude larger than the waiting time Ts. In
combination with the hysteresis around the thresholds the
oscillation around LW , these adjustments introduce an
insignificant overhead.

Our evaluation shows that the introduced algorithm
has a good reaction to changes of resource requirements
despite the fact that it is rather simple.

3) Epoch Switching: After determining τ for the next
epoch, a mechanism is required for propagating the new
value to the physical nodes. To ensure a fast reaction
to upcoming overload, the time between detecting the
resource demand and the actual change of τ must be as
small as possible. Since the time to compute the new value
of τ is negligibly small, we need to minimize the time
for transmitting load reports and TDF change requests.
In addition, realistic emulation requires all virtual clocks
to run at the same rate at any time. Therefore, we need
mechanisms to minimize the difference in propagation
times of TDF change requests. A third problem related to
epoch switching is the occurrence of message loss which
cannot be detected in time.

We have developed a protocol for minimizing the
propagation time of TDF change requests and load re-
ports. The basic assumption behind this protocol is that
all nodes are connected to a LAN. We are using the
previously mentioned control network of the cluster. The
delay of TDF change requests and load reports using

6 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Network
Topology

Software
under Test

Testbed
Specification

NETplace Initial Node
Placement

Results

NETbalance

Node and Time
Virtualization

avg. Data Rates
avg. CPU Usage

Reconfiguration
Actions

Experiment
Execution

Figure 4. Experiment execution workflow

this network consists of several components: network
transmission delay, packet processing time in the protocol
stack, and delay in queues. The time to transmit a frame
in the network is insignificant because it is below 200µs
and has a small variability. The processing time in the
protocol stack is a magnitude below the transmission
time and can be ignored as well. Most of the message
delay is caused by waiting in egress and ingress queues
of the physical nodes and the switch. In order to limit
these delays, we are using priority queues based on type
of service (TOS) of IP QoS and prioritize TDF change
requests and load reports. A last source of delay are the
hardware based FIFO queues inside the network interface
cards (NICs). Since we cannot change theses queues,
we are limiting the traffic on these interfaces to 95% of
the link capacity to keep the queues empty. Using these
mechanisms, the maximum packet transmission delay can
be reduced below 2ms and message loss can be prevented
with a very high probability.

IV. TESTBED CONFIGURATION

Running an experiment using NET follows the work-
flow depicted in Figure 4. Based on the testbed specifica-
tion (number of physical nodes, CPUs per physical node,
CPU capacity), the network topology and the expected
average resource requirements of the SuT, NETplace
[10] calculates an initial placement that minimizes the
experiment runtime. As a second step, we setup the
network topology in the network emulator and deploy the
SuT. Finally, we execute the SuT on the virtual nodes.

In this basic workflow, resource requirements of the
SuT deviating from the average may lead to temporary
suboptimal placements which leads to an extended exper-
iment runtime. NETbalance [11] extends this workflow
by an additional compontent to monitor the resource
requirements of virtual nodes, and to adapt, if required,
the placement of virtual nodes to changing requirements.
The base of the initial placement and the dynamic re-
configuration is a testbed model to determine the load of
physical nodes based on the placement of virtual nodes.

Finally, in order to execute a network experiment
efficiently, we have developed an graphical user interface
NETcaptain to specify the network experiment and to
control and visualize the experiment execution.

In the following, we first introduce the testbed model.
Then we discuss our approaches for the initial placement
and the dynamic placement of virtual nodes. Finally, we
introduce the graphical user interface of NET.

 Physical Node VM1

 Hardware phy. CPU0 phy. CPU1

Host-OS VM0

virt. CPU0

Bridge
Bridge

virt. CPU1

Bridge

Emulation Switch

NIC

vn
o

d
e

0

vn
o

d
e

1

vn
o

d
e

2

vn
o

d
e

3

Figure 5. Architecture of NET using multiple CPUs

A. Testbed Model

A network experiment in NET consists of a set N
of virtual nodes. Each virtual node i ∈ N runs a SuT
which consumes λi CPU cycles and transmits βij data
to virtual node j per time unit. The experiment runs for
θvirtual time units of the virtual time. Here, we assume the
knowledge of the average data rates produced by the SuT
on the links between the virtual nodes. The specification
of λi and βij is provided by the experimenter or can be
gathered during the execution of a scenario. Moreover,
the specification of the virtual links’ bandwidth provides
a worst case estimation of these data rates.

The experiment is executed on a testbed containing a
set P of physical nodes. Each physical node p ∈ P is
equipped with a set Cp of CPUs and runs |Cp| virtual
machines. Each CPU can perform νCPU CPU cycles per
real time unit. We identify each VM by addressing the
physical node p and the CPU c ∈ Cp that is assigned
to the VM (p, c). The set of VMs is named V . As
shown in Figure 5, the host operating system (host-os)
of each physical node enables communication between
the virtual machines. We define the placement of the
virtual nodes onto the virtual machines as a function
φ : i 7→ (p, c). In order to calculate a placement that
minimizes experiment runtime θreal (real time), we need
a cost model µ for the testbed. As shown in Equation 2,
based on the placement of the virtual nodes, this cost
model allows for the calculation of the physical nodes’
load . This load consists of the load Λhost-os

p of the host-os
and the load Λvm

p,c of the VMs running on the physical
node. The unit of Λ is CPU cycles per time.

µ : (φ, p) 7→ (Λhost-os
p ,Λvm

p,1, . . . ,Λ
vm
p,|Cp|) (2)

In order to define µ, we first discuss how virtual nodes
can communicate. We distinguish 3 types of links between
virtual nodes: intra-vm, inter-vm and inter-pnode links.
• Intra-vm links are the most efficient way to connect

two virtual nodes. Here, both virtual nodes are
running inside the same VM. Attaching the virtual
nodes’ NIC (network interface card) to a software
bridge also running inside the VM enables com-
munication. Since the communication involves only
components inside the VM, only the send (VMtx)
and receive (VMrx) path of the VM’s protocol stack
is loaded (see Table 1).

• Inter-vm links allow for connecting two virtual nodes
running in different VMs on the same physical node.
Here, communication requires to copy the packets
between the VMs and the host-os which introduces

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 7

© 2012 ACADEMY PUBLISHER

VMtx VMrx Host-OS PNode Testbed

intra-vm + + − + +
inter-vm ++ ++ ++ ++ ++
inter-pnode ++ ++ +++ ++/++ +++

Table 1. Cost matrix κ (the number of + denotes the amount of load
generated by a link to the components; no load is indicated by −).

some additional overhead. Evaluation shows that
inter-vm links are about 10 times more expensive
than intra-vm links.

• Inter-pnode links allow for connecting two virtual
nodes running on different physical nodes. Here,
packets need to be copied to the host-os and passed
down the complete network stack including the de-
vice driver for the network hardware. Evaluation
shows, that these type of links introduce the highest
overhead and cause about 2 times more load than
the inter-vm links and 20 times more load than the
intra-vm links.

PNode (see Table 1) defines the total load generated on
a physical node: VMtx + VMrx + 2 ∗ Host-OS. For inter-
pnode links, this load is distributed to 2 physical nodes.
Testbed defines the generated load throughout the testbed.

Based on the link type, the data rate βij of a link
between two virtual nodes i and j, and the cost matrix
κ (see Table 1), Equation 3 defines the generated load of
the host-os Λhost-os

p .

Λhost-os
p =

∑
i,j∈N

φ(i)=(p,c)
φ(j)=(p′,c′)

βij ∗

κhost-os

intra-vm if p = p′ ∧ c = c′,

κhost-os
inter-vm if p = p′ ∧ c 6= c′

κhost-os
inter-pnode if p 6= p′

(3)
The load of a VM Λvm

p,c is calculated using Equation 4,
where ΛVMtx

p,c and ΛVMrx
p,c are defined analogous to Λhost-os

p .
The VM running the virtual node i that transmits data is
loaded by κVMtx and the VM running the virtual node j
that receives data is loaded by κVMrx . The SuT additionally
loads the VMs by λi and λj , respectively.

Λvm
p,c = ΛVMtx

p,c + ΛVMrx
p,c +

∑
i∈N∧φ(i)=(p,c)

λi (4)

We can calculate the load of the physical CPUs Λp,c
using Equation 5. Since the virtual CPUs of the VMs
are pinned to physical CPUs, a physical CPU (p, c)
experiences at least the load Λvm

p,c of the virtual machine
that it is assigned to. In addition, the load Λhost-os

p of
the host-os can be distributed arbitrarily to the CPUs.
Therefore, each CPU experience at least the fraction 1

|Cp|
of the overall load generated on the physical node p.

Λp,c = max

Λvmp,c ,
1

|Cp|
∗ (Λhost-os

p +
∑
c′∈Cp

Λvm
p,c′)

(5)

Knowing the load of each CPU, we can define the
experiment runtime using Equation 6. The maximum
loaded CPU has to execute Λp,c∗θvirtual CPU cycles during

the experiment. The number of cycles divided by the
speed of the CPUs νCPU results in the experiment runtime
θreal.

θreal = max
p∈P,c∈Cp

(Λp,c) ∗
θvirtual

νCPU
(6)

The cost matrix κ highly depends on the used hardware
and software base, such as the speed of the physical
memory, the CPU architecture, the VM implementation,
and the used operating system. Therefore, we propose
the following approach to determine the cost matrix κ
for a testbed: First, a sample scenario is executed with
a number of arbitrary placements while we monitor the
generated load on the VMs and the host-os, and the
data rates. Second, genetic programming is used to find
values for the cost matrix κ in Table 1 by minimizing
the difference between the measured load and the load
calculated based on κ and the measured data rates.

B. Initial Testbed Configuration

Next, we present our approaches to calculate the place-
ment φ that minimizes the experiment runtime. We first
propose 2 extensions to the original edge-cut algorithm to
overcome its shortcomings. As an alternative, we propose
a simple greedy algorithm to calculate the placement. Af-
ter the placement calculation, a subsequent optimization
phase further reduces the runtime of the experiment.

1) Edge-Cut-based Approaches: In order to place vir-
tual nodes using edge-cut-based approaches, the virtual
network is modeled as a weighted graph γ. The weight
of a vertex vi, which represents a virtual node, is defined
as the load of the virtual nodes’ SuT λi and the weight
of an edge eij is defined as the bandwidth of the virtual
link (βij + βji). The edge-cut algorithm [28] is used
to partition the graph into n partitions, where n is the
number of virtual machines in the testbed. The nodes of
each partition are placed on the same virtual machine. In
the following, we extend this approach to minimize the
runtime of network emulation experiments.

a) Balanced Edge-Cut EB: In order to consider
intra-vm links, we add the cost of emulating the intra-
vm links to the vertex weight. The vertex weight vi is,
therefore, redefined as the load of the virtual nodes’ SuT
λi plus the sum of all virtual links of the virtual node
times the intra-vm costs (see Equation 7).

vi = λi +
∑
j∈N

(βij + βji) ∗ κintra-vm,PNode (7)

Since the edge-cut algorithm balances the vertex
weights between partitions, costs generated by the em-
ulation of intra-vm links do not cause load imbalances
between physical nodes. However, inter-vm and inter-
pnode links can still cause load imbalances. From now
on, we assume the modified vertex weights.

b) Hierarchical Edge-Cut EH: In order to support
multiple VMs per physical node and minimizing the inter-
pnode links, algorithm EH partitions the graph γ two
times. During the first run, we partition the graph γ into

8 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

|P | partitions {γ1, . . . , γ|P |}. Each partition is assigned
to a single physical node. For each physical node p,
we again partition the corresponding subgraph γp into
|Cp| partitions {γp,1, . . . , γp,|Cp|} . The partitions γp,c,
generated in this second run, are assigned to the virtual
machines running on the physical node p.

2) Greedy Approaches: A simple greedy approach
constitutes an alternative to place virtual nodes. Here,
the assignment of virtual nodes to clusters (virtual nodes
running inside the same VM) consists of two phases. First,
we assign one random initial virtual node (initial cluster
member, ICM) to each cluster. Second, we assign the
remaining nodes randomly, one by one to the minimum
loaded cluster (MLC). Due to the random selection, the
load is distributed uniformly to the physical nodes.

Selecting the minimum loaded CPU or virtual machine
requires the calculation of their load. For efficiency, we
update the load on these components incrementally after
assigning a virtual node to a cluster. When updating
the load of the components, we need to handle the
links between an already assigned virtual node i and
an unassigned virtual node j. The type of these links,
depends on the future assignment of j. Therefore, we
propose a heuristic to estimate the load generated by these
links. Following an optimistic approach, we consider only
those links, where both virtual nodes are already placed.
This model reflects the actual load of the intermediate
assignment (unassigned nodes are temporarily removed).

To select the minimum loaded cluster, we first deter-
mine the physical node p where the load of the maximum
loaded CPU maxc∈Cp(Λp,c) is minimal. From the VMs
running on this physical node, we select the VM (p, c)
where the load Λvm

p,c is minimal. Assigning additional
virtual nodes to this VM will unlikely increase the exper-
iment time. We call the cluster of this VM the minimal
loaded cluster (MLC).

Due to the random selection of the virtual nodes, the
greedy approach balances the load between the physical
nodes without minimizing the inter-VM and inter-pnode
links. Therefore, we propose to optimize the placement
in an subsequent optimization phase. This optimization is
used for the greedy and the edge-cut-based approach.

3) Optimization of Node Assignments: Due to the use
of heuristics, the introduced clustering algorithms cannot
guarantee that the load of the maximum loaded CPU is
minimized. Therefore, an optimization is performed after
the cluster creation to reduce the load on the maximum
loaded CPU which minimizes the experiment runtime.
The proposed optimization is performed after the edge-cut
based approaches as well as the greedy approaches.

Let {t1, . . . , t|V |} = a be an assignment of virtual
nodes N to VMs V , where ti ∩ tj = ∅ and

⋃|V |
i=1 ti = N .

We also call such an assignment as a state. In order to
optimize an assignment, we use hill climbing to minimize
a cost function ζ(a). We define ζ later in this sec-
tion. During each round, we generate neighboring states
{a′1, . . . , a′e} by removing a virtual node n form a cluster
i and assigning n to a cluster j: {t1, . . . , ti\{n}, . . . , tj∪

{n}, . . . , t|V |}. The neighboring states are rated by ζ(a).
In case the costs of the best neighboring state a′b is lower
than the costs of the current state ζ(a′b) < ζ(a) the
optimization continues with the state a′b.

Due to the large number of neighboring states O(|N | ∗
|V |), rating these states requires a large effort. In order to
reduce this effort, we propose to sequentially generate
and rate the neighboring states. Instead of generating
all the states in each optimization round we generate
only one random neighboring state a′r ∈ {a′1, . . . , a′e}.
In case ζ(a′r) < ζ(a) the optimization continues with a′r,
otherwise it continues with a. The optimization terminates
if we cannot find any neighboring state with lower costs.
Generally, we could limit the number of state changes
to provide hard time limits to the placement algorithm.
However, experiments have shown that the local optima
was always reached after a short period of time.

Based on our primary optimization goal an obvious
cost function would be the experiment runtime of an
assignment. However, this cost function has a lot of
plateaus, because the runtime of an assignment is only
decreased in the case where the load of the maximum
loaded CPU max(Λp,c) is reduced. The hill climbing-
based optimization cannot escape from such a plateau
because the gradient is zero in all directions. Therefore,
we propose a two-part cost function (see Equation 8) to
eliminate the plateaus. The first part of the cost function
is determined by the maximum loaded CPU max(Λp,c).
The second part is calculated by summing up the squared
load of all physical CPUs. We are using the squared load
of a CPU because, this metric penalizes assignments with
unequally loaded CPUs.

ζ =

(
ζ1
ζ2

)
=

(
maxp∈P∧c∈Cp(Λp,c)∑

p∈P∧c∈Cp(Λp,c)2

)
(8)

Equation 9 is used to compare a state a and a neighbor-
ing state a′. Here, we first compare ζ1 because reducing
the load of the maximum loaded CPU results directly in a
reduced experiment runtime. In case ζ1 is equal for both
states (third line of Equation 9), we compare ζ2.

ζ(a′) < ζ(a)⇔

true if ζ1(a′) < ζ1(a),
false if ζ1(a′) > ζ1(a),
ζ2(a′) < ζ2(a) if ζ1(a′) = ζ1(a)

(9)

C. Dynamic Testbed Reconfiguration

In order to minimize the experiment runtime in sce-
narios with varying resource requirements, NETbalance
[11] adapts the placement of virtual nodes to changing
resource requirements of virtual nodes. These changes
trigger the re-calculation of the virtual nodes’ placement.
We adopt the concept of live migration [35] to transform
the current placement into the optimized placement by
migrating virtual nodes between virtual machines.

After changing the placement, the experiment runs with
an increased execution speed. However, this speed-up
only leads to a reduction in the runtime if it outweighs the

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 9

© 2012 ACADEMY PUBLISHER

time required for migrating the virtual nodes. The time for
which the experiment can run with the increased speed
after a reconfiguration determines the overall speed-up.
Our assumption is that we can predict the load accurately
within a certain time period. We call this time period the
prediction window. Based on the prediction window and
the migration costs, we can determine if the migration
of virtual nodes reduces the experiment runtime. In the
following, we discuss the prediction window, the migra-
tion cost model, and the algorithm for optimizing the
placement in detail.

The research on load prediction shows, that the load
of a machine can be predicted up to 30s in advance
[36]. As reported by Yang et. al. [37] a very simple load
predictor using the last measured value as the prediction
gives similar results to more sophisticated approaches. In
order to minimize the computation effort, we apply this
simple prediction schema. Due to the usage of virtual
time, the changes of a virtual node’s load experience time
dilation. Therefore, the prediction window Tp is scaled by
the time dilation factor τ , and we can assume the load to
be known for a real time window of Tp · τ .

The load of the virtual nodes is captured by a load
monitor running inside the VMs and periodically sent to
the coordinator with an interval equal to the prediction
window. Even for large scenarios with a thousand virtual
nodes per physical node, the amount of data is about
20KB1 per physical node. Significant changes in the load
of virtual nodes trigger the calculation of a new placement
φ′. To calculate φ′, the coordinator adapts the current
placement φ to the changed load. Using the testbed cost
model [10] developed for NETplace, we can calculate
the time dilation factor for the current placement τφ and
the new placement τφ′ . For the transition φ → φ′, we
need to migrate virtual nodes. This migration requires
reconfiguration costs Tr, that can be calculated using our
migration cost model. This cost model (discussed at the
end of this section) includes the costs of transferring the
virtual node’s state between the VMs and of modifying
the virtual topology.

Since we can predict the load of the virtual nodes for
the time window Tp, we limit the optimization to the
time To with To � Tp. After To, we abort the simulated
annealing-based algorithm used for minimizing the cost
function χ:

χ = [(Tp − To) · τφ′ + Tr]− (Tp − To) · τφ (10)

χ represents the reduction of the experiment runtime
in the prediction window Tp. The runtime of the current
placement φ is subtracted from the runtime of the new
placement φ′, taking into account the time Tr required
for the reconfiguration and the different time dilation
factors. Since we need time To for calculating φ′ and
for executing the transformation φ → φ′, φ′ takes effect
over the time window Tp − To. If χ is negative, then the
transition to φ′ will result in a speed-up of the experiment
and NETbalance configures the system accordingly. If,

1Scenario with 4 network links per virtual node

however, χ is positive, then φ′ performs worse than φ
and we keep the configuration φ. Thus, the experiment
runtime cannot increase through the optimization.

The value of To determines the performance of NET-
balance. Increasing To allows more time for finding better
placements. At the same time, however, the time Tp−To
left for actually running the better configuration φ′ gets
smaller. In our evaluation, we investigate in the optimal
value of To.

Small changes of a virtual node’s load may result in
slightly different optimal placements and, therefore in a
potential for oscillation. However, the gain of a new place-
ment has to exceed the reconfiguration costs; otherwise,
it is discarded. This effectively serves as a hysteresis,
avoiding constant re-configuration with minimal gain.

After calculating a new placement of virtual nodes, we
need to enforce the changes to the placement by migrating
virtual nodes. Each of these virtual nodes is migrated
from a virtual machine VMsrc to a virtual machine VMdst.
We stop the experiment before we transfer the state of
a virtual node. The incurred reconfiguration cost Tr is
estimated using a migration cost model that we introduce
at the end of this section.

To ensure that the re-placement does not influence the
emulation results, the migration of virtual nodes must be
transparent to the SuT. Therefore, we stop the experiment
synchronously on the physical nodes which includes
two phases. First, by setting the time dilation factor to
infinity, the virtual clocks are stopped. This ensures that
NETshaper will not deliver any frames and that timed
actions are not triggered, e.g. in the protocol stack. In
the second phase, we exclude the processes of the virtual
nodes from process scheduling.

After the experiment is stopped, we change the place-
ment of virtual nodes. For this, we adopt the concepts
of the ZAP system [38]. First, we create a snapshot of a
virtual node using check-pointing. The Application layer
state contains the memory pages and open file descriptors
of the SuT, the Transport layer state contains the open
sockets and the state of the corresponding protocols, and
the Network layer state contains the IP addresses as well
as the routing tables. We extended the state of the Data
Link layer by the state of NETshaper, including buffered
messages. The state of the virtual node is then transferred
to VMdst and restored thereafter. The network interfaces
of the restored virtual nodes are reattached to the virtual
topology.

The SuT might have modified the file system or it might
have open file descriptors. Therefore, we need to transfer
the virtual node’s file system to VMdst. Due to the typical
size of a file system, copying all files introduces a large
overhead. To avoid this overhead, we store the file system
of a virtual node on a central server2. Typically most
files of a virtual node (including the system files of the
operating system and the libraries of the SuT) are read-
only and shared among virtual nodes. All virtual nodes

2The central file server could be implemented by a cluster of file
servers in case of performance bottlenecks

10 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

use a common Copy-on-Write file system to share these
files. To minimize the overhead, we are using hard links
to make shared files available on all virtual nodes. This
approach saves a lot of disk space on the file server and
shared files need to be cached only once on the file server
and the virtual machines.

The caching effort to keep the entire file system in
memory is almost independent of the number of virtual
nodes. Node-specific files are only cached by the VM
running the virtual node. Buffering of write operations
and caching of read operations hide the latencies of the
network-based file I/O. Due to the concept of the file
server, the effort of synchronizing the virtual nodes’ file
system is limited to writing back the modified files to the
file server. The synchronization can run in parallel to the
migration and does not contribute to Tr since the files are
written back while the virtual nodes are suspended, and
we are assuming only small changes to the file system,
implying a fast synchronization and a negligible effect
on the node’s state size. In the case of larger changes,
the state of the virtual node grows. In our evaluation, we
show the effect of the state size on the performance of
NETbalance.

The migration is completed by resuming the execution
of all virtual nodes and by restoring the time dilation
factor. Since we are using suspend/resume migration [39],
the reconfiguration time Tr is defined as follows:

Tr = Tsuspend + Tmigrate + Tchange-topology + Tresume (11)

Tsuspend and Tresume are small, because we only need
to exclude or include the virtual nodes in the process
scheduling. The time for changing the virtual topology is
short, too. The dominating factor of Tr is Tmigrate, because
it grows linearly with the memory pages used by the
SuT. The actual values for Tsuspend, Tmigrate, Tchange-topology,
and Tresume can be measured based on a sample scenario.
Better estimations can be learned while the experiment is
running.

The migrations of virtual nodes running in the same
VM are performed sequentially. However, since the mi-
gration of a virtual node generates only load on VMsrc and
VMdst, we can migrate virtual nodes running on different
VMs in parallel. The reconfiguration costs are calculated
for each VM based on the migrations involving the VM.
The VM with the maximum value of Tr determines the
overall reconfiguration costs.

D. Integrated Experiment Platform

Figure 6 shows our graphical user interface NET-
captain. The integration into the development platform
Eclipse allows for directly evaluating of distributed ap-
plication using our network emulator. NETcaptain sup-
ports to an easy, GUI-based specification of the network
topology including the link characteristics as well as the
assignment of the software under test. The nodes can
be connected by shared media, switched networks or
point-to-point links. To efficiently support large scenarios,
importers for common network topology generators (e.g.

Figure 6. NETcaptain: GUI of the NET system

BRITE) are integrated. The mobility and connectivity of
wireless-connected mobile nodes is based on trace-files
and several radio propagation models (e.g. ray-tracing).
The experiments can be live-visualized using a flexible
visualization engine and controlled by powerful scripting
engine.

V. EVALUATION

The evaluation of NET contains 5 steps: We show the
efficiency and emulation accuracy of our virtualization ar-
chitecture (1). We discuss the effectiveness of the adaptive
time virtualization (2). The accuracy of our testbed model
is presented (3). We show the performance of the initial
node placement (4), and finally, we show the accuracy
and effectiveness of the dynamic reconfiguration (5).

A. Network Emulation

1) Bandwidth Emulation: First, we measure if the
emulation layer is able to enforce a configured bandwidth
faithfully. Therefore, we set up a scenario with 2 con-
nected virtual nodes in two variations. One variant uses
a single physical node hosting both virtual nodes and the
other uses two physical nodes with one virtual node each.
We configure the link bandwidth with different values
ranging from 64 kbps to 100 Gbps and no additional
delay. To measure the maximum throughput of the link,
we use the netperf tool [40] in UDP mode. It generates
load according to configured send and receive buffers of
64 kB and an Ethernet MTU of 1500 Bytes.

As shown in Figure 7, the measured throughput corre-
sponds to the configured bandwidth. Note that, due to the
used hardware, for high speed links an emulation running
at real-time is not possible. Therefore, we increased the
τ to avoid overloading of emulation nodes.

2) Delay Emulation: Next, we examine if the emula-
tion tool faithfully reproduces configured delays. Again,
the scenario consists of 2 connected virtual nodes. The
link has a bandwidth of 100 Mbps and a variable delay
between 1 ms and 100 ms. We use the ping tool to
measure the round trip time between the virtual nodes.
Variations of this scenario use one or two physical nodes
to host virtual nodes on same or different physical nodes
respectively. We also vary the τ . As shown in Figure 8,
the delays are emulated accurately.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 11

© 2012 ACADEMY PUBLISHER

0.064

1

11

10
2

10
3

10
4

10
5

0.064 1 2 5 11 10
2

10
3

10
4

10
5

U
D

P
 t

h
ro

u
g

h
p

u
t

[m
b

p
s]

configured network bandwidth [mbps]

same phy. node
different phy. nodes

Figure 7. Accuracy of bandwidth emulation

0.5

1

2

5

10

20

50

100

1 2 5 10 20 50 100

h
a

lf
 m

e
a

su
re

d
 r

o
u

n
d

 t
ri

p
 t

im
e

 [
m

s]

configured network delay [ms]

same phy. node, τ=0
diff. phy. nodes, τ=0

same pnode, τ=33
diff. phy. nodes, τ=33

Figure 8. Accuracy of delay emulation

24
32

64

128

256

512

0 2 4 8 16 32 64 128 256 5121024

u
se

d
 m

e
m

o
ry

 [
M

B
]

number of virtual nodes

without buffer caches
with buffer caches

Figure 9. Memory overhead

3) Memory Consumption: As outlined during the dis-
cussion of the TVEE architecture, the scalability of an
emulation solution heavily depends on the memory over-
head. To evaluate the memory overhead of our approach
we create a scenario with an increasing number of virtual
nodes attached to the same network. Figure 9 shows the
required memory usage.

The memory usage consists of two components. One
constant amount for the base system including Linux
kernel requiring about 27 MB and a constant per virtual
node memory usage of about 300 kB. In comparison, a
virtual node-based on XEN requires at minimum 6 MB of
memory [13]. As shown in Figure 9, the memory footprint
increases linearly with the number of virtual nodes. This
allows us to run over a thousand virtual nodes on a single
physical node which is equipped with half a gigabyte of
main memory. Please note that the main memory is shared
by hypervisor, dom0 (64 MB), and virtual machine.

B. Adaptive Virtual Time
An extensive search of the parameter space using

scenarios with different resource requirements has been
performed to identify a configuration which generally
minimizes experiment runtime and ensure unbiased re-
sults. The determined thresholds of the load monitor
are: LU=50, LW=70, and LP=90. The adaptive sampling
interval ranges from 5ms for τ=0 to 200ms for τ=100.
Adjustments of τ with a step width Ss of 1 and Sl of 20
give best results for the adaptation of τ .

To quantify the achieved level of resource consumption,
we are emulating a chain of routers routing 2 TCP flows.
The test system consists of two physical nodes. On the
first one, 2 virtual nodes are running the TCP sender
and receiver of the first flow Ff . This flow is routed
through the chain of routers with different lengths. The
routers run on the second physical node. Additionally,
one link of the router chain is used by a second flow
Fb. The emulated network between the virtual nodes has
a bandwidth of 1Gbps except for the first and last link
which have 100Mbit. During each experiment, we run
the TCP flow Fb for 20s of virtual time. After 5s we run
the flow Ff for 10s and measure the achieved throughput.
In addition, the resource usage on both physical nodes is
measured. For each router chain length, the experiment is
repeated 50 times.

Figure 10 shows the CPU utilization of the physical
node running a chain of 32 routers. The time axis

reasonable load

avg. TDF

 0

 20

 40

 60

 80

0
0

10
5

20 30 40
10

50 60 70
15

80 90
20

LU

LW

LP

a
v

g
. C

P
U

 u
sa

g
e

 [
%

]
/

T
D

F
Real Time [s] / Virtual Time [s]

2 concurrent TCP flows

CPU usage

Figure 10. Load-based TDF adaptation

has two sales: the upper scale is the real time and the
lower scale the virtual time. Running only the flow Fb
requires the system to run with τ ≈ 10 to keep the CPU
utilization inside the reasonable load range. Running
flow Ff between 5s and 15s of virtual time increases the
resource requirements. In order to prevent overload, the
system automatically adapts τ ≈ 27. As flow Ff stops,
the system adapts τ back to the original value.

reasonable load

TCP throughput

average TDF

 0

 20

 40

 60

 80

 100

w/o
Ff

4 8 16 32 64 128 253

LU

LW

LP

a
v

g
. C

P
U

 u
sa

g
e

 [
%

]
/

T
D

F
 /

tc
p

 t
h

ro
u

g
h

p
u

t
[m

b
p

s]

length of router chain

TCP flow in emulated router infrastructure

CPU usage

Figure 11. Effectiveness of TDF adaptation

Figure 11 shows the measured results for different num-
bers of routers, which are: the achieved TCP throughput,
the load of the physical node running the router chain,
and the average value of τ . Although these measurements
have different scales, we show them in a single graph
to increase comparability. For comparison, we have also
included the results for the experiment without flow Ff .
The TCP throughput allows to rate the quality of the
emulation by comparing the measurements with the TCP
throughput in real environments. In the emulation as well
as in measurements in real environments, TCP is able to
achieve about 96Mbps throughput and, therefore, we can
conclude that the emulation results are not biased.

As shown in the figure, for up to 8 routers the resource
utilization mainly results from flow Fb. As the number of
routers is increased, the resource requirements for flow
Ff increase likewise. Since each router basically does

12 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

VMtx VMrx Host-OS PNode Testbed

intra-vm 0.43 0.01 0.88 0.88
inter-vm 1.11 1.09 3.06 8.32 8.32
inter-pnode 2.01 1.67 5.67 7.78/7.31 15.09

Table 2. Costs matrix κ for a emulation testbed consisting of
quad-core machines (unit of κ is cycles

byte
)

the same, the load increases linearly with the number
of routers. At a length of about 11 routers, the flow Ff
consumes a significant amount of CPU and, therefore, the
system needs to slow down the virtual time.

The gray area in Figure 11 marks the reasonable load
range. For the experiment to exhibit minimal runtime,
the resource utilization should be near the upper bound
of the reasonable load range. As the Figure shows, the
load of the physical node hosting the routers approaches
this limit and stays below the threshold as desired. For
shorter router chains, the low values of τ results in a small
sampling interval (see III-B.1) which makes the system
more sensitive to short load peaks. These load variations
can cause false positives of overload warning messages
and, finally, a temporary suboptimal τ . However, the
sensitivity is required to prevent overload situations.

C. Testbed Model

In order to evaluate the accuracy of the cost model, we
determine the cost matrix κ using the method introduced
in Section IV-A. A router chain loaded by a single
TCP connection is used as the sample scenario. The
chain is divided into several equal-sized segments. All
virtual nodes (routers) of the same segment are placed on
the same virtual machine. The segments are alternately
placed on the virtual machines. By varying the segment
length and the number of segments, all ratios of intra-
vm and inter-vm links are possible. In order to get a
setup with inter-pnode links, we replace the inter-vm links
with inter-pnode links, by inserting an additional virtual
node between each neighboring pair of segments. These
additional nodes are placed onto a second physical node.

Table 2 shows the costs matrix κ for the 3 types of
links. Column VMtx shows the costs of a VM running
a virtual node that transmits data. Column VMrx shows
the costs of a VM running a virtual node that receives
data. The costs of the host-os is shown in Column Host-
OS. Column PNode indicates the summed up costs per
physical node. The last column (Testbed) shows sum of
the costs generated by a link throughout the testbed. The
values show that inter-vm links generate almost 10 times
more load than intra-vm links. Inter-pnode links generate
2 times more load than inter-vm and about 20 times more
load than intra-vm links. However, in case of inter-pnode
links, the load is distributed to 2 physical nodes and,
therefore, the physical node costs (PNode) are slightly
lower than the costs generated by inter-vm links.

In order to evaluated the accuracy of our testbed
model, we emulated a second scenario shown in
Figure 12. The scenario consists of 2500 video sensor
nodes arranged in a regular grid. The one node on

p
h

ys
ic

al

n
o

d
e

1

 VM0 VM1

p
h

ys
ic

al

n
o

d
e

0

… … … … …

…

…
…

50x50 video sensors
(2km x 2km area)

detection
range (120m)

 VM0 VM1

sink

tornado movement

…

…

…
… … … … … …

Figure 12. Video Sensor Network

the left acts as a sink. The routes in the scenario are
established using geometric routing. The nodes are
running a software that monitors the a moving tornado.
In case the tornado is in sight, the sensor sends a
10Mbps stream to the sink, otherwise a 32kbps stream.
The nodes are distributed to 2 physical nodes each
with the 2 virtual machines. The measured data rate
at the sink and the value of τ are visualized in Figure 13a.

 100

 200

 300

 400

 0 50 100 150 200 250 300

d
a

ta
 r

a
te

 a
t

th
e

 s
in

k
 [

M
b

p
s]

virtual time [s]

a) measured results (emulation)

τ datarate

 0 50 100 150 200 250 300

 10

 20

 30

ti
m

e
 d

il
a

ti
o

n
 f

a
c

to
r

(τ
)

virtual time [s]

b) calculated results (model)

τ datarate

Figure 13. Video Sensor Network

Figure 13b shows for the same setup the calculated
date rate and the required time dilation factor τ using the
testbed model. Comparing the calculated and measured
results, we can conclude that our model allows for accu-
rate load calculation.

D. Initial Testbed Configuration

In order to evaluate the experiment runtimes of the
placement approaches, we use in the following 9 sce-
narios. (1) A Wlan model with 1,892 nodes randomly
distributed over a city with wireless communication. Due
to the road network, the node density varies, resulting in
nodes with a high and low number of links. (2,3,4) Sce-
narios (NetworkMap [41], Internet [42] and AT&T [43])
based on a snapshots of Internet topology with 2,376,
2,113 and 753 routers, respectively. (5) A Grid model
with 1,600 sensor nodes arranged in a regular square grid.
Here, direct neighboring nodes can communicate. (6) A
Ring scenario with 100 nodes arranged in a Ring. (7) A
Campus model with a network of connected campus sites,
which is often used to evaluate scalability in the field
of parallel simulation [18], [44]. We use 20 campuses
with a total of 5,480 nodes. (8,9) The final scenarios are
generated by the topology generator BRITE [45]. In the
Waxman scenario 1,250 nodes are randomly connected by
a Waxman distribution. In TopoAS scenario 1,024 nodes
are assigned to 32 autonomous systems which are con-
nected by a backbone network. In all scenarios, a random
link usage between 1 and 100 Mbit/s is assumed.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 13

© 2012 ACADEMY PUBLISHER

 40

 60

 80

 100

 120

Network Map AT&T Internet TopoAS WaxmanCampus Wlan Ring Grid

R
e

la
ti

v
e

 e
xp

e
ri

m
e

n
t

ru
n

ti
m

e
 [

%
]

base (k-way edge-cut)

Greedy + Opt. (G
+

)
Edge-Cut: IntraVM Links (no Opt.) (EB)

Edge-Cut: IntraVM Links + Opt. (E
+

B)
Edge-Cut: IntraVM/InterVM Links + Opt. (E

+
H)

Optimum* (O*)

Figure 14. Performance of NETplace

The testbeds used in the evaluation contain 2, 4, 8,
16, 32, 64, 128 and 256 CPUs distributed over machines
with 1, 2, 4, 8 and 16 CPUs. In total, we are using 34
different testbeds. Since we do not have access to such
large testbeds, we used our cost model to calculate the
runtime of a placement. For each approach the placement
is repeated 200 times.

Figure 14 shows the average experiment runtime of the
placement strategies relative to a placement calculated by
minimized k-way edge-cut using the metis3 framework
[28]. The figure shows the performance of the greedy
approach with optimization (G+), the balanced edge-
cut approach without (EB) and with optimization (E+

B)
and the hierarchical edge-cut approach (E+

H). Due to
the NP-hardness of the placement problem we cannot
compute the optimum. To estimate the optimum (O∗),
we computed for each scenario the best placement out of
all runs with all algorithms.

Looking at the performance of G+, it turns out that
this simple greedy approach can outperform the reference
algorithm in 8 of 9 scenarios. The consideration of the
load introduced by intra-VM links (EB) improves the
placement in all scenarios. The additional optimization
phase improves the runtime between 20% and 50%. The
hierarchical approach E+

H can only slightly reduce the
experiment runtime compared to E+

B . As shown in the
figure, the average experiment achieved with E+

H is almost
as good as the minimal calculated runtime and compared
to the reference algorithm we can reduce the runtime by
up to 60%.

The time to calculate a placement using NETplace is
contrary to the experiment reduction. Analysis of the
scenarios with different numbers of virtual nodes and
testbed sizes shows, that this time increases linearly with
number of virtual nodes and increases sub-linearly with
number of CPUs in the testbed. Additionally it turned out
that the number of links in the topology as well as the
topology itself has a large impact on the time to calculate
the placement. During our evaluation this time is below
1min, except for the Wlan scenario along with testbed
consisting of 128 and 256 CPUs where it takes up to
5min to calculate the placement. In contrast to the other
scenarios the number of links per virtual node is very high
resulting in a large number of neighboring states in the

3As proposed by the authors [46] of metis, we use kmetis to partition
a graph into more than 8 partitions. Otherwise we use pmetis.

Phase Action Time

suspend suspend all virtual nodes 6ms/vnode

migrate

snapshot virtual node’s state 4.6ms/MB
state transfer (same phy. node) 13.1ms/MB
state transfer (diff. phy. node) 15.0ms/MB
restore virtual node’s state 1.8ms/MB

change-topology reattach to virtual topology 200ms/vnode

resume resume all virtual nodes 3.5ms/vnode

Table 3. Costs for virtual node migration

optimization phase.

E. Dynamic Testbed Reconfiguration

We have implemented our approach by extending
OpenVZ’s checkpoint/restore functionality [33] for cap-
turing frames which are queued in NETshaper during
the migration of virtual nodes. Additionally, we have
extended NETshaper to capture statistics of average link
data rates, and we have implemented a load monitor for
sending the data rates and the CPU usage of virtual
nodes to the coordinator. Finally, we have developed a
coordinator to calculate the optimized placement and to
migrate the virtual nodes.

The evaluation of NETbalance is performed in three
steps. First, we ran a set of micro benchmarks to identify
the costs of migrations. Second, we emulate a scenario
with 3 nodes and show that the migration does not
biases the results. Third, using a synthetic evaluation
based on this cost model and the testbed model, we
evaluated the performance of NETbalance. The results
of the micro benchmarks are summarized in Table 3.
Here, we measured the costs for creating a snapshot
of a virtual node, for transferring the snapshot and for
restoring it. Multiplying these costs with the memory
footprint of a SuT gives the migration time of a virtual
node. Additionally, we measured the time for stopping
and resuming an experiment and the time required for
modifying the emulated network topology. Both linearly
grow with the number of virtual nodes running in a VM.

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

d
a

ta
ra

te
 a

t
si

n
k

 [
M

b
p

s]

virtual time [s]

with time freeze

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40

d
a

ta
ra

te
 a

t
si

n
k

 [
M

b
p

s]

virtual time [s]

without time freeze

Figure 15. Emulation accuracy with migration

In order to show the emulation accuracy in presence
of virtual node migrations, we emulated a scenario with
2 nodes connected to a third node (sink). The 2 nodes
send a stream of UDP packets with 1Mbps to the third
node. At the beginning all nodes are running inside VM1.
During the experiment all nodes are migrated one by one
to VM2, and than one by one back to VM1.

Figure 15 shows the data rate at the sink during the
experiment. The right figure shows a migration of virtual

14 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.125 0.25 0.5 1 2 4 8

re
la

ti
v

e
 e

xp
e

ri
m

e
n

t
ru

n
ti

m
e

 [
%

]

optimization time To [s (virtual time)]

10MB, 10Mbps, Tp=10s, Ts=10s

Grid
Internet
Campus

Waxman

Figure 16. To vs. network topology

 40

 50

 60

 70

 80

 90

 100

 2 5 10 15 30 60 120re
la

ti
v

e
 e

xp
e

ri
m

e
n

t
ru

n
ti

m
e

 [
%

]

sink change interval Ts [s (virtual time)]

10MB, 10Mbps, To=1s, Tp=Ts

Grid
Internet
Campus

Waxman

Figure 17. Migration benefit vs Ts

 40

 50

 60

 70

 80

 90

 100

 2 4 8 16 32 64

re
la

ti
v

e
 e

xp
e

ri
m

e
n

t
ru

n
ti

m
e

 [
%

]

prediction window Tp [s (virtual time)]

10MB, 10Mbps, To=1s, Ts=120s

Grid
Internet
Campus

Waxman

Figure 18. Tp vs. network topology

nodes without stopping the virtual time. Therefore, the a
drop followed by a peak in the data rate is experienced
by the sink. The left part shows the same scenario while
stopping the virtual time during the migration. From the
point of the software under test, the migration takes
zero time, and the data rates are not influenced by the
migration.

In the following, we show the potential of virtual node
migration using 4 network topologies [10]: Internet, Grid,
Campus, and Waxman. The used scenario consists of a
wired video sensor network with periodic load changes.
Each virtual node runs a data source sending a constant
data stream of 10Mbps to a sink. During each experiment,
the node acting as the sink changes 15 times which results
in large changes of the data flows between the virtual
nodes. The routes to reach the sinks are pre-calculated.
We use an initial placement optimized for the data flows
to the first sink. If not otherwise stated, the sink changes
every 2min. We use a testbed with 8 physical nodes each
with 8 CPUs, and the Grid topology has a SuT allocating
10MB memory. The prediction window Tp is set to 10s,
and the optimization time To is 1s.

In Figure 16, we present the influence of the optimiza-
tion time To. In contrast to the other evaluations, here, we
change the sink every 10s which is equal to the prediction
window Tp. Even with a very short time of To = 0.125s,
NETbalance can reduce the experiment runtime by up to
48%. Larger optimization times (To ≤ 1s) only slightly
decrease experiment runtime. The reason is that the in-
creased execution speed is almost compensated by the
shorter time Tp−To left for running the experiment with
the improved placement. Increasing To further, reduces
the gain of NETbalance, because the short time Tp − To
enables only minimal improvements to the virtual node
placement. This graph can be generated online during the
experiment run, enabling us to learn the optimal value of
To for a specific scenario.

Figure 17 shows the influence of the sink change
interval Ts on the experiment runtime. Here, we used
a prediction window equal to the sink change interval
and an optimization time of To = 1s. While increasing
the sink change interval, the benefit of the migration
increases.

Figure 18 shows the experiment runtime for prediction
windows Tp between 1s and 64s for the different network
topologies. For the Campus and the Grid scenario small
values of Tp are enough for a significant speed-up. This

mainly comes from the fact, that in these topologies
small changes in the placement are enough to reduce the
required τ significantly. At the same time, these small
changes introduce only small reconfiguration costs which
can be compensated even for short Tp. Regarding all
topologies, a prediction window of 8s reduces the runtime
between 27% and 55%.

VI. CONCLUSIONS

We have introduced the concepts of our Network Em-
ulation Testbed (NET). NET provides highly scalable
network emulation by combining efficient node virtu-
alization and adaptive virtual time. This combination
allows for running network experiments with thousands of
unmodified instances of the software under test per testbed
node. Using our network emulation tool NETshaper we
can create an arbitrary network between these instances.

In order to minimize the runtime of these experiments,
we introduced three extensions: First, we used NETplace
to calculate an placement of the software instances onto
the physical testbed nodes that maximizes the emula-
tion speed. Second, NETbalance allows for adapting the
placement during an experiment run to changed resource
requirements of the software under test. Finally, we in-
troduced NETcaptain, a management software to setup,
control and visualize network experiments.

The combination of these concepts makes NET a
versatile high-performance network emulation tool. In
particular, NET is highly scalable, allowing thousands
of virtual nodes per physical node due to its unique
combination of node virtualization and adaptive virtual
time.

REFERENCES

[1] J. Liu, “Immersive Real-Time Large-Scale Network Sim-
ulation: A Research Summary,” in IPDPS’08.

[2] R. M. Fujimoto, “Parallel Discrete Event Simulation,” in
WSC’89.

[3] G. F. Riley, “The Georgia Tech Network Simulator,” in
MoMeTools’03.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay
Testbed for Broad-Coverage Services,” Comp. Comm. Rev.,
2003.

[5] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau, “Large-scale Virtual-
ization in the Emulab Network Testbed,” in ATC’08.

[6] A. Grau, S. Maier, K. Herrmann, and K. Rothermel, “Time
Jails: A Hybrid Approach to Scalable Network Emulation,”
in PADS’08.

JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012 15

© 2012 ACADEMY PUBLISHER

[7] G. Apostolopoulos and C. Chasapis, “V-eM: A Cluster
of Virtual Machines for Robust, Detailed, and High-
Performance Network Emulation,” ICS-FORTH, Greece,
Tech. Rep., 2006.

[8] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vah-
dat, and G. M. Voelker, “To Infinity and Beyond: Time-
Warped Network Emulation,” in NSDI’06.

[9] A. Grau, K. Herrmann, and K. Rothermel, “Efficient
and Scalable Network Emulation Using Adaptive Virtual
Time,” in ICCCN’09.

[10] ——, “NETplace: Efficient Runtime Minimization of Net-
work Emulation Experiments,” in SPECTS’10.

[11] ——, “NETbalance: Reducing the Runtime of Network
Emulation using Live Migration,” in ICCCN’11.

[12] F. Bellard, “QEMU, a Fast and Portable Dynamic Trans-
lator,” in ATEC’05.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the Art of Virtualization,” in SOSP’03.

[14] K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda,
T. Sugawara, and S. Chiba, “Secure and Manageable
Virtual Private Networks for End-users,” in LCN’03.

[15] P. H. Kamp and R. N. M. Watson, “Jails: Confining the
omnipotent root,” in Sane’00.

[16] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle,
“Synchronized Network Emulation: Matching prototypes
with complex simulations,” in HotMetrics’08.

[17] C. Bergstrom, S. Varadarajan, and G. Back, “The Dis-
tributed Open Network Emulator: Using Relativistic Time
for Distributed Scalable Simulation,” in PADS’06.

[18] M. Erazo, Y. Li, and J. Liu, “SVEET! A Scalable Virtual-
ized Evaluation Environment for TCP,” in TridentCom’09.

[19] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell,
M. F. Mitoma, and J. Rodriquez-Rosell, “A Virtual Ma-
chine Emulator for Performance Evaluation,” Communi-
cations of the ACM, 1980.

[20] G. F. Riley, R. M. Fujimoto, and M. H. Ammar, “A Generic
Framework for Parallelization of Network Simulations,” in
MASCOTS’99.

[21] Shie-Yuan and H.-T. Kung, “A New Methodology for
Easily Constructing Extensible and High-Fidelity TCP/IP
Network Simulators,” Comp. Netw., 2002.

[22] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the
Network Testbed Mapping Problem,” Comp. Comm. Rev.,
2003.

[23] Y. Liu, Y. Li, K. Xiao, and H. Cui, “Mapping Resources
for Network Emulation with Heuristic and Genetic Algo-
rithms,” in PDCAT’05.

[24] J. Considine, J. W. Byers, and K. Meyer-Patel, “A Con-
straint Satisfaction Approach to Testbed Embedding Ser-
vices,” Comp. Comm. Rev., 2004.

[25] P. Zheng and L. M. Ni, “EMPOWER: A Network Emulator
for Wireless and Wireline Networks.” in INFOCOM’03.

[26] B. Hendrickson and T. G. Kolda, “Graph partitioning
models for parallel computing,” Parallel Computing, 2000.

[27] X. Liu and A. A. Chien, “Realistic Large-Scale Online
Network Simulation,” in SC’04.

[28] G. Karypis and V. Kumar, “A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs,” SIAM
Journal on Scientific Computing, 1998.

[29] N. Shivaratri, P. Krueger, and M. Singhal, “Load Distribut-
ing for Locally Distributed Systems,” Computer, 2002.

[30] M. Willebeek-LeMair and A. Reeves, “Strategies for dy-
namic load balancing on highly parallel computers,” Trans-
actions on Parallel and Distributed Systems, 2002.

[31] M. M. Theimer, K. A. Lantz, and D. R. Cheriton, “Pre-
emptable Remote Execution Facilities for the V-System,”
in SOSP’85.

[32] E. Zayas, “Attacking the Process Migration Bottleneck,”
in SOSP’87.

[33] OpenVZ, http://openvz.org, 2011.
[34] D. Herrscher and K. Rothermel, “A Dynamic Network

Scenario Emulation Tool,” in ICCCN’02.
[35] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield, “Live Migration
of Virtual Machines,” in NSDI’05.

[36] P. A. Dinda and D. R. O’Hallaron, “Host load prediction
using linear models,” Cluster Computing, 2000.

[37] L. Yang, I. Foster, and J. M. Schopf, “Homeostatic and
Tendency-based CPU Load Predictions,” in IPDPS’03.

[38] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The Design
and Implementation of Zap: A System for Migrating
Computing Environments,” Op. Sys. Rev., 2002.

[39] M. Kozuch and M. Satyanarayanan, “Internet Sus-
pend/Resume,” in WMCSA’02.

[40] netperf, http://netperf.org, 2011.
[41] T. McGregor, H.-W. Braun, and J. Brown, “The nlamr

network analysis infrastructure,” Comm. Magazine, 2000.
[42] Rocketfuel, “PoP-level ISP maps (policy-dist.tar.gz),” Data

file available at http://cs.washington.edu/research/ net-
working/rocketfuel/, 2003.

[43] ——, “ISP maps (rocketfuel_maps_cch.tar.gz),” Data file
available at http://cs.washington.edu/research/networking/
rocketfuel/, 2003.

[44] C. Kiddle, R. Simmonds, and B. Unger, “Improving Scal-
ability of Network Emulation through Parallelism and
Abstraction,” in ANSS’05.

[45] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE:
An Approach to Universal Topology Generation,” in MAS-
COTS’01.

[46] G. Karypis and V. Kumar, “METIS, a Software Package
for Partitioning Unstructured Graphs and Computing Fill-
Reduced Orderings of Sparse Matrices,” University of
Minnesota, Tech. Rep., 1998.

Andreas Grau is a Ph.D. candidate at the Distributed Systems
research group at the University of Stuttgart, Germany. His
research interests include scalability of network emulation. Grau
holds a Dipl.-Inf. (MS) degree in computer science from the
University of Stuttgart.

Klaus Herrmann studied Computer Science at the University
of Frankfurt/Main, Germany. He received his Ph.D. from Berlin
University of Technology. Since September 2006 he holds a
postdoctoral research position at the University of Stuttgart. His
research interests are distributed systems, mobile computing, and
self-organizing software systems.

Kurt Rothermel is a professor in the Distributed Systems re-
search group at the University of Stuttgart. His research interests
include performance evaluation of distributed systems, context
aware and adaptive systems, and sensor networks. Rothermel
received a PhD in computer science from the University of
Stuttgart. He is a member of the ACM and the GI.

16 JOURNAL OF COMMUNICATIONS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

