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Abstract—Mobile sensor networks are distributed collec-
tions of nodes, each of which has sensing, computation,
communication capabilities, while some of which have lo-
comotion capabilities. Mobility enhances the efficiency and
accomplishment of sensor network. Controllable mobility
can help sensor network perform active sensing. The paper
presents an extensive survey of controllable mobility for
active sensing of mobile sensor network in various research
areas such as mobile sensor network localization, simul-
taneous localization and mapping, area exploration, area
coverage, target detection and tracking and monitoring of
spatio-temporal dynamics in large environments.

Index Terms—mobile sensor network, mobility, active
sensing

I. INTRODUCTION

EVELOPMENT/ of MEMS technology, digital elec-

tronics and wireless communication technology
makes it possible to assemble sensor network for informa-
tion seeking [1], [2]. Comparing with a single sensor, the
obvious advantages of sensor networks include relatively
lower costs, complementary heterogeneous sensing, inher-
ent robustness, and greater coverage area. Moreover, mo-
bile sensing platforms, such as, unmanned aerial vehicles,
underwater robots, and autonomous ground vehicles, can
autonomously and purposefully move to collect interested
information in harsh environments where are inaccessi-
ble to human. Mobility enhances a number of useful
capabilities for sensor hetworks in many applications
ranging from search-and-rescue in urban ruins, environ-
ment monitoring, to target detection/tracking in large
environmental space and military surveillance systems in
dynamic battlefields. Mobility can improve the efficiency
of data collection, adapt to unpredictable changes in the
dynamic environment and network itself, and provide
robust responses to individual failures. The architecture
of typical mobile sensor networks is shown in Figure 1.
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Fig. 1.

Architecture of typical mobile sensor networks

The task of mobile sensor network can be general-
ized as information acquisition no matter for whatever
applications, such as feature localization, mapping, target
detection and tracking, area coverage, area exploration
and so on. For some applications, mobility is one of the
necessary abilities for sensor nodes to fulfill their sens-
ing tasks, for example, search-and-rescue, simultaneous
localization and mapping, area exploration, especially for
large environments with a very limited number of sensors
nodes. [For the other applications, such as, area coverage,
target Letection and tracking, mobility can drastically
improve the efficiency of completing sensing tasks and
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Structural diagram of decentralized active mobile sensor

help optimize the precious communication and energy
resources. By means of controllable mobility, mobile
sensor network is expected to be able to perform active
sensing or active perception [3]. Trajectories of mobile
platforms are intentionally and adaptively scheduled for
more reliable and accurate information acquisition of
the interested dynamic physical environments with more
effective resource utilization.

However, mobility requires extra energy cost. This
would decrease the energy efficiency. And there are many
other factors which should be considered for designing the
optimal trajectories maybe conflict with each other. For
example, in area exploration applications, the mobile sen-
sors should go to unknown area for new area exploration;
whereas, the sensor nodes should visit the known area for
improving the accuracy of localization and mapping. In
area coverage applications, mobile sensors should spread
out as widely as possible for greater area coverage;
whereas, the nodes should stay close enough for reliable
communication and fault tolerance. Moreover, each sensor
node has limitations in sensing, computation capabil-
ity, power, communication bandwidth, and locomotion
constraints. Mobile sensor networks have to experience
uncertainty in motion processes, sensor measurements,
communication channels and dynamic complex environ-
ments in practical applications. If scalability, robustness,
fault tolerance and timeliness are taken into jaccount,
decentralized framework is the inherent choice for man-
aging mobile sensor network resources and coordinating
mobile nodes’ motion. Therefore, active sensing by means
of controllable mobility for decentralized mobile sensor
network is a very challenging task.

The structural diagram of decentralized active mobile
sensor network is shown in Figure 2. Each mobile plat-
form in the network has four blacks: sensors, actuator,
data fusion and decentralized decision making block.

1) Sensors: Each platform has one or more sensors.
These homogeneous or heterogeneous sensors can acquire
redundant or complementary measurements from envi-
ronments. The measurements are processed at its local
data fusion block with information transmitted from its
neighbor nodes.
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2) Data fusion block: Aiming at dealing with uncer-
tainty in the mobile platform’s model and the sensor’s
model, data fusion block fuses local measurements with
measurements or estimates transmitted from its neighbor
nodes to update its local estimates of the interested
targets in the environment by using some state estimation
techniques. The estimates are passed to the decentralized
decision making block.

3) Actuator: With actuator, mobile platform can move
autonomously. The actuator controls the direction and
velocity of the mobile platform. It receives the control in-
structions from the decentralized decision making block.

4) Decentralized decision making block: Based on the
knowledge of local node capabilities and the estimates of
environment, decentralized decision making block deter-
mines local decisions about mobile platform’s next motion
with considering sensing, communication, and energy
resources optimization by optimizing some criterions,
which are some functions of both utilities and costs, and
then sends control instructions back to the actuator. With
the feedback control from decentralized decision making
block, mobile sensor network should be able to fulfill
active sensing, that is, adaptively plan motion trajectories
of mobile platforms to implement appropriate information
acquisition meanwhile sensing, communication, energy
resources saved and utilized effectively.

Many researchers have studied controllable mobility
for active sensing of mobile sensor networks in many
application fields. This paper will overview the state-of-
the-art research on controllable mobility for active sensing
of mobile sensor networks in terms of the corresponding
applications: mobile sensor network localization (the pose
of the sensor network platform itself) in Section II, simul-
taneous localization and mapping (the pose of the features
in the environment and the pose of the sensor network
platform in the map of environment) and area exploration
in Section III, area coverage in Section IV, target detection
and tracking (the position and velocity of targets) in
Section V, perimeter detection and tracking in Section
VI, and monitoring of spatio-temporal dynamics in large
environments (such as the water quality monitoring in
rivers and lakes, the forecast of weather) in Section VIIL.
Finally, conclusions are given in Section VIII.

II. MOBILE SENSOR NETWORK LOCALIZATION

Localization is an important issue for mobile sen-
sor network in many applications, such as environment
monitoring, target tracking and intrusion detection. The
locations information of sensor nodes are needed to label
the data for recording where they are collected. It can help
save energy for route discovery [4] and enhance security
for ad hoc sensor network [5].

Mounting a GPS receiver on each mobile sensor is
a matter-of-course solution for mobile sensor network
localization problem. Unfortunately, even if low-cost GPS
can be commercially available now, the straightforward
solution of adding GPS to all sensor nodes is not practical
since GPS cannot work indoors or in the presence of
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obstacles that limit line-of-sight to the satellites. Addi-
tionally, the GPS signals may be jammed and become
unavailable in some hostile scenarios such as battlefield
surveillance [6]-[9]. Due to the limitations of GPS, nu-
merous localization techniques have been proposed for
wireless sensor networks.

Wireless sensor network localization techniques may
be classified into: anchor-based techniques computing a
large number of common sensor nodes’ positions with
a few of anchors or seeds whose locations are known
with GPS or other additional locating devices [7], [10],
[11], and anchor-free techniques for situations where an
infrastructure does not exist and GPS cannot be used [12]-
[14]. According to the method of whether to use range
information, the localization algorithms can be divided
into two categories: range-based and range-free. The
former depends on range (distance or bearing) measure-
ments from special hardware [15]-[17]. It provides more
accurate position estimates than the latter which makes no
assumption about the availability of range measurements
[18], [19].

Mobility has been exploited for wireless sensor net-
work localization. Mobile seeds have been used to help
common sensor nodes obtain their location estimates [10],
[20]-[22]. Moving in the sensing field and broadcasting
their current position information periodically, one mobile
seed plays as several virtual static seeds thus decreasing
the cost for seeds. Mobility has also been exploited
by Monte Carlo Localization (MCL) which is specially
proposed for mobile sensor network [23]-[25]. Random
motion of nodes are typically assumed.

Naturally, localization algorithms for static sensor net-
works can be extended to mobile sensor network by
rerunning periodically after some time interval, which is
either static or adaptable, to support mobility. However,
it will incur high communication/computation cost.

Bergamo and Mazzini first consider localization with
mobile nodes [26]. There are two beacons fixed in known
positions to transmit across the entire network. Each
sensor node can derive the actual distance between it
and the beacons according to the signal strength from
the two beacons. The position is obtained by means of
triangulation. Although they consider the sensor mobility,
their research studies how mobility makes localization
more difficult and khows that errors increase with in-
creasing node speed instead of using mobility to improve
localization.

Actually, mobile seeds have been used in static wireless
sensor networks to help improving the accuracy of local-
ization [10], [22], [27]. With mobility, one seed can serve
as more virtual seeds. More sensor nodes can benefit from
the mobile seeds’ position broadcasts.

Although mobile sensors have a chance to get more
information, mobility increases the uncertainty of hodes’
positions. The challenge for mobile sensor network local-
ization is to let the wireless sensors benefit from mobility
and not only suffer from it.

Localization algorithms specially designed for mobile
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sensor networks have come forth after Hu and Evans
first applied Monte Carlo Localization (MCL) for mobile
sensor network localization [23]. All of them are based
on Sequential Monte Carlo (SMC) methods. The posterior
distribution of a sensor node’s position after move can be
naturally formulated using a nonlinear discrete time model
and the SMC method provides simple simulation-based
approaches to estimating the distribution. The posterior
distribution of a common node’s position is represented
by a set of weighted samples in SMC-based localization
methods. With SMC localization methods, sensor nodes
can benefit from mobility and exploit mobility to improve
the efficiency of localization and get a better accuracy of
its position estimates.

SMCL algorithms either suffer from low sampling
efficiency or require high seed density to achieve high
localization accuracy. Mobile nodes typically are assumed
to have little or no control of mobility and cannot
detect their speed and direction. Only the maximum
speed is known and uniformly distributed. The sampling
efficiency is low due to the mobility uncertainty. It is
necessary to improve the sampling efficiency to reduce the
computational cost for sensor nodes which usually have
limited computational capability. High seed density can
improve localization accuracy. However, beacon nodes are
much more expensive than common sensor nodes. Some
researches have been done to improve sampling efficiency
and improve localization accuracy with limited number of
seeds.

A brief description of the major researches on exploit-
ing mobility for improving the accuracy and efficiency
of mobile sensor network localization is presented as
follows:

A. Prediction of position based on mobility

The basic idea of SMCL algorithm is that exploiting
mobility for mobile sensor network localization. A set
of samples which represent a sensor node’s possible
position after move is predicted with nonlinear discrete
time dynamic motion models in the prediction step of the
simulation-based SMCL algorithms [23]-[25], [28].

Due to harsh aqueous environments, non-negligible
node mobility and large network scale, localization for
large-scale mobile underwater senor networks is very
challenging. Zhou et al. find a very useful property
that underwater objects move with predictable patterns
which are in a large part determined by environmental
factors. By utilizing the predictable mobility patterns of
underwater objects, Scalable Localization scheme with
Mobility Prediction (SLMP) is proposed [29]. Anchor
nodes with known locations in the network conduct linear
prediction by taking advantages of the inherent temporal
correlation of underwater object mobility pattern. Each
ordinary sensor node predicts its location by utilizing the
spatial correlation of underwater object mobility pattern
and weighted-averaging its received mobility from other
nodes.
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B. Improve sampling efficiency based on mobility

In the prediction step of SMCL algorithm [23], a sensor
node randomly chooses a set of samples representing
the belief of the node regarding its location within the
deployment area, only constrained by its maximum speed
land the previous location samples. Information about one-
hop and two-hop anchors are used at filtering step only
for rejecting impossible samples. Drawing samples is a
very tedious process.

Monte Carlo Localization Boxed (MCB) algorithm uses
information about the anchors in the prediction step to
reduces the candidate samples area with a bounding-box
[30]. The information about the anchors heard is used to
build an anchor bounding box for a node to draw samples
within the region it covers.

Weighted MCL (WMCL) algorithm further reduces the
average size of the sensor nodes’ bounding-box con-
structed in MCB by using two-Hop beacon neighbors’
negative effects and sensor neighbors’ estimated position
information [25].

Sample Adaptive Monte Carlo Localization algorithm
(SAMCL) adaptively determines the number of samples
based on the number of beacon nodes heard [31]. If many
beacon nodes are heard, only a small number of samples
are needed to characterize the distribution of the sensor
node’s position to reduce the computational cost.

C. Increase localization accuracy with mobility

A sensor node only uses messages from its beacon
neighbors within two hops as its observation in MCL [23].
More information can be used as observation to improve
localization accuracy. In MSL* and MSL (Mobile and
Static sensor network Localization) algorithm, a sensor
node uses all its neighbors including beacon nodes and
sensor nodes within two hops for localization [28]. Their
sampling strategy is different from that of MCL to de-
crease the computational cost. Samples in last time unit
could be reserved in the current time unit. MSL* is more
suitable for sensor networks where nodes move slowly.

Moreover, the authors consider how different mobility
models affect the localization accuracy. Reference Point
Group Mobility model (RPGM) [32] is used to investigate
the effect of group behavior on localization accuracy. The
research result shows that the accuracy is substantially
reduced when the group motion dominates the individual
node movement. And a strategy that moves seeds in
a way to cover the area thoroughly will improve the
accuracy, and especially the convergence time of MCL.
In their research, sensor nodes move randomly without
considering other mobility patterns. The drawbacks of
MCL are: it needs a high density of seed; and the
sampling technique it uses generates high computation
burden. MCL requires that sensors need to move with
at least a predetermined minimum speed. Based on Hu
and Evan’s work, Baggio and Langendoen present Monte
Carlo localization Boxed (MCB) algorithm to improve the
sampling efficiency by using bounding-box to restrict the
scope from which the candidate samples are drawn [24].
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Their work also assumes the random movement without
discussing extra information on the sensors’ mobility
patterns and mobility-pattern variability.

In MCL, a sensor node uses its anchor neighbors
within two hops to compute its location. The localization
accuracy can be improved by using more information.
MSL (The Mobile and Static sensor network Localization)
and MSL*, two fully range-free localization algorithms,
use the location estimations of all neighbors (not just
seeds) to improve location accuracy [28]. MSL* and
MSL exhibit graceful degradation in performance with
decreasing seed density. MSL* and MSL can achieve
higher location accuracy than SMCL. However, they need
high node density and high anchor density to converge.
The two methods need to use more communication and
computation at the sensor nodes. The two methods are
more appropriate for large sensors that can support the
extra communication. Movement of sensors is also im-
plemented using a modified version of random waypoint
mobility model [33].

Yi et al. also consider mobile sensor network in which
anchor nodes and sensor nodes are moving randomly with
random waypoint model [34]. Their research assumes that
anchor nodes know not only its position but also the
global time of the moment when the anchor obtains its
location and there are sufficient number of anchor. Anchor
node informs its position to nearby unknown nodes.
The anchors’ clocks are synchronized. The sensor nodes
receive beacons from nearby anchors. A history of anchor
information is used to characterize the mobility of sensor
nodes. The sensor node then calculates its new position
with the movement models using a regression model in
real time. Thus, an efficient localization algorithm can be
developed by using the predictable pattern of mobility.

Mobile anchor nodes are used for range-free localiza-
tion [10]. Each anchor node equipped with the GPS moves
in the sensing field and broadcasts its current position
periodically. The sensor nodes obtaining the information
are able to compute their locations. One mobile anchor
node can play as several virtual static anchor node. Thus,
the cost for anchor nodes can decrease.

Zhang et al. consider a mobile sensor network in which
both the seed nodes and sensor nodes can move [25]. Ex-
isting localization algorithms for mobile sensor networks
are usually based on the Sequential Monte Carlo (MCL)
method. They either suffer from low sampling efficiency
or require high beacon density to achieve high localization
accuracy. An energy efficient algorithm, Weighted Monte
Carlo Localization (WMCL), which can achieve both
high sampling efficiency and high localization accuracy,
is proposed. Besides MCB algorithm [24], further reduces
the size of the bounding-box constructed in MCB by
using two-Hop beacon neighbors’ negative effects and
sensor nodes’ estimated position information to achieve
high sampling efficiency. By using estimated position
information of sensor nodes, WMCL greatly improves
the localization accuracy. The iterative WMCL (IWMCL)
algorithm iteratively execute WMCL with different as-
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sumptions on the nodes’ speed. IWMCL can dramatically
improve localization accuracy when nodes move very fast.

The above localization algorithms assume that all the
mobile nodes are modeled by the modified version of
random waypoint mobility model [33]. The mobile nodes
only know their maximum speed.

D. Control the frequency of localization based on sensor
mobility behavior

No matter with either range-based schemes or range-
free protocols, the more often the localization, the more
accurate the location estimate. However, the localization
frequency should be minimized to decrease the scarce
energy consumption. Tilak et al. investigate adaptive
and predictive protocols that control the frequency of
localization based on sensor mobility behavior to reduce
the energy requirements for localization while bound-
ing the localization error [35]. Two algorithms for dy-
namic localization are presented. DVM (Dynamic Veloc-
ity Monotonic) adaptively matches the localization period
to the observed velocity of the node. MADRD (Mobility
Aware Dead Reckoning Driven) uses dead reckoning to
predictively estimate the location of a node assuming it
is following its recently tracked trajectory. The random
waypoint mobility model is used.

E. Static wireless sensor network localization with a
moving Location Assistant

Zhang et al. investigate the sensor network localization
problem from a novel perspective by treating it as a
functional dual of target tracking [36]. In traditional
tracking problems, static location-aware sensors track and
predict the position/velocity of a moving target. As a
dual, a moving Location Assistant (LA) (with a GPS or
a predefined moving path) is utilized to help location-
unaware sensors to accurately discover their positions.
The proposed system is called Landscape. In Landscape,
an LA (an aircraft) periodically broadcasts its current
location beacon while it moves around or through a
sensor Ifield. Each sensor collects the location beacons,
measures the distance between itself and the LA based
on the received signal strength (RSS), and individually
calculates their locations via an Unscented Kalman Filter.
The Landscape scheme has several advantages, such as
high scalability, no intersensor communication overhead,
moderate computation cost, robustness to range errors
and network connectivity. Their research limits to the
localization of a static sensor network. Priyantha et al.
presents mobile-assisted localization (MAL) scheme for
wireless sensor network [22]. A robot wanders through
an area to collect distance information between the nodes
and itself until these distance constraints form a ‘globally
rigid’ structure that guarantees a unique localization.
This localization method does not need anchor nodes.
However, this method is end-to-end method. It can not
run in real-time.
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F. Mobility scheduling for mobile sensor network local-
ization

Researchers have recognized that the trajectories of
mobile seeds have a great influence on localization ac-
curacy. Sichitiu et al. first brought up the interesting
question that what the optimum beacon trajectory is [21].
They acknowledged the difficulty in selecting an optimal
trajectory for the beacon. However, any specific path
planning method has not been provided. In [37], their
work showed that localization precision was good and
uniform as long as the seed trajectory covered the entire
deployment area in such a way that each point received
at least three non-collinear seed messages. In [23], the
authors also found that moving seeds with a predefined
path that maximizes coverage can improve the localization
accuracy of common sensor nodes and decrease the
convergence time. Ssu et al. implicitly studied the path
planning problem of the mobile beacon [10]. Sensor nodes
track the series of beacon broadcasts and only use the non-
collinear one to localize. The mobile beacon is assumed
to move randomly. Koutsonikolas et al. studied three dif-
ferent trajectories for the mobile beacon, namely SCAN,
DOUBLE-SCAN, and HILBERT. Their work showed
that a carefully selected deterministic trajectory that all
sensors could receive seeds’ messages can significantly
reduce the average localization error, compared to random
movement [38]. Huang et al. designed additional fixed
paths that reduce the collinearity, that is, CIRCLES and
S-CURVES [39]. Xiao et al. conceived two straight-line
movement patterns of the beacon: the Sparse-Straight-
Line movement, the Dense-Straight-Line (DSL) move-
ment [40]. The beacon travels along predefined straight
lines and turns at right angles. Their work showed that the
distance and route that a beacon travels seriously affect
the localization accuracy of sensor nodes. Based on the
performance study on tessellation (triangular, rectangular,
and hexagonal) of beacon locations [41], Igbal et al.
studied optimal beacon movement strategy to guarantee
the expected maximum localization error within a user-
defined bound [42]. These static path planning methods
needed a prior knowledge of the deployment environment.

Few existing works addressed the beacon mobility
dynamic scheduling for wireless sensor network localiza-
tion. Priyantha et al. designed a movement strategy for
a mobile robot which was used to assist in measuring
the distances between static node pairs until a globally
rigid structure that guarantees a unique localization was
formed [22]. The mobile robot has to discover each node,
one-by-one, and move around it to measure distances. The
traversal path of mobile beacon is long. Under strong
assumptions that accurate pair-wise distance measure-
ments can be obtained, a movement strategy of mobile
beacon for range-based localization was proposed [43].
Trilateration method which requires three non-linear ref-
erence locations is used for localization. Upon the request
of sensor nodes, beacon moves to preferred regions to
provide sensor nodes reference locations. If there is no
request received, the beacon do not know where to go.
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Li et al. studied dynamic beacon mobility scheduling
for implementing a full localization and proposed a de-
terministic beacon mobility scheduling without requiring
any prior knowledge of the sensory field [9], [44]. The
plgorithm is deterministic in the sense that sensors’s
visiting order is fixed if the beacon starts from the same
sensor. Beacon trajectory is defined as the track of depth-
first traversal (DFT) of the network graph. The mobile
beacon performs DFT under the instruction of nearby
sensors on the fly. It moves from sensor to sensor in
a heuristic manner according to distance measurements.
The beacon moves a few step to a position closer to
sensor node without resorting to the position information.
With sufficient beacon signals received, each sensor node
localizes themselves. Topology control (LMST: Local
Minimum Spanning Tree) is applied to shorten beacon
tour and reduce delay. DFT and LMST incur expensive
computation complexity. In [45]-[47], the next position of
mobile beacon is narrowed down to six possible positions
based on geometry. Quality of neighbors (QoN) is used as
for choosing the walking direction of the mobile beacon.
The unknown sensor with most neighbors has the best
chance to be the next target of the mobile beacon. While
the coverage rate can be improved without requiring a
prior knowledge of sensory field, localization accuracy
has not been taken into account directly.

III. AREA COVERAGE

The efficiency of sensor networks depends on the
coverage of the monitoring area. Adequate area coverage
on the field of interesting is very important for sensor
networks to fulfill sensing tasks. Area coverage can be
classified into two groups according to the objective of
area coverage: static area coverage and dynamic area
coverage. Static area coverage is aiming at the end static
configuration. Dynamic area coverage is aiming at the
area coverage in a time interval.

Mobility can improve coverage of sensor networks,
especially for unknown or hostile environment, such as
harsh fields, disaster areas and toxic urban regions. In
a sensor network with locomotion facilities, sensors can
move around to self-deploy. Many movement strategies
for improving network coverage in wireless sensor net-
works have been presented [48], [49].

A. Static area coverage with controllable mobility

Mobile sensors are controllable to move to the desired
positions in order to maximize network coverage [50]-
[55]. The plgorithms can adapt to changing environments
land rre-compute their desired locations accordingly. Their
common objective is to exploit mobility to obtain a new
stationary configuration according to changing environ-
ments that improves coverage after the sensors move to
their new desired locations. Their differences mainly lie
on that how the desired positions of sensors are computed.

An incremental deployment algorithm is proposed to
deploy sensor nodes one-at-a-time into an unknown en-
vironment, with each node making use of information
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gathered by previously deployed nodes to determine its
deployment location [52]. At the end, this algorithm
maximizes network ‘coverage’ while simultaneously en-
suring that nodes retain line-of-sight relationships with
one another. However, it has expensive computation and
fragile to sensor failure.

A potential-field-based algorithm is proposed in which
nodes are treated as virtual particles subjected to virtual
force [51]. The virtual forces repel the nodes from each
other and from obstacles to ensure the initial configuration
of nodes quickly spreads out to maximize coverage area.
A virtual-force-based sensor movement strategy is also
proposed to enhance network coverage after an initial
random placement of sensors [50]. The virtual force of
a sensor is directly derived using the distance between
the sensor and the other sensors and obstacles. A com-
bination of attractive and repulsive forces is used to
determine virtual motion paths and the rate of movement
for the randomly-placed sensors. The computation time
is negligible. After the execution of the algorithm and
once the effective sensor positions are identified, a one-
time movement is carried out to redeploy the sensors.
Artificial potential field based algorithm is also used for
area coverage with the constraint that each of the nodes
has at least K neighbors where K is a user-specified
parameter [56]. Artificial potential field based algorithm
is distributed, scalable, and does not require a prior map
of environment.

After initial random deployment, Voronoi diagram is
used to discover the coverage holes (the area not cov-
ered by any sensor) and three movement-assisted sen-
sor deployment protocols, VEC (VECtor-based), VOR
(VORonoi-based), and Minimax based on the principle of
moving sensors from densely deployed areas to sparsely
deployed areas are designed to increase the coverage [53].
All of the above proposed algorithms spread sensors in
the field to obtain a stationary configuration such that the
covered area is maximized.

A peer-to-peer model based on Delaunay Triangula-
tion and Voronoi diagrams is presented to define the
geometrical relationship between sensor nodes [57]. The
distributed model allows formal analysis for the fusion
of spatio-temporal sensory information of the network.
Taking into accounts with the environment constraints, the
presence of obstacles and the nonholonomic constraints
of the robots, the system can be reconfigured with the
distributed algorithm so that the covered area can be
enlarged.

Most of the works consider networks where the nodes’
sensing footprints are node-centred circular ones. [49]
considers the case where a node’s sensing region is
approximated as any arbitrary convex set. A distributed
gradient ascent schema is applied for locally area cover-
age optimal configuration.

The concept of network dynamics is proposed, the
associated potential functions that encode the operational
goals and environment are defined, and the laws of motion
which are formulated using the steepest descent method
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in optimization are applied for managing mobility of
mobile sensor network toward a better sensing coverage
[58]. Based on the network dynamics model, a paral-
lel and distributed algorithm (Parallel and Distributed
Network Dynamics) that runs on each sensor node to
guide its movement is devised. Sensor nodes are turned
into autonomous entities that are capable of adjusting
their locations according to the operational goals and
environmental changes.

Two bidding protocols are designed to guide the move-
ment of mobile sensors in sensor networks composed of
a mixture of mobile and static sensors in which mobile
sensors can move from dense areas to sparse areas to
improve the overall coverage [59]. In the protocols, static
sensors detect coverage holes locally by using Voronoi
diagrams, and bid for mobile sensors based on the size of
the detected hole. Mobile sensors choose coverage holes
to heal based on the bid. This algorithm can provide
suitable tradeoff between coverage and sensor cost.

Hybrid sensor networks which comprise of mobile and
static sensor nodes for the purpose of collaboratively per-
forming tasks like sensing a phenomenon or monitoring
a region is studied [60]. Mobile sensor nodes are guided
by the static sensor nodes to the phenomenon. Navigation
is accomplished using the concepts of credit based field
setup and navigation force from static sensor nodes. The
approach does not require any prior maps of environment.

Yang et al. use a grid-based network structure to
detect low density areas, and then maximize sens-
ing coverage through balancing sensor distribution with
movement-assisted sensor deployment [61]. The Scan-
based Movement-Assisted sensoR deploymenT (SMART)
algorithm, which is a hybrid approach of the local and
global methods, and several variations of it that use scan
land dimension exchange to achieve a balanced state are
presented.

The coverage problem for hybrid networks which com-
prise both static and mobile sensors is considered [62].
The mobile sensors only have limited mobility. They can
move only over a short distance. The authors investigate
the distance that a mobile sensor will have to move
in both all-mobile sensor networks and hybrid sensor
networks. Their study formalizes the tradeoff that exists
between an all-static network and a network with mobile
sensors. Their results prove that from a scalability point
of view, introducing mobility has significant advantages
in providing coverage.

Chellappan et al. also study the deployment of sen-
sor networks with limited mobility sensors, where the
maximum distance that sensors are capable of moving
to is limited [63]. First the field is clustered into multiple
regions, the regions are assigned weights corresponding
to the number of sensors needed. The deployment is to
determine a movement plan for the sensors to minimize
the variance in number of sensors among the regions, and
simultaneously minimize the sensor movements. During
sensor movement across the regions, larger weight regions
are given higher priority compared to smaller weight re-
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gions, while simultaneously ensuring minimum number of
sensor movements. The authors also study the deployment
of mobile sensor networks, the mobility in the sensors
is restricted to a flip, where the distance of the flip is
bounded [64]. The deployment is to maximize the sensor
network coverage and minimize the number of flips. Their
solution optimizes both the coverage and the number
of flips. The sensitivity of coverage and the number of
flips to flip distance under different initial deployment
distributions of sensors are also studied.

Bisnik et al. analyze how the quality of coverage scales
with velocity, path, and number of mobile senors [65].

Dynamic Coverage Maintenance (DCM) schemes
which exploit the limited mobility of the sensor nodes
are proposed for coverage loss problem caused by early
failure of sensor nodes [66]. DCM schemes can be
executed on individual sensor nodes having a knowledge
of only their local neighborhood topology. Four algo-
rithms are proposed to decide which neighbors to migrate,
and to what distance, such that the energy expended is
minimized and the coverage obtained for a given number
of live nodes is maximized. The decision and movement
is completely autonomous in the network, and involves
movement of one-hop neighbors of a dead sensor node.

Enhanced differentiated surveillance (EDS) is proposed
to maintain the required coverage for sensor networks
by establishing working schedules of sensors for the
purpose of energy saving [67]. Every sensor in a sensor
network is allowed to establish its working schedule in a
distributive manner based on random reference times gen-
erated through integer hashing and a proposed coverage
measurement rule. The required coverage is continuously
guaranteed when every sensor senses following its own
working schedule. EDS can be applied to sensors with
different sensing ranges and random mobile sensor net-
works, where sensors randomly roam and cannot control
their movements. The advantages of EDS lie in minimum
communication overhead, fast convergence, load balanc-
ing, and high battery efficiency.

Many existing deployment schemes largely oversim-
plify the conditions for network connectivity. Two sen-
sor deployment schemes, Connectivity-Preserved Virtual
Force (CPVF) scheme and Floor-based scheme, are pre-
sented to maximize sensing coverage and also guarantee
connectivity for a network with arbitrary sensor commu-
nication/sensing ranges or node densities, at the cost of
a small moving distance [68]. The schemes do not need
any knowledge of the field layout, which can be irregular
and have obstacles/holes of arbitrary shape.

The stochastic model assumed to govern the mobility
of nodes in a mobile ad hoc network has been shown
to significantly affect the network’s coverage, maximum
throughput, and achievable throughput-delay trade-offs.
Several mobility models, including the random walk,
random waypoint, Manhattan models and proposed cor-
related random walks are compared [69].

A distributed energy optimization sensor deployment
method for heterogeneous sensor network is proposed
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[70]. Sensor nodes are clustered by maximum entropy
clustering. The sensing field is divided for parallel sensor
deployment optimization. For each cluster, the coverage
and energy metrics are calculated respectively. Cluster
heads perform parallel particle swarm optimization to
maximize the coverage metric and minimize the energy
metric.

B. Dynamic area coverage with controllable mobility

Liu et al. study the coverage of mobile sensor network
from a very different perspective [71]. Instead of trying to
achieve an improved stationary network configuration as
the end result of sensor movement, the authors focus on
the dynamic aspects of coverage capabilities resulted from
the continuous movement of the sensors. The dynamic
coverage of mobile sensor network is characterized as
area coverage at specific time instants and during a time
interval, and the detection time of a randomly located
target. These coverage measures depend on the process
of sensor movement and are unique attributes of mobile
sensor networks. Their research results show that sensor
mobility, random mobility model for sensors, can be
exploited to compensate for the lack of sensors and
improve network coverage.

Hussein et al. formulate the dynamic coverage problem
in a mathematically precise problem statement [72]. Its
coverage goal is to cover a given search domain using
multiple mobile sensors such that each point is surveyed
until a certain preset level is achieved. A control law
is modified to guarantee that a partially connected fleet
also attains the coverage goal. A collision avoidance
component is added to the controller to guarantee that
the agents do not collide.

Cheng et al. propose a gradient-based motion control
strategy for optimizing the target sensing quality while
guaranteeing the required coverage of the field of interest
[73].

IV. SIMULTANEOUS LOCALIZATION, MAPPING AND
EXPLORATION OF MULTI-ROBOT SYSTEMS

Autonomous environment exploration, mapping and
concurrent localization in the map is a key mission
of mobile sensor network for practical applications in
real unknown environments, for example, surveillance,
reconnaissance, planetary exploration and rescue mis-
sions. Networked robot teams provide higher efficiency
and higher accuracy for simultaneous localization and
mapping (SLAM) and exploration.

Multi-robot SLAM has mostly been addressed in data
fusion aspect characterized by two major sources of
uncertainty due to the noise in sensing and in motion
without considering controllable mobility [74]. That is,
mobile robots randomly move in the environments. Ex-
tended Kalman filter and particle filter approaches have
been successfully implemented for data fusion of multi-
robots SLAM [75]. Map merging that partial maps have
merged into a single environment map is also studied [76].
Classical SLAM approaches are passive in the sense that
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they only process the perceived sensor data and do not
actively control the motion of the mobile robots for the
purpose of SLAM.

Active SLAM, planning motion actions for SLAM, has
been studied for single robot [77]-[83]. The probabilistic
measure of ‘entropy’ as a information-based measure
of the certainty in the map and vehicle locations has
been used as a utility function for planning the vehicle
trajectory. Observability analysis of SLAM presents that
the unobservable states dependent on vehicle maneuvers
[82]. Bayesian optimization method dynamically trades
off exploration (minimizing uncertainty in unknown parts
of the space) and exploitation (capitalizing on the current
best solution) [83]. A method for evaluating the quality
of actions for a single camera while mapping unknown
indoor environments is presented [84]. They study con-
trollable mobility for bearing-only single-camera SLAM.

Active SLAM trajectory control strategies for multiple
cooperating UAVs is developed [85]. Each UAVs shares
map information over a data fusion network. Multi-
vehicle active SLAM control architectures are proposed
that actively plan the trajectories and motions of each
vehicle in the team based on maximizing information in
the localization and mapping estimates. A coordinated,
decentralized architecture, where UAVs make their own
control decisions based on common shared map infor-
mation, is proposed. The different architectures involve
varying degrees of complexity and optimality through dif-
fering communications and computational requirements.

Exploration strategies often try to cover unknown ter-
rain as fast as possible and avoid repeated visits to
known areas. However the robot typically needs to re-
visit places to localize itself again. An integrated approach
that combines autonomous exploration with simultaneous
localization and mapping is presented [86]. With a grid-
based version of the FastSLAM algorithm, actions to
actively close loops during exploration are considered at
each point in time. By re-entering already visited areas,
the robot reduces its localization error and in this way
learns more accurate maps.

A multi-robot system can be highly beneficial for ex-
ploration. The overall performance can be much faster and
more robust with controllable mobility. The goal of multi-
robot environment exploration is to choose appropriate
target points for the individual robots so that they simul-
taneously explore different regions of the environment. An
approach which simultaneously takes into account the cost
of reaching a target point and its utility is presented to
coordinate multiple robots [87]. Whenever a target point
is assigned to a specific robot, the utility of the unexplored
area visible from this target position is reduced. Different
target locations are assigned to the individual robots. The
effective coordination cannot be achieved if the robots do
not share a common map. Thus, their relative locations’
estimation is very important to estimate whether or not the
partial maps of two robots overlap. In order to overcome
the risk of false-positive matches, the robots communicate
with each other actively verify location hypotheses using a
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rendezvous strategy [88]. If the robots meet at the meeting
point, they know their relative locations and can combine
their data into a shared map. The high accuracy and
robustness can be achieved at the cost of low efficiency.

Communicative exploration approach to multi-robot
exploration is presented that takes the constraints of
wireless networking, namely the limited range of the
transceivers, finto account [89]. A simple utility function
is used to guide the movements of the robots. The
algorithm proceeds in time steps where in each step a
random population of so-called configuration changes is
generated. The configuration changes represent possible
movements of the different robots. The best configuration
change according to the utility function is selected in each
time step and executed. Their research shows that the
robots can get stuck in deadlock situations, which form
a kind of local optima in the utility. Roles are used as a
remedy for this. They select one robot as a meeting point
and the others move there. They only traverse the already
known and mapped regions of the environment. When
they are close to the meeting point and in communication
range with each other, the normal exploration behavior
proceeds. However, the efficiency decreases and energy
consumes due to the robots traverse the already mapped
regions for the deadlock recovery.

A strategy to select optimal motions of multi robot
systems equipped with cameras for improving the ob-
servation of the environment is studied [90]. A solution
designed for omnidirectional cameras is presented. The
key idea is the selection of a finite set of candidate next
positions for every robot within their local landmark-
based stochastic maps. In this way, the cost function mea-
suring the perception improvement when a robot moves
to a new position can be easily evaluated on the finite set
of candidate positions. Then, the robots in the team can
coordinate based on these small pieces of information.
The proposed strategy is designed to be integrated with
a map merging algorithm where robots fuse their maps
to get a more precise knowledge of the environment. The
interest of the proposed strategy for uncertainty reduction
is that it is suitable for visual sensing, allows an efficient
information exchange, presents a low computational cost
land makes the robot coordination easier.

A hybrid reactive/deliberative approach to the multi-
robot SPLAM problem is presented [91]. The design
of the Ireactive and deliberative processes is exclusively
oriented to the exploration having both the same im-
portance level. The approach is based on the concepts
of expected safe zone and gateway cell. The reactive
exploration bf the expected safe zone of the robot by
means of basic behaviors avoids the presence of local
minima. Simultaneously, a planner builds up a decision
tree to decide between exploring the current expected
safe zone or changing to other zone by traveling to
gateway cell. The model takes into account the degree of
localization of the robots to return to previously explored
areas when it is necessary to recover the certainty in the
position of the robots.
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V. TARGET DETECTION, LOCALIZATION AND
TRACKING WITH MOBILE SENSOR NETWORK

Target detection, localization and tracking has recently
received significant interest because of its importance in
a variety of applications such as environmental mon-
itoring, surveillance and military applications. Its goal
is to determine the number, position, and movement of
targets. Many research works consider the motion control
of autonomous robots for searching/tracking targets [92]—
[96]. However, controllable mobility in mobile sensor net-
work for target detection and tracking poses several new
challenges that have not been addressed in the existing
robotic motion planning literature, which include limited
mobility of sensors, resources constraints, and stringent
quality-of-service requirements such as low false alarm
rate, high detection probability and bounded detection
delay [97].

On the other hand, collaborative target detection and
tracking with stationary wireless sensor networks has
been extensively studied [98]-[101]. Due to unpredictable
spatiotemporal distributions physical phenomena and dy-
namic changes of network conditions or physical envi-
ronments, static sensor network even if a large network
deployment cannot achieve satisfactory sensing perfor-
mance.

Mobile sensor nodes can dynamically reconfigure the
sensor network capability to cope with the unpredictabil-
ity and variability of physical reality and improve the
robustness of sensor networks.

A. Active target estimation with range-only measurements

Active target estimation is one of the basic problem
for mobile sensor network: where the sensors should
move to attain the best estimates of the targets meanwhile
guaranteeing the optimal consumption of communication
bandwidth, CPU time, and power consumption. A team of
indoor robots equipped with laser range finders are coor-
dinately controlled to maximize the information measures
for multi-feature localization [102].

B. Active target estimation with bearing-only measure-
ment

A team of mobile agents equipped with cameras are
actively controlled to optimize the quality of the targets’
estimates that reflects the expected value of assuming a
particular formation prior to the data fusion phase [103].
The optimization is implemented centrally.

Information measures are used to communicate state
estimates in mobile sensor network [104].The information
measures are maximized to implemented the coordinated
control of robot sensors. The approach inherits many
benefits of decentralized data fusion including scalabil-
ity, robustness and interoperability among heterogeneous
systems. It is applied to a practical bearing-only multi-
feature localization problem.

A solution to the optimal trajectory planning problem
in target localization for multiple heterogeneous robots
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with bearing-only sensors is provided [105]. Its objective
is to find robot trajectories that maximize the accuracy of
the locations of the targets at a prescribed terminal time.
Nonlinear Model Predictive Control (MPC) is used for
the optimization problem.

Hoffmann et al. develops a set of methods enabling
an information-theoretic distributed control architecture
based on particle filters to quickly localize a target with
bearing-only measurements by a mobile sensor network,
permitting the use of nonlinear and non-Gaussian sensor
models [106]. This method exploits the structure of the
probability distributions of the target state and of the
sensor measurements to compute the control inputs to the
mobile sensors leading to future observations that mini-
mize, in expectation, the future uncertainty. The mutual
information is computed using a particle set representation
of the posterior distribution. Single-node and pairwise-
node approximation schemes for mutual information in a
large mobile sensor network are presented. The methods
can guarantee analytically bounded error, the approach
scalable to increasing network sizes. The authors develop
the above methods to make the information theoretic
ideas tractable and scalable for real-time control of a
mobile sensor hetwork for general sensors (including
bearings-only sensing, range-only sensing, and magnetic
field sensing), dynamics (the dynamics of actual vehicles),
and available prior knowledge (search regions can be
complicated to represent) [107].

C. Active target estimation with range-bearing measure-
ment

Gradient-searching-based decentralized algorithm is
presented for decentralized control mobile nodes mounted
with sonar to estimate the state of a dynamic target [108].
The cost function for optimization is the determinant of
the error covariance matrix. The decentralized control
law is based on the gradient of the cost function with
respect to each of the sensor’s coordinates. Stroupe and
Balch consider to minimize the target’s location uncer-
tainty using distance and bearing measurements [109].
The objective function is the determinant of the target
position estimates’ covariance matrix. A greedy search is
performed over the discrete set of candidate headings on
each sensor node separately. In both of their research,
each sensor node optimizes its own next move with
the assumption that other nodes remain at their current
locations.

D. Active target tracking with range-only measurement

A general theme in probabilistic tracking control is the
balance between computational efficiency and the need
to model a non-Gaussian, multi-modal target estimate
distribution because the fact that the sensor platform is
kinematically constrained and the target motion is either
very agile or uncertain, the target may be lost.

The problem of optimal trajectory generation for a team
of mobile sensors tracking a moving target using distance-
only measurements studied [110]. The constraints are
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imposed on the speed of the sensors. Two algorithms,
modified Gauss-Seidel relaxation and linear programming
(LP) relaxation, are proposed for determining the set of
feasible locations that each sensor should move to in order
to collect the most informative measurements, distance
measurements that minimize the uncertainty about the
position of the target. These algorithms can be applied
for any process model that is employed for describing the
motion of the target. And the computational complexity is
linear in the number of sensors. The performance attained
with the proposed methods is significantly better than that
of a random, toward the target, motion strategy.

For a target-tracking application with range sensors,
the determinant of the Fisher Information Matrix is in-
vestigated for ‘range-measurement’ models [111]. The
FIM determinant, aggregate cost function encoding a
‘sensitivity performance measure’ plays the role of an
object function. Decentralized control laws for the optimal
positioning of sensor networks that track a target is
presented.

Makarenko and Durrant-Whyte investigate the design
of distributed motion coordination algorithms that in-
crease the information gathered by a network in static
and dynamic target-tracking scenarios [112]. An aggre-
gate cost function encoding a ‘sensitivity performance
measure’ is defined. The closed-form expressions for the
determinant of the Fisher Information Matrix for ‘range-
measurement” models are presented. This determinant
plays the role of an objective function. On the objective
function, a decentralized control laws for the optimal
positioning of sensor networks that tracks a target is
presented.

E. Active target tracking with range-bearing measure-
ment

A simple gradient-searching-based decentralized algo-
rithm is extended for the task of tracking multiple targets
with the assumption that sensors is capable of taking
measurements of all targets simultaneously [108]. Based
on this method, the authors study a cost function that
measures the overall quality of sensing for localization
and tracking dynamic targets. The role of imperfect
communication between sensor agents is investigated. The
trade-offs in performance between sensing and communi-
cation is examined [113].

The problem of multiple mobile sensor agents tracking
the position of one or more moving targets is studied
[114]. Each agent maintains a target estimation, and each
agent moves so as to maximize the expected information
from its sensor, relative to the current uncertainty in
the estimate. In their research, each agent need only
communicate with one-hop neighbors in a communication
network, resulting in a fully distributed and scalable
algorithm.

A flocking-based mobility model is used for moving
target tracking with mobile sensor network in dynamic
communication topology [115]. The target’s state (po-
sition, velocity, and acceleration) is estimated with a
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modified distributed Kalman filter by using distance and
bearing measurements to a target that moves in 2D with
constant velocity driven by zero-mean Gaussian noise
under the assumption that the position and orientation
of each sensor are known with high accuracy within
the global frame of reference. The sensor nodes try to
move to the target while avoiding collisions. As the
agents flock towards the target, the information value
of their measurements improves in time. The positioning
information from previous time-steps is not considered.

The problem of determining optimal trajectories for
a team of heterogeneous mobile sensors that track a
moving target using distance and bearing measurements
is addressed [116]. The optimality criterion is to minimize
the trace of the target’s position covariance matrix. The
authors account for the existence of prior information
and explicitly consider limits on the robots’ speed and
impose constraints on the minimum distance at which the
robots are allowed to approach the target. An iterative
algorithm, Gauss-Seidel-Relaxation (GSR) is proposed
for determining the set of feasible locations that each
sensor should move to in order to minimize the uncer-
tainty about the position of the target. Their research result
shows that the performance of the GSR, whose compu-
tational complexity is linear in the number of sensors,
is indistinguishable of that of a grid-based exhaustive
search, with cost exponential in the number of sensors,
and significantly better than that of a random, towards
the target, motion strategy.

Because the energy required for locomotion energy is
much higher than that for sensing and communication,
it is not always favorable for sensor nodes to move
[117]. Zou and Chakrabarty propose that node considers
movement only if it detects a target [118]. The authors
consider not only the positive consequences but also the
negative consequences of node movement,e.g., additional
energy consumption, connectivity loss, and coverage loss.
A mobility management framework that unifies tracking
quality, sensing coverage, network connectivity, and en-
ergy consumption is introduced for the specific objective
of target tracking. Their research makes many assump-
tions that both sensor nodes and the target are moving at
constant speeds, and all nodes have the same number of
candidate locations in gridded sensing region.

Baumgartner et al. study the optimal control of an
underwater sensor network for cooperative target track-
ing [119]. An integral objective function representing
the quality of service of a sensor network performing
cooperative track detection over time is derived using
a geometric transversal approach. Each sensor-equipped
vehicle is modeled as a bounded subset of a Euclidian
space, representing the sensor’s field of view (FOV),
which moves according to underwater vehicle dynamics.
By this approach, the problem of generating optimal
sensors’ trajectories is formulated as an optimal control
problem in computational geometry.
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F. Target detection with mobile sensor network

Wireless sensor networks deployed for mission-critical
applications face the fundamental challenge of meeting
stringent spatiotemporal performance requirements using
nodes with limited sensing capacity. Although advance
network planning and dense node deployment may ini-
tially achieve the required performance, they often fail
to adapt to the unpredictability and variability of phys-
ical reality. Mobile sensors can be exploited to address
limitations of static WSNs for target detection.

The problem of detecting the presence/absence of a
target using mobile sensor network is investigated [120].
It presents an analytic method to evaluate the detection
latency based on a collaborative sensing approach using
nodes with uncoordinated mobility. With the analytic
model, the tradeoff between number of nodes and detec-
tion latency in a mobile sensor network is analyzed. Their
research results show that if the target is present at the
worst possible location in a given deployment, then de-
tection latency of mobile sensor networks is considerably
less as compared to that of stationary networks with the
same number of nodes. The research is based on random
mobility model and does not address the issue of actively
controlling the movement of sensors.

The stochastic event capture problem, the events of
interest arrive at certain points in the sensor field and
disappear according to known arrival and departure time
distribution, is considered [65]. An event is said to be
captured if it is sensed by one of the mobile sensors before
it fades away. The authors characterize cases where the
deployment of mobile sensors has no advantage over static
sensors, and find the optimal velocity pattern that a mobile
sensor should adopt. For sensors with fixed speed, the
minimum number of sensors required to satisfy a bound
on the event loss possibility is given.

Exposure, which measures how the region is covered
by the sensor network, one of the fundamental issues in
target detection problem, is defined as the least probability
of detecting a target over all possible target maneuvers for
some time and evaluated in the context of mobile sensor
network with the presence of obstacles and noise [121].
Detection is conducted without presuming the target’s
activities and moving directions. The research shows that
exposure can be improved by patrolling static routes with
mobile sensors.

Two data fusion based detection models that enable
static and mobile sensors to effectively collaborate in
target detection are proposed. A decision-fusion-based
detection model in which each mobile sensor makes its
own detection decision and locally controls its movement
is presented [122]. The mobile sensor is required to be
able to locally detect targets and adaptively control their
movement. Reactive mobility is exploited to improve the
target detection performance of wireless sensor network.
Sparsely deployed mobile sensors collaborate with static
sensors and move in a reactive manner to achieve re-
quired detection performance. Specifically, mobile sensors
remain stationary and are directed to move toward a pos-
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sible target only when a detection consensus is reached by
a group bf sensors. The accuracy of final detection result
is then improved as the measurements of mobile sensors
have higher Signal-to-Noise Ratios after the movement.
A sensor movement scheduling algorithm that achieves
near-optimal system detection performance under a given
detection delay bound.

The authors also present a value-fusion-centric target
detection model for effective collaboration between static
and mobile sensors [97]. Each mobile sensor in a detec-
tion process is only required to move a certain distance
land send its measurements to its cluster head which is
the closest to the surveillance location. An optimal sensor
movement scheduling algorithm is developed to minimize
the total moving distance of sensors while achieving a
set of spatiotemporal performance requirements including
high detection probability, low system false alarm rate,
land bounded detection delay. The multitarget detection
problem is studied. Their research assumes that the clocks
of all sensors are synchronized and each mobile node
knows its own location and can orient its movement
in a given direction. Their work considers the power
consumption of locomotion and the mobile sensors move
reactively only when a coarse detection consensus is
reached and the power consumption of locomotion is min-
imized. Their work focuses on online sensor collaboration
and movement scheduling strategies that are used after the
appearance of targets.

It is important to detect intruders in the field of interest
as quickly as possible, especially when the intruders are
hostile. The detection time of an intruder is defined to
be the time elapsed before the intruder is first detected
[71]. Intruders that will never be detected in a stationary
sensor network can be detected by moving sensors. The
distribution of the detection time for a randomly located
stationary intruder is obtained. A game theoretic approach
is used to detect mobile intruders. The best worst-case
performance of a mobile sensor network in terms of the
intruder detection time is studied.

The impact of mobile node density on several detection
performance measures for stationary target detection by a
hybrid sensor network consisting of both static and mobile
nodes is investigated [123]. Hybrid sensor networks are
becoming attractive with the recent advances in mobile
sensor nodes. Adding a large number of mobile nodes to
a sensor network for continuous coverage improvement
might be expensive due to mobile node’s higher energy
consumptions. The trade-off between the density of mo-
bile nodes and the network performance in a hybrid sensor
network with respect to several performance measures of
interest, when mobile nodes perform random mobility,
is investigated. Detection probability, detection latency
and mean first contact distance are used to evaluate the
trade-off between the fraction of mobile nodes and these
performance measures.

Stochastic model assumed to govern the mobility of
nodes in a mobile ad hoc network significantly affects
the event detection time [69]. Their research result can

121

provide guidelines on how many mobile sensor nodes
should be deployed to achieve the required event detection
rates, given the mobility characteristic of these mobile
nodes.

VI. PERIMETER DETECTION AND TRACKING

A perimeter, an area enclosing some type of substance,
may be static or dynamic. Perimeter detection and track-
ing has a wide range of applications: detection and track-
ing radiation/chemical spills, tracking oil spills in ocean,
detection of algae bloom, and tracking forest fires etc.
In perimeter detection and tracking tasks, mobile sensor
network locates, surrounds and tracks a substance while
dynamically reconfiguring as environment or network
itself changing. Perimeter detection and tracking using
mobile sensor network has the advantage of operating in
a wide variety of situations like changing perimeters (spill
monitoring, forest fire surveillance) or large perimeters
(border patrol). Most of the approaches to track perimeters
fall into two main groups: gradient-free approaches and
gradient-based approaches.

A. Gradient-based approaches for perimeter detection
and tracking

Marthaler et al design a centralized collective motion
algorithm based on the ‘snake algorithm’ in image pro-
cessing to detect and track algae blooms, where each
agent needs to measure the concentration gradient [124].

Clark and Fierro use random coverage controller, po-
tential field controller and a bang-bang angular velocity
controller to detect and track the dynamic perimeter of oil
spills [125]. Their work did not analyze the efficiency and
the convergence of the algorithms and did not consider the
limited communication range problem.

Dantu and Sukhatme consider a heterogeneous sensor
network for detecting and tracking a specified level set of
a scalar field (a contour) on a plane [126]. A network of
static sensor nodes with limited communication and pro-
cessing are deployed in a planar environment along with
a mobile node which can both sense and move. As the
mobile node moves through the environment, it computes
the local spatial gradient of the field by communicating
with its immediate neighbors in the static sensor network.
The mobile node performs gradient descent on the scalar
field till it arrives at a location on the desired contour.

Susca et al. [127] addresses the problem of boundary
estimation and tracking by means of robotic sensors. Their
research assumes that each mobile agent is equipped
with 1) a sensor that provides only local information
about the tangent and curvature of the boundary rather
than the general gradient information, and 2) a com-
munication device that enables information exchanges
between clockwise and counterclockwise neighbors along
the boundary. The method appropriates a changing border
with a set of interpolation points . The mobile agents
move counterclockwise along the time-varying boundary
with varying speed. It locally optimizes its position along
the updated estimate of the curve of boundary. Every
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agent estimates the arc length distance between itself and
its immediate clockwise and counterclockwise neighbors
land uses this information to speed up or slow down. As
the team agents traverse the perimeter, they update the
points that describe the perimeter to best fit a polygon to
the shape of the perimeter. With the help of mobility, only
very limited mobile sensors are needed for the varying
boundary estimation and tracking.

B. Gradient-free approaches for perimeter detection and
tracking

The gradient-free approaches for perimeter detection
and tracking use less information than the gradient-based
approaches. The direction of movement of mobile sensors
at the next step is not completely obvious. The gradient-
free approaches depend on only sensor density observa-
tions about the surrounding. The main work in on how to
deal with measurement noises.

A simple algorithm is proposed for multiple UUVs
monitoring an underwater perimeter that only requires
scalar concentration measurements [128]. Each individ-
ual vehicle moves either clockwise or counterclockwise
around a nearby circle with a prescribed radius and center.
The method has been tested on Caltech’s land testbed with
second order vehicles without sensor noise (and with only
simulated sensors) [129].

Jin and Bertozzi develop a framework for environmen-
tal boundary tracking and estimation by considering the
boundary as hidden Markov model (HMM) with sepa-
rated density observations collected from multiple sensing
vehicles. Page’s cumulative sum algorithm (CUSUM) is
used for change-point detection [130]. Joshi and Bertozzi
implement the above algorithm on a cooperative testbed
for environmental boundary tracking and estimation using
only localized hoisy sensors [131]. A geometric, biologi-
cally inspired motion control algorithm allows individual
vehicles to track and follow the environmental boundary
without external positioning information. Relative posi-
tioning between vehicles allows vehicles to maintain a
convoy while tracking the boundary.

Casbeer et al. explore the feasibility of using multiple
low-altitude, short endurance unmanned air vehicles to
cooperatively monitor and track the propagation of large
forest fires [132]. A real-time algorithm is described
for tracking the perimeter of fires with an on-board
infrared sensor. The UAVs are assumed to have limited
communication and sensing range. Each UAV uploads
data to the base station and it must periodically return to
the base station for refueling. The base station deploys
multiple UAVs to monitor the propagation of the fire
with a cooperative surveillance strategy that minimizes
the latency associated with fire perimeter measurements
delivered to the base station by minimizing the time
of flight between points on the perimeter and the base
station, and by maximizing the frequency of measurement
updates delivered to the base station.

Kingston et al. [133] presents a fully decentralized
algorithm for perimeter surveillance with taking into
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account of communication range limitations and allowing
for changing perimeters. The method can guarantee con-
vergence in finite time. By sharing information regarding
the perimeter length and number of team members, each
agent obtains a consistent set of coordination variables
that allows the decentralized algorithm to operate effec-
tively. The method has the ability to monitor changing
perimeters, account for dynamic insertion and deletion
of team members, and the ability to operate with a
small communication range in a decentralized manner.
The algorithm is limited to constant velocity vehicles
that travel along the border and is not as efficient in the
transient period as compared with a centralized algorithm.

Stranders et al. use autonomous unmanned vehicles
which have ability to situational awareness to patrol
environments [134], especially for environments that are
subject to continuous change. Based on a non-myopic
divide and conquer algorithm for computing near-optimal
patrols for single mobile sensor, an algorithm for comput-
ing near-optimal patrols for multiple agents by iteratively
computing single-agent policies is presented.

VII. SPATIO-TEMPORAL DYNAMIC FIELDS
MODELING IN LARGE ENVIRONMENT

Mobile sensor networks have potential for spatio-
temporal dynamic scalar and vector fields modeling in
large environment, such as environmental temperature or
density of adversarial agents, as a function of the spatial
location or time sequence. Mobility of the agents can be
applied to improve the estimate of the modeled variable.

The problem of modeling a scalar field with estimation-
and-control approach is formulated [135]. A measure
of the model quality is defined and a gradient control
law is used to move the agents to collect sensor data
that improves the quality of the model. The method is
implemented in decentralized case where there is no
particular structure on the communication network, agents
can be added or subtracted at any time.

Motivated by the Autonomous Ocean Sampling
Network-II(AOSN-II) and the Adaptive Sampling and
Prediction (ASAP) projects, Leonard et al. apply a fleet
of self-directed underwater gliders to sample dynamic
ocean variables for autonomous ocean observing and
prediction in costal ocean modeling [136]. A framework
using Virtual Bodies and Artificial Potential (VBAP) is
introduced [137]. A performance metric, used to derive
the optimal paths for the network of mobile sensors,
defines the optimal data set as one which minimizes
error in a model estimate of the sampled field. Feedback
control laws are presented that stably coordinate sensors
on structured tracks that have been optimized over a
minimal set of parameters [136].

Four robots are used to compose a formation so that
the gradient at the formation center can be measured in a
large scale density field [138].

Path planning and trajectory design of autonomous
underwater vehicles (AUVs) for oceanographic modeling
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is also addressed in [139]. The paths of AUVs are deter-
mined to track evolving features of interest in the ocean
by considering the output of predictive ocean models.

Choi and How extend the active sensing problem
[140]. Their research investigates continuous trajectory
planning of mobile sensors to minimize the uncertainty in
some verification variables in the future. Filter form and
smoother fform are compared for computing the mutual
information. A gradient-ascent steering law based on
the concept of information potential field is presented
as a computationally efficient suboptimal strategy. The
strategies are implemented with a simplified weather
forecasting example.

VIII. CONCLUSIONS

Recent literature shows that researchers have focused
their attention on use controllable mobility to address
various wireless sensor network applications such as
localization, coverage, mapping, exploration, target de-
tection and tracking, perimeter detection and tracking,
and spatio-temporal dynamic fields modeling in large
environment. Different trajectory planning algorithms are
studied for mobile sensor network aiming at different
tasks. In spite of a multitude of successful researches on
controllable mobility for active sensing of mobile sensor
network, the main concern is that the most of the these
algorithms are still in development stage. Most of the
current trajectory planning for active sensing are heuristic
lacking of substantial theoretical analysis. Future research
is likely to focus on developing well-founded analytical
trajectory planning approach for active sensing of mobile
sensor network. The goal for the future of controllable
mobility in mobile sensor network is to improve already
existing solutions, refine them and develop well-founded
practical trajectory planning algorithms.
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