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Abstract: Multicasting is one of the relevant issues of 
communication in infrastructure or centralized 
administration networks. The reliable delivery of multicast 
data packets needs feedback from all multicast receivers to 
indicate whether a retransmission is necessary. A reliable 
multicast delivery in the wireless Ad-hoc network requires a 
multicast packet to be received by all multicast receiver 
nodes. Thus, one or all members need to buffer data packet 
for possible error recovery. Furthermore, different buffer 
strategies are essentially used in existing reliable multicast 
protocols towards support error recovery and reducing 
buffer overflow. This study proposed two algorithms to 
improve the performance of the source tree reliable 
multicast (STRM) protocol. The first algorithm was 
developed to avoid buffer overflow in the sender node as the 
forward server (FS) nodes of STRM. This reduction is 
achieved by managing the buffer of the FS nodes, i.e., 
selecting the FS nodes depending on its empty buffer size 
and reducing the feedback sent from the receiver nodes to 
their FS node. The second algorithm was developed to 
decrease duplicated packets in the multicast members of the 
local group, which may be achieved by sending the repair 
packets to the requesting member. The FS in the local group 
should create a dynamic and temporary subgroup whose 
members are only those that requested the repair packet 
retransmission. The algorithms were tested using detailed 
discrete event simulation models encompassing messaging 
systems including error, delay, and mobility models to 
characterize the performance benefits of the proposed 
algorithms compared with the existing wireless Ad-hoc 
network protocols. Several experiments were conducted, 
revealing numerous results that verify the superior 
performance of the proposed algorithms over the existing 
algorithms. 
  
Index Terms: Buffer management, ad-hoc networks, forward 
servers, reliable multicast 

I. INTRODUCTION 

Mobile ad-hoc network (MANET) is a collection of 
mobile nodes (MNs) that form dynamic and temporary 
networks. MNs work in collaborative nature to carry out 

a given task. They can receive and transmit data packets 
without using any existing network infrastructure or 
centralized administration. The reliable multicast delivery 
in the MANET requires a multicast packet to be received 
by all multicast receiver nodes. Thus, one or all members 
need to buffer data packet for possible error recovery. 
Buffer management algorithms in existing reliable 
multicast protocols essentially use different strategies to 
decide the members that should buffer packets for error 
recovery, and determine how long these packets should 
be buffered to reduce buffer overflow [1].  

Earlier studies have demonstrated that several reliable 
multicast protocols adopt a distributed error recovery 
algorithm that allows one or all members to retransmit 
packets lost by other members. In the tree-based reliable 
multicast transport protocol (RMTP) [2, 3], a repair 
server buffers all data packets received in the current 
multicast session. The protocol was originally designed 
for multicast file transfer. In this protocol, a repair server 
buffers the entire file in a secondary storage. The 
approach is feasible only when the size of the data 
transmitted in the current session has a reasonable limit. 
For a long-lived session or setting where repair servers 
lack space, the amount of buffering can become 
impractically large. Several reliable multicast protocols 
use a stability detection algorithm to detect when a 
message is received by all members in the group, and 
determine whether the message can safely be discarded 
[4]. These protocols require group members to 
periodically exchange information on message history 
and the set of messages they received. In addition, a 
failure detection algorithm is needed to provide 
information to the current group membership, causing 
high message traffic overhead because the algorithm 
requires frequent message exchanges. 

The source tree reliable multicast (STRM) [5] protocol 
provides a reliable multicast by constructing a logical tree 
at the transport layer for local error recovery. The STRM 
protocol group multicasts receivers into local groups and 

Journal of Communications, Vol. 8, No.2, February 2013

136©2013 Engineering and Technology Publishing 
doi: 10.12720/jcm.8.2.136-150



selects small sets of receivers, called FS, as error 
recovery representatives. The FS node should keep in its 
buffer the packets that were not correctly received from 
all multicast members in its local group. At the same 
time, the FS node retransmits the repair packet to all 
multicast members in its local group using multicast. 
However, the STRM protocol has two limitations. The 
first is the ability to efficiently manage the FS node 
buffer to avoid buffer overflow. When the sender sends 
new packets, the FS node is directed to drop new packets 
when its buffer is not empty, thereby preventing such 
packets from being forwarded. Meanwhile, instructing 
the FS node to drop old packets prevents these packets 
from being forwarded for a sufficient amount of time. 
The second limitation is when the FS node receives a 
number of requests for a certain packet from its multicast 
members in its local group. The algorithm will retransmit 
the requested packet to all group members that belong to 
its local region. This retransmission causes duplication 
for members that have correctly received the same 
packet. These observations were the motivation of the 
current study. 

The two algorithms proposed in this study aims to 
provide an improved way to discard stable packets from 
the FS node buffers and decrease duplicated packets at 
the receiver nodes. In these algorithms, each FS node 
requires their receiver nodes to transmit both positive and 
negative acknowledgement to efficiently manage their 
buffers. Based on the feedback sent by their receiver 
nodes, the FS nodes forecast the packets that do not 
require retransmission and remove these particular 
packets from the buffer. At the same time, the FS node 
retransmits the requested packet to the receiver nodes that 
made the request. The results of various simulation 
experiments, have revealed the potential benefits of the 
proposed algorithms, including the following: (i) 
enhancing buffer management through an innovative 
proposed buffering algorithm that explicitly addresses the 
variances in delivery latency for multicast group caused 
by buffer overflow;(ii) decreasing buffer overflow by 
adaptively enhancing the FS node selection and 
decreasing the feedback control packets sent from the 
receiver nodes; (iii) reducing buffer requirements by 
adaptively enhancing FS node  selection to buffer the data 
packets among members that have larger empty buffer 
spaces; and (iv) enhancing error recovery by eliminating 
the duplication of repair packet retransmission in the 
local groups.  

The rest of the article is organized as follows: 
Section 2 introduces an overview of the mobile ad-hoc 
networks, buffer management, and relevant studies. 
Section 3 describes the proposed buffer mechanism. 
Section 4 presents the simulation scenarios, followed by 
the aspects to be studied in section 5. Performance 
evaluation and results are discussed in Section 6. The 
conclusion is presented in Section 7. 

 
 
 

II. BACKGROUND AND RELEVANT STUDIES 

A. Mobile Ad-hoc Networks 
MANET is a wireless communication that allows 

nodes to communicate with or without existing 
infrastructures, as shown in Fig. 1. MANET operates in 
isolation or requires connection to a fixed network (such 
as the Internet) through a base station (gateway). 
MANET lacks the centralized administration or standard 
support services regularly available on conventional 
networks [6],[7]. 

Fig. 1 shows the MANET with six mobile nodes. If 
node N6 wants to communicate with node N4 in the ad-
hoc network, N6 must use a routing protocol to 
communicate over multiple hops; for example (N6→ 
N5→N3→N4).  

 

 
Figure 1.  MANET  

The nodes that form a MANET are capable of 
receiving and transmitting packets in an ad-hoc manner 
without a base station. More importantly, nodes act as an 
edge device and a router, and are thus able to route 
packets between the source and destination nodes not 
within their transmission range. Nodes can be constrained 
by battery power or processing capabilities. Nodes have 
varying mobility degrees; they can switch off or move 
into or out of the range of other nodes in the MANET, 
thereby changing the MANET topology. Meanwhile, 
wireless connectivity between nodes is limited by 
transmission range and signal attenuation due to terrain 
and interference. Thus, MANETs are characterized by 
low bandwidth, high error rates, intermittent connectivity, 
and dynamic topology [8], [6], [9], [10], [11], [12]. 

Ad-hoc networks employed in several scenarios are 
particularly useful in dynamic network environments, 
where network topology continuously changes. These 
networks are also useful in areas where networking 
infrastructure implementation is difficult. An increasing 
number of ad-hoc network applications require a sender 
to distribute the same data to a large group of receivers. 
These applications fall in the category of group 
communication, as opposed to the traditional one-to-one 
communication [13]. Accordingly, multi-point 
communication (i.e., multicast) offers the most efficient 
way to support this application by delivering a single 
message to multiple recipients [9], [14], [15].  
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B. Buffer management algorithms and relevant studies 
For supporting multicast protocol reliability, the error 

recovery mechanism is achieved via efficient buffer 
management design. An efficient buffer management 
algorithm is an indispensable part of an error recovery 
mechanism. The existing buffer management algorithms 
are classified into reducing the buffer usage, flow control 
and providing packet stability.  

1) Reducing the buffer usage 
In [16], the researchers proposed an efficient buffering 

policy where only a small set of receivers buffer the 
packet to reduce the total buffer requirement amount. 
Upon receiving a packet, a receiver node determines 
whether it should buffer the packet using a hash function 
based on network address and the packet number. 
Receivers that lost packets use a hash function to select 
the set of members that have the packet in the buffer and 
request a packet retransmission. However, the uniform 
selection methods among different receivers do not 
consider new members in the system. Thus, scalability is 
constrained because the latency for error recovery 
increases with the number of participants. 

The randomized reliable multicast protocol (RRMP) 
[17] is an improvement of the bimodal multicast protocol 
(BMP) [18]. BMP uses a simple buffer management 
policy, wherein each member buffers packets for a fixed 
amount of time after their initial reception before 
discarding them. By contrast, the buffer space in RRMP 
is divided into a two-phase buffering policy: a feedback-
based short-term buffer and randomized long-term buffer. 
The members are grouped into local regions formed 
according to their distance from the sender. A receiver 
has the member information in its local and parent 
regions. Every member that receives a packet buffers it 
for a short period of time to facilitate the retransmission 
of lost packets in its local region. Only a small random 
subset of members in each region continues to buffer the 
packet. In RRMP, a member sends request messages to 
all members in its local region when it detects a missing 
packet. However, this process takes a long time for the 
receiver to search and find the correct repair nodes as the 
number of participants increase. 

In the tree-based reliable multicast transport protocol 
(RMTP) [2, 19], a repair server buffers all data packets 
received in the current multicast session. The protocol 
was originally designed for multicast file transfers. In this 
protocol, a repair server buffers the entire file in a 
secondary storage. The approach is feasible only when 
the size of transmitted data in the current session has a 
reasonable limit. For a long-lived session or setting with a 
small buffering space in the repair servers, the buffering 
amount can become impractically large. A hierarchical 
tree-based approach is used in RMTP. Receivers are 
grouped into local regions and a special receiver, called 
the designated receiver, is assigned in each region. Each 
designated receiver has knowledge of the members in its 
local region and the sender. The designated receiver in 
each local region is responsible for periodically sending 
acknowledgments to the sender, processing 
acknowledgment from receivers in its domain, and 

retransmitting lost packets to the corresponding receivers. 
Unfortunately, the periodic feedback policy significantly 
delays error recovery. RMTP stores the whole multicast 
session data in the secondary memory of the repair nodes 
for retransmission, making it poorly suited for transfers of 
large data amounts. Some of these problems were 
addressed in RMTP-II by the addition of negative 
acknowledgment (NAKs) [20]. 

In the reliable multicast protocol for wireless Ad-hoc 
networks (ReMHoc) protocol [21], the error recovery 
load is distributed from the sender to all multicast 
receivers. In ReMHoc, when a receiver detects a lost 
packet, it waits for a random time determined by its 
distance from the original data source before sending a 
repair request. Repair requests are multicast to the whole 
group similar to regular data packets. This process allows 
the nearest receiver to retransmit the packet by 
multicasting. All receivers in the ReMHoc protocol must 
keep all the packets in their buffer for retransmission. In 
this process, the sender cannot detect or does not know 
the safe time to discard an already sent packet from the 
buffer. Similarly, this scheme is not well-scaled because 
the requests sent by each receiver for each incorrectly 
delivered packet can lead to a request implosion at the 
sender node. 

A stepwise probabilistic buffering algorithm based on 
epidemic algorithms was proposed in [22] to provide 
scalability and reliability. The stepwise probabilistic 
buffering reduces the amount of buffering by distributing 
the buffering load to the entire system where every node 
does not have the complete view of the entire receiver 
group. In every receiver group, all peers only have partial 
knowledge of the participants. In this algorithm, only a 
small subset of the node keeps a data message in its long-
term buffer. The long-term buffers are determined 
through a stepwise probability search algorithm inspired 
by the random forwarding encountered in epidemic 
algorithms [18], [23]. A node is susceptible when it has 
not yet received an update. The node implements the anti-
entropy algorithm to recover missing update messages.    

This algorithm provides probabilistic warranties that 
sent operations will be divided to all connected nodes. 
The anti-entropy algorithm randomly selects a neighbor 
in the local table of neighbors and sends a digest of 
received messages. In the anti-entropy process, non-
faulty nodes are always either susceptible or infectious. In 
this algorithm, each node periodically picks f (fan-out) 
other nodes at random and exchanges its state 
information with the selected one. The algorithm uses a 
pull-based approach, where data dissemination is 
triggered by susceptible nodes when they are picked as 
gossip destinations by infectious nodes, to spread 
information. 

Each node in the stepwise probabilistic buffering 
algorithm periodically selects f random nodes from its 
partial view and sends a digest including the recent 
message history. The node digest contains the state 
information for the last d messages the node has received 
so far and their bufferer identifiers. Upon receiving a 
digest, a node can determine the lacking messages and 
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can request them from the bufferers indicated in the 
digest for retransmission. If a bufferer crashed or cannot 
retransmit the message, the request can be forwarded to 
another bufferer. The source sends buffering request 
messages to randomly selected b nodes in its partial view 
to determine the bufferers of a data message. Parameter b 
is the number of bufferers per message. For a data 
message, the bufferer nodes are determined 
simultaneously if b > 1. Buffer fullness (BF) node ratio is 
the ratio of the number of messages stored in the node 
buffer to its long-term buffer capacity. Steps-to-live 
(STL) value attached to a buffering request message 
indicates the maximum number of times that request 
messages can be forwarded among nodes. When a node 
receives a buffering request message for a particular data, 
it accepts the request with probability (1 – BF). 
Otherwise, the node forwards the message to a randomly 
selected node from its partial view with a probability 
equal to BF. For example, if 90% of the long-term buffer 
is full, the node becomes the message bufferer with a 
probability of 0.1, and then sends the buffering request to 
one of its neighbors with a probability of 0.9. 

A decision trade-off exists for the STL value of the 
bufferer request messages. Uniform selection of bufferers 
is easily achieved when the STL value chosen is large 
enough because the request message can visit more nodes 
and find a suitable buffer place. However, frequent 
exchange of history messages to determine the bufferers 
of a data message causes high traffic, resulting to higher 
delays because of the bufferer determination rounds. 

2) Network flow control 
Flow control is an adaptive mechanism that deals with 

varying resources such as CPU speed and receiver node 
bandwidth. Buffer optimization techniques in this 
category adjust the network rate to minimize buffer 
overflows at the receiver nodes. 

In [24], the researchers investigated the effects of 
buffering rate and flow control in several 
acknowledgement (ACK)-based and NAK-based reliable 
multicast protocols. Most of the rate-based multicast 
protocols remain equally vague on that issue because the 
absence of NAK from a receiver for a given packet is not 
a definite indication that the receiver received the packet. 
In other major studies, [25] and [26] proposed a 
retransmission control scheme for NAK-based multicast 
protocols. Their schemes require the sender to reduce its 
transmission rate upon receiving NAKs for several of its 
packets.  The sender keeps a log of its past transmission 
rate to prevent excessive transmission rate decrease. This 
scheme was efficient; however it minimizes buffer 
overflow occurrences rather than eliminating them, as 
that of a sliding window protocol. 

A different idea explored in [27] requires every 
process to calculate the average buffer capacity among all 
communicated processes, and then transmit the 
information. When the rate is too high, with respect to the 
average, the process locally reduces the rate. Indirectly, 
the information sources get such feedback and reduce the 
information production rate. However, the information 

production rate is adjusted according to the process with 
the smallest buffer space. 

3) Packet stability 
A packet is stable when it is delivered to all group 

members. Buffer management approaches that explicitly 
take stability into account exist. In [4], the researchers 
proposed a stability detection algorithm for discarding 
safe packets from the buffers. The members are 
partitioned into groups, and every node is included in the 
error recovery. This process is achieved by letting the 
receivers periodically exchange history information about 
the received sets of packets. Eventually, one receiver in 
the group becomes aware that all the receivers in the 
group successfully received the packet and announces 
this to all the group members. Moreover, all members can 
safely discard the packet from the buffer. However, this 
algorithm causes high message traffic due to the frequent 
exchange of history messages. 

The search party protocol [28] is another protocol 
where timer contribution helps to discard packets from 
the buffers. All the members discard packets after a fixed 
amount of time to achieve stability. However, the 
protocol remains vague on the problem of selecting the 
proper time interval for discarding packets. A heuristic 
buffer management method based on ACKs and NAKs is 
proposed in [29] to provide scalability and reliability. In 
every group of receivers, one or more members possess 
higher error rates than the other members. These nodes 
are those with the least reliable and slowest links. The 
idea of this method is that when a message is correctly 
received by the nodes, it has been probably received by 
all of the other nodes. Thus, repair nodes that buffer the 
message can discard it. 

Network friendly epidemic multicast [30] combines a 
standard epidemic protocol with a novel buffering 
technique that combines different selection techniques for 
discarding messages in case of a buffer overflow. The 
used selection strategies are random purging, age-based 
purging, and semantic purging. Random purging refers to 
the random discarding of an item from the buffer. Age-
based purging is simply discarding the oldest message, 
whereas semantic purging means discarding a message 
recognized as obsolete. Obsolescence relation is 
determined by the application. 

The least recently used (LRU) buffer replacement 
scheme is considered in [31] for epidemic information 
dissemination. In the LRU scheme, a new message is 
placed on the first position and the message at the rear is 
discarded. However, when a request arrives for a message 
in the buffer, that message is placed on the first position 
by moving the front items one position down. The least 
used item stays at the rear of the stack and is possibly 
next to be discarded. 

The aforementioned buffer management algorithms 
indicate that several existing approaches are not sufficient 
to guarantee an efficient buffer management. This result 
could be caused either by the fact that uniform selection 
method among different receivers does not consider new 
members in the system, or the receiver spends too much 
time searching and finding the correct repair nodes as the 
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number of participants increase, or the periodic feedback 
policy significantly delays error recovery. Furthermore, 
high message traffic due to frequent exchange of history 
messages can increase buffer overflow and network 
overhead. Moreover, the buffer messages are discarded 
by the repair nodes because if these messages were 
correctly received by these nodes, it has probably been 
received by all of the other nodes. By contrast, the 
proposed buffering mechanism appends the silent feature 
technique, which gains superior approach performance 
along with inferior buffer overflow. In addition, network 
overhead directs towards performance improvements to 
satisfy the Quality of Service (QoS) requirements for 
best-effort and real-time applications. 

III. THE PROPOSED BUFFER MANAGEMENT ALGORITHM 

This section provides a detailed description of the 
proposed ordered ACK (OACK) buffer management 
algorithm, along with consideration of its techniques, in 
enhancing the local error recovery using sub sub-casting 
and the improved of sub sub-casting algorithms. 

A. Ordered ACK (OACK) buffer management  
As described in [5], the STRM protocol distributes the 

responsibility of error recovery among the selected set of 
its one hop neighbor nodes. The sender ensures that all 
directly FS nodes connected, correctly received certain 
packet numbers by checking the ACK received from its 
FS nodes. In the next sending interval, the sender sends a 
number of new packets equal to those correctly received. 
Utilizing the method of computing, the available window 
can cause an overflow at the buffer of one or more FS 
nodes because the sender does not know the FS node 
situation. This problem occurs because each FS must 
keep all incorrectly received packets by the buffer of its 
receivers. As a result, the FS cannot retransmit all the 
retransmission requests from its receiver nodes. 
Consequently, the sender node workload increases, 
thereby causing more error recovery delays. An OACK 
buffer management algorithm adapted by STRM was 
proposed in this study to effectively reduce buffer 
requirement. The next section describes the OACK buffer 
management algorithm.  

1) Description of the OACK algorithm  
The OACK algorithm was designed to improve FS 

node selection. The algorithm reduces buffer usage 
because only a small subset of nodes was chosen as 
buffer for each message. Furthermore, this algorithm is 
applicable to large scale scenarios, provides reliable 
delivery, and is adaptable to dynamic addition and 
separation in the network. Determining the FS nodes is 
initiated by the sender. Upon determining the FS nodes, 
their IDs are piggybacked to the data packet and initially 
sent to the FS nodes.  

The selection forward server process (SFSP) algorithm 
[5] is enhanced by allowing the nodes located in the first 
hop from the sender to be selected as FS nodes based on 
forwarding utility (Uf), as presented in Eq. (1). The 
forwarding utility (Uf) is an integrated function of a 
node's remaining buffer space utility (Ub), as presented in 

Eq. (2), and a neighbor utility (Un), as presented in Eq. 
(3). Thus, a buffer awareness element is introduced into 
the selection. This element is important because the nodes 
selected as FS nodes must have sufficient buffer size to 
buffer the data packets for retransmitting requested 
packets. 

 
𝑈𝑓 =  𝑈𝑏 ∗ 𝑈𝑛                                                                  (1) 

 

𝑈𝑏(𝑖) =
1

1 + 𝑒−𝐵𝑖+𝑠
                                                      (2) 

 

𝑈𝑛(𝑖) =  
𝑈𝑇ℎ𝑁𝑖
𝑇𝑇ℎ𝑁𝑖

                                                               (3) 

 
The buffer utility (Ub) in Eq. (2) specifies the 

remaining node buffer space. A sigmoid function is used 
to determine the utility because it provides a good 
estimate of the required behavior, low utility, and slow 
change at low buffer; sharp change in utility at medium 
buffer; and high utility and slow change at high buffer. Bi 
is the remaining internal node buffer space and is mapped 
in the sigmoid function. s is defined as half the value of 
the full node buffer space to shift the sigmoid function to 
obtain the positive value. For (Un) in Eq. 3, the UThNi is 
the unallocated two hop neighbors of node i, and  TThNi  
is the total two hop neighbors of node i. The neighbor 
utility (Un) for node i is equal to the number of 
unallocated nodes in the two hop pool neighboring node i 
divided by the total number of node i neighbors. 

2) Example and explanation of the OACK algorithm 
Fig. 2 shows an example of the OACK algorithm to 

select FS nodes that have a suitable buffer size with the 
following neighbor arrangement: N(I)={J,K,L}, 
N(J)={I,M,N}, N(K)={I,M,N,O,P}, N(L)={I,O,P,Q}. 
The sender node I calculates a pool of one hop neighbors 
H1={J,K,L} and two hop neighbors H2={M,N,O,P,Q}. 
Node L has a unique neighbor (node Q) not reachable 
from any other possible one hop nodes (nodes J or K), as 
shown in Fig. 2(a). Therefore, node L is added to the FS 
set, FSL1={L}. The neighboring nodes of node L are 
removed from H2, resulting in H2={M,N} and H1={J,K}. 
When no more nodes have unique neighbors, sender node 
I calculates the forwarding utilities for the remaining 
nodes in H1, as shown in Fig. 2(b).  
 
Node J's forwarding utility is calculated as follows: 
 

𝐵𝐽 = 7                                            

𝑠 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒

2
  =

10
2

= 5

𝑈𝐵(𝐽) =
1

1 +  𝑒−𝐵𝐽+𝑠
     = 0.87             

𝑈𝑛(𝐽) =    
2
2

     = 1                                   

𝑈𝑓(𝐽) =  𝑈𝑛(𝐽) ×  𝑈𝐵(𝐽)
= 0.87          
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Node K's forwarding utility is calculated as follows: 
 

𝐵𝐾 = 2                                            

𝑠 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒

2
  =

10
2

= 5

𝑈𝐵(𝐾) =
1

1 +  𝑒−𝐵𝐾+𝑠
     = 0.05              

𝑈𝑛(𝐾) =    
2
4

     = 0.05                               

𝑈𝑓(𝐾)  =  𝑈𝑛(𝐾) ×  𝑈𝐵(𝐾)
= 0.025       

                           

 

 
Node J has higher forwarding utility than node K; thus, 

the remaining nodes in H2 are allocated to node J, 
resulting in SFL1={J,L}, as shown in Fig. 2(c). 
 

 

 

Figure 2.  Example of the Ordered ACK to select FS nodes 

3) The OACK flow control scheme 
 

The OACK algorithm performs the flow control using 
the transmission and ACK window. The sender node 
maintains a fixed transmission window size. The sender 
node periodically multicasts the data packet window to 
the neighbor nodes located in its first hop. Similarly, the 
selected FS nodes multicast the data packet window to 
the receiver nodes located in its local group. In addition, 
the receiver node maintains an ACK window and 
periodically sends this window to its FS node. An ACK 
window carries two fields: <N,L>; where N is the less 
sequence number received and L is the last packet 
sequence number received in the transmission window. 
The L packet acts as an implicit ACK for the transmission 
received packet window. The FS node can now safely 
discard up to the packet number L from its buffer. The 
receiver nodes carry out this procedure for each of the 
received transmission windows. 

When a receiver node i detects lost packets, it sends a 
NAK to its FS node. This NAK contains the sequence 
number of the last packet, similar to when all packets had 
been correctly received. For instance, assume that the 
sender's window size is 10 packets and the first ACK by 
node i is supposed to acknowledge packets 10, 20, 30, 
and so on. Therefore, if i does not receive packet 19, it 
sends a NAK informing that packet 19 was not received 
and that packet 18 is the last packet, similar to when all 
packets had been correctly received by node i. Node i 
continues the same sequence of ACKs regardless of the 
lost packet. Hence, the next ACK sent by node i only 
acknowledge the correct reception of packets 19 and 20. 
This process ensures that the FS node receives at least 
one ACK packet from the receiver node i in every 
sending window. 

The mechanism to advance the transmission window is 
to have all FS nodes send an ACK to the sender node. 
This ACK contains the highest-numbered packet Pj that 
the FS node j can safely discard based on the ACK sent 
by its receiver nodes. When some packets are not ACK, 
but are still in the buffer of the FS nodes, different FS 
nodes would have different buffer sizes. The sender node 
can then initially send new packets equal to the available 
and sufficient space in the buffer of all FS nodes. Let Pj  
be the last packet acknowledged by j; hence, the highest-
numbered packet PH acknowledged by all FS nodes is 
given, where NFS is the number of FS nodes. When all FS 
nodes have acknowledged PH, the sender can now safely 
send the packets up to PH. The summarized OACK flow 
control algorithm for each type of nodes, that is, sender, 
receiver, and FS, is given in Figs. 3, 4, and 5, 
respectively. 
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Figure 3.  OACK algorithm of the sender 

 
Figure 4.  OACK algorithm of the receiver 

 
Figure 5.  OACK algorithm of the FS 

 

4) Stepwise Probabilistic Algorithm 
OACK algorithm selects a subset of receiver nodes to 

serve as buffers by enhancing the SFSP algorithm, 
elaborated in [5] with the buffer size utility. In the 
stepwise probabilistic algorithm [22], the set of long-term 
buffers are chosen randomly from all receiver nodes. 
Every node sends buffering requests randomly to one of 
its neighbors with a probability equal to each node’s 
buffer fullness ratio. The algorithm provides a fairly 
uniform distribution, where every node does not have the 
complete view of the entire group of receivers. The 
probabilistic algorithm works when the number of 
generated messages is lower than the total long-term 
buffer capacity of the system. When the long-term buffers 
of the nodes become full, and if a member receives a 
buffering request message, the node directly sends a 
buffering request to one of its neighbors, and the 
receiving neighbor performs the same process again. 
Therefore, the buffering request is forwarded peer-by-
peer until the STL value expires. The nodes on which the 
STL value expires would buffer the corresponding 
message. The buffering load distribution uniformity of 
the probabilistic algorithm is observed only when the 
number of generated messages approaches the total long-
term buffer capacity of the system.  

The algorithm uses a probabilistic scheme that works 
on every node to determine the bufferers of a message. 
Every node sends the buffering requests randomly to one 
of its neighbors with a probability equal to the node’s 
buffer fullness ratio. The algorithm provides a fairly 
uniform distribution, where every node does not have the 
complete view of the entire group of receivers. 

The algorithm does not provide uniformity before the 
nodes reach their long-term buffer sizes, similar to the 
case when the number of generated messages exceeds the 
total long-term buffer capacity. In the algorithm, 
assuming that all buffers are initially empty, neighbors in 
the first hop of the sender accept the buffering requests 
with higher probability than the farther nodes. Thus, the 
buffer levels of the nodes close to the sender node are 
much higher, whereas those of the ones far from the 
sender are approximately zero. This algorithm is 
implemented in the STRM protocol. 

The next section explains the enhancement to the 
STRM protocol to avoid duplication caused by a 
retransmission of lost packets in the FS node local group. 

B. Enhancement of the Local Error Recovery 
The second proposed enhancement for STRM, 

elaborated in the [5], is the local error recovery. STRM 
allocates FS nodes in each local region and makes them 
responsible for error recovery among all the other 
receivers in the same region. These FS nodes retransmit 
lost packets to all group members belonging to each 
node’s local region. Therefore, this retransmission causes 
duplication for members that have already received the 
same packet correctly. This section proposes two 
algorithms for error recovery to avoid duplication for 
multicast data deliveries. The presented algorithms can be 
applied to tree-based multicast protocols [32]. 
Furthermore, dedicated support is provided for protocols 

Algorithm FS_OACK(FSi,Pj,Rk) 
1. count = 0 
2. while (true) 
3.  if (pktPj from sender arrives) { 
4.     if (pktPjNOT received before) { 
5.        storepktPj in buffer 
6.        increment count 
7.     endif} 
8.  endif} 
9.  if (ACK pktPj from receiver Rk arrives) { 
10.     P = min { Pj | K

jNj ≤≤1 } 

11.     remove up to pktP from its buffer 
12.     if (count ==size of sent window)   
13.        unicast ACK for P to sender node 
14.     endif} 
15.  endif 
16.  if (NAK pktPj from receiver Rk arrives) { 
17.  remulticastpktPj 

18.     P = min { Pj | } 

19.     remove up to pktP from its buffer 
20.     if (count == size of sent window) { 
21.        unicast ACK for P to sender node} 
22.     endif} 
23.  endif 
24. endwhile 

 

K
jNj ≤≤1

Algorithm Receiver_OACK(FSi,Pj) 
1. count = 0 
2. while (true) 
3.  if (pktPj from sender arrives) { 
4.    if (pktPjNOT received before) { 
5.       increment count 
6.       if (count ==size of sent window) { 
7.   unicast ACK for count to FSi node}  
8.      endif}  
9.  endif} 
10.    endif 
11.    if (missing pktPj detect) { 
12.        unicast NAK pktPj to FSi} 
13.    endif 
14. endwhile 

 

Algorithm Sender OACK() 
1. FSi = 0 ; for all 1  ≤  i ≤  NFS 
2. Pj= 0 ; for all 1  ≤  j ≤  NPKT 
3. multicast window of pkts 
4. S = size of sent window 
5. while (true) 
6.       if (ACK for pktPjfrom FSi arrives) { 

7.          selectPH = min { Pj |  FS
jNj ≤≤1 } 

8.          multicastpkts from S+1 to S + PH 
9. S = S + PH} 
10.       endif 
11.       if (NAK for pktPjfrom FSi arrives) { 
12. remulticastpktPj 
13.          remove up to pktPj-1 from buffer} 
14.       endif 
15. endwhile 
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that organize their group members using local group 
multicast and whose leaders are connected with the 
sender node. The next section proposes the enhancements 
to the local error recovery for the STRM protocol using 
Sub Sub-Casting algorithm (SSC) that avoids duplication 
of retransmitted packets in local group members. 
 

1) Sub Sub-Casting Algorithm 
 

The SSC algorithm is used for lost packet recovery, 
where the multicast tree is partitioned into local groups. 
This algorithm is based on the NAK packets received 
from the local receiver nodes to the FS nodes. Each FS 
node acts as the local deliverer that provides a recovery 
service to the nodes of the local group. In this algorithm, 
each FS node is required to retransmit lost packets only to 
the effected receivers that have requested the packets. 

The SSC is an algorithm where the FS nodes send data 
packets and receive the ACK/NAK packets from its local 
group nodes, which act as a sub-group of the original 
multicast group. In this local group, the FS node 
multicasts the requested lost packet only to the affected 
receiver nodes located in the FS node local group when 
the number of the affected receiver nodes requesting for a 
certain packet is greater than a specific threshold. This 
mechanism allows affected receiver nodes to recover 
from the same packet loss with only one retransmission 
from the FS node. 

Multicasting the lost packet only to the receivers that 
request that packet decreases the number of duplicated 
packets, thereby, reducing the number of packets 
transmitted through the network. This reduction will in 
turn increase the performance of the system. 
Subsequently, this mechanism requires the FS node to 
create a temporary dynamic multicast group, whose 
members are only those that have requested the lost 
packet, as shown in Fig. 6. 
 

 
Figure 6.  An example of sub sub-casting tree 

The created temporary dynamic multicast group is a 
sub-group of the local group that is also a sub-group of 
the global multicast group. Thus, this group is a sub-
group of another sub-group, denoted as sub sub-casting, 
as shown in Fig. 7. 

 
Figure 7.  Sub sub-casting algorithm 

Any receiver that detects any lost packet is required to 
send a NAK to its FS node to build the sub sub-casting 
group. The FS node registers the sequence number of the 
lost packets and the ID of the receiver node that requests 
the lost packet in the retransmission queue. Upon 
retransmission, the FS node knows which receiver has 
requested for the lost packet. If the number of the receiver 
is greater than the multicast threshold, a temporary 
multicast group, consisting of the receiver nodes that 
have requested for the lost packet, is, therefore, created. 
Meanwhile, if the number of receiver nodes requesting 
for the packet is smaller than the multicast threshold, the 
packet is then unicast to each requesting receiver, as 
shown in the SSC algorithm in Fig. 7. The SSC algorithm 
cannot be implemented in protocols that use the NAK-
based with NAK suppression because the idea of this 
algorithm is to reduce the number of receivers sending 
NAK packets to the sender node. Therefore, the SSC 
algorithm requires each receiver node to send a separate 
NAK packet to the FS nodes for the FS node to identify 
all the receiver nodes that need the lost packet. 

The next section proposes improvements to the SSC 
algorithm to improve its performance in WLANs and 
reliability in MANETs. The improved algorithm, 
Improved Sub Sub-Casting Algorithm (SSC-I), is 
implemented to cause lower delay compared with the 
SSC algorithm. 
 

2) Improved Sub Sub-Casting Algorithm 
The SSC algorithm attempts to avoid duplication 

packets by creating a temporary dynamic multicast group. 
The FS nodes retransmit the lost packets only to the 
newly created sub-group. However, this solution is 
ineffective when the receiver node requesting a 
retransmission of the lost packet is distant from its FS 
node. Fig. 8 illustrates this case; the forward nodes 
located between the FS node and the requesting node 
receives the retransmitted packet again to forward the 
packet to the requesting node R. 

 

Algorithm SubSub-Casting (THRESHOLD, P) 

1. Requesti = nodes that request the pktP 
2. if (Requesti ≥ THRESHOLD) { 
3.    for all Requesti in FSj; for all 1 ≤ j ≤ NFS 
4.       if (Requesti Status == 0) {// the pkt in the buffer 
5.          multicast (Requesti(P))} 
6.       endif} 
7. endif} 
8. else { 
9.      for all Requesti in FSj; for all 1 ≤ j ≤ NFS 
10.         if (Requesti Status == 0) { 
11.             unicast (Requesti(P))} 
12.         endif}} 

 

 

FS

Sub Group

Sub Sub-Group FS

Sub Group

Sub Sub-Group

Journal of Communications, Vol. 8, No.2, February 2013

143



 
Figure 8.  Request and repair in the SSC algorithm 

The ACK packets in SSC-I are sent upstream to the FS 
nodes at regular intervals, but NAK packets are sent in an 
event-driven manner to reduce the end-to-end delay. 
Packet losses are identified through gaps in the sequence 
numbers of the received packets. In SSC-I, the affected 
node R is required to send a retransmission request for 
each of the missing packet to recover from such packet 
losses. If R does not receive the lost packet before the 
ACK time interval, R generates a retransmission request 
to its FS node directly. The FS node then unicasts the lost 
packet to R. 

Fig. 9 shows that data paths are specific to each FS 
node. Efficiently recovering from packet losses 
necessitates that node R selects the retransmission request 
of the lost packet from the node that is an upstream node 
on a specific FS's data path. According to Fig. 9, node R 
requests retransmissions of packets sent by the FS node 
from node B. Node B is the forwarding node to node R 
and sends the lost packet to node R directly. 

 
Figure 9.  Specific forward data path in SSC-I 

IV.  SIMULATION SETUP 

A. Simulation Environment 
The simulation tool was developed for an ad-hoc 

network environment to build a reliable multicast 
transport protocol that allows a single sender to deliver 
packets in an ordered manner to a group of multicast 
receivers. Furthermore, given the limited development 
resources in simulator tools, a discrete-event simulation 
tool for MANET environment was developed in Visual 
C++. This tool analyzes the performance of both the 
existing and proposed algorithms. 

Fig. 10 depicts the block diagram of the developed 
simulation tool. The figure shows the data and control 
flows inside a component of the simulation tool. The 

component can represent a sender or receivers. The data 
flow is depicted in a regular dark line, whereas the 
control flow is depicted in a dashed line. Two separate 
buffers for transmission and retransmission are presented. 
Similarly, separate transmission mechanisms are 
presented for multicast and unicast. Separate entities are 
shown to manage the control messages for group 
management and flow control. In addition, separate 
buffers are provided for ACK and NAK. The block 
diagram contains the algorithms that improve the 
multicast, such as SFSP, buffer management, and local 
error recovery algorithms. Two main components are 
depicted in the simulation design: sender node and 
receiver nodes. 
 

 
Figure 10.  Block diagram of the simulation tool  

In this study, all nodes and links were assumed to work 
properly and none of them fails during simulation. The 
simulation program was run ten times with the same input 
variables. The results were taken as the average of these 
iterations to obtain accurate results. Furthermore, the 
MANET topology model was randomly generated for a 
fixed number of nodes. The location of each node was 
assumed to be on the two-dimensional coordinate system 
(x,y), and each location is generated randomly in a 
uniform distribution. The variable inputs needed to create 
the random topology are as follows: first, the fixed 
number of nodes in the network; second, the initial 
network area to begin with; third, the mobility model and 
the node speeds; and finally, the unique address or ID of 
every node. 

In addition, the transmission range was 250 m, typical 
for mobile devices. The scenario area of the simulation 
was limited to 700 m × 700 m to reduce the likelihood of 
no connectivity when the nodes are allowed to go beyond 
the area. This consideration was based on the session 
size. Radio irregularity factors were not considered in 
these simulations. Therefore, if node i can send a message 
to node j, node j can also send a message to node i. The 
parameter settings and values used in the simulation are 
shown in Table 1. 

Simulation 
Engine 

Link Delay 
Model Error Model

Network 
Topology

.

.

.

No. of Nodes
Initial Network Area 

Mobility Model

Receiving 
Buffer

Transmutation 
Buffer

Buffer Management

Local Error Recovery

Multicast Tx

Unicast 
Tx

Retransmission 
Buffer

Error Recovery

CTRL INQ

Group 
Management 

Control 
Message

Garbage 
Collection

Follow 
Control

NAK 
INQ

ACK 
INQ

Data OutputCtrl Output

.

.

.

SFSP

 

 

Journal of Communications, Vol. 8, No.2, February 2013

144



TABLE I.   
SIMULATION PARAMETERS 

 

Description Value 

PACKET_SIZE 512 bytes 
NO_NODE 100 
SESSION_SIZE Variable 
LINK_BW 2 mbps 
TRANSMISSION_RANGE 250 
AREA_SIZE 700x700 m2 
MESSAGE_SIZE 2000 packets 
LOSS_RATIO 0.1 
NODE_SPEED 0, 5, 10, 15, 20, 25 m/s 
QUEUING_DELAY 20–80 ms 
PROPAGATION_DELAY 10 ms 
PAUSE_TIME 1, 2, 5, 10, 15, 20 s 
HELLO_TIME 1 s 
ROUTE_TABLE_TIMEOUT 960 ms 
MEMBER_TABLE_REFRESH 400 ms 
MEMBER_TABLE _TIMEOUT 960 ms 
ROUTE_TABLE_REFRESH 160 ms 
FG_TIMEOUT 480 ms 

 

B. Performance Metrics 
The following performance metrics were used to 

evaluate the efficiency and effectiveness of the 
algorithms. Duplicate request and retransmitted messages 
were taken into account in these measurements. 
 
• Buffering load: Buffering load is the total number of 

packets buffered by each node when a specific sender 
node is chosen as the message sender. 

• Percentage of request packets: Percentage of request 
packets is the ratio of the number of requests for lost 
packets transmitted by receiver nodes to the total 
number of the original data packets transmitted by the 
sender.  

• Average retransmission packets: Average 
retransmission packets are the ratio between the 
number of retransmission packets transmitted by the 
sender and forwarding nodes and the total number of 
the original data packets transmitted by the sender. 

• Average end-to-end delay: Average end-to-end 
delay is calculated as the average difference between 
the time each data packet is transmitted by the sender 
and the time the packet is received by the receiver 
nodes, and then averaged over the total number of 
receiver nodes. 

• Average recovery latency: Average recovery latency 
is the average difference between the time at which a 
receiver node detects each missing packet and the 
time at which the missing packet is recovered at that 
receiver node, and then averaged over the total 
number of receiver nodes.  

• Percentage of duplicate packets: Percentage of 
duplicate packets is the ratio between the total 
retransmitted packets that are duplicates received by 
each receiver node to the total number of original data 
packets transmitted by the sender. This ratio is then 
averaged over the total number of receiver nodes. 

V. PERFORMANCE EVALUATION AND RESULT 
DISCUSSION 

This section presents and discusses the performance of 
the OACK, SSC, and SSC-I algorithms. The constant 
simulation parameters shown in Table 1 are used 
throughout the simulation.  

A MANET topology is randomly generated for 100 
nodes. The location (x,y) of each node was generated 
randomly in a uniform distribution. The buffer capacity 
of each node is 20 packets, and 2000 packets are 
broadcasted from a single sender. The sender and receiver 
nodes were randomly selected. The data packet window 
was periodically sent by the sender to the receiver nodes. 
The STRM protocol groups receiver nodes into local 
regions that provide a high degree of reliability and avoid 
the Feedback Implosion Problem, but suffer from buffer 
overflow and duplication of received packets. The 
OACK, SSC, and SSC-I algorithms are enhancements to 
the STRM protocol. 

First, the experimental results of the OACK buffering 
algorithm are presented. Its comparison with the Stepwise 
Probabilistic buffering and STRM protocol in terms of 
distributing the buffering load and data dissemination 
metrics are also exhibited. The Stepwise Probabilistic 
buffering utilizes the selected FS nodes in STRM as long-
term buffers. The STL value is set as 10 hops, gossip 
interval is 200 ms, which is equal to the Hello_Time 
interval. The First In First Out policy was implemented 
for all algorithms when the node buffer as full. 
Furthermore, the experimental results of the SSC and 
SSC-I algorithms and its comparison with the STRM 
protocol in terms of data dissemination metrics are given. 
Hence, the following sections present the effects of 
various session sizes and different mobility speeds on all 
algorithms. 

A. Buffering Load 
Fig. 11 shows the total number of packets buffered by 

each node when a sender node, ID 0, is chosen to be the 
message sender. In the experiments, the number of 
receiver nodes is 100 and the maximum movement speed 
of the nodes is 5 m/s. The probabilistic algorithm utilizes 
the selected FS nodes in STRM as long-term buffer and 
provides these nodes higher probability to buffer the data 
packets for retransmitted requested packets compared 
with other nodes, which has the same low probabilities. 
This mechanism leads to the buffer of larger number of 
packets in the nodes close to the sender; the probability to 
buffer in these nodes is increased. The OACK selects the 
FS nodes that have a sufficient buffer size among the 
suitable nodes in the first hop from the sender. The 
OACK exhibits better usage of the buffer load than 
STRM and the probabilistic algorithm.  

Fig. 11 shows that in all algorithms, some nodes buffer 
zero or fewer packets, which may be attributed to either a 
relatively higher number of nodes close to the sender in 
the first hop or the nodes located far from the sender 
during the entire simulation. STRM exhibits a 
significantly higher buffering load compared with OACK 
and the probabilistic algorithms. 
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Figure 11.  Comparison of buffering load, node 0 is the sender node 

B. Percentage of Request Packets 
Session Size Impact on the Percentage of Request Packets 

Fig. 12 shows the percentage of request packets as a 
function of session size. As shown in Fig. 12, STRM and 
the probabilistic algorithm show comparable percentages 
of requests when the session size is less than 40 out of 
100 receiver nodes. When the session size is more than 
40 receiver nodes, the probabilistic algorithm exhibits an 
increase in the percentage of requests because the 
buffering nodes eventually receive the data packets 
during the data packet sending. The receiver nodes in the 
probabilistic algorithm do not send ACK packets to 
discard the data packets in the long-term buffers in the 
algorithms such as STRM and OACK. This behavior 
causes the buffer to overflow in some of its long-term 
nodes. From the figure, the OACK exhibits less 
percentage of requests than the others. 

 

 
Figure 12.  Percentage of request when the session size increases 

Mobility Speed Impact on the Percentage of Request 
Packets 

Fig. 13 shows the effect of mobility speed on the 
percentage of request packets. The mobility speed causes 
some FS nodes to move away from the sender node, thus 
the sender makes another selection for new FS nodes for 
retransmission requests. The figure shows that the 
probabilistic algorithm has a higher percentage of 
requests than the others when the mobility speed 
increases. This result is due to the fact that when the FS 
nodes receive a request from their receiver nodes, and the 

requested packet is not in the buffer of the FS node, then 
the FS node passes the request to the other FS nodes, 
thereby increasing the number of requests. In STRM and 
OACK, when a request for a certain packet is received, 
and this packet is not in the buffer, the FS nodes pass this 
request to the sender node. The sender then sends the 
request packet. From this figure, OACK has the least 
percentage of requests compared with the others. 

 
Figure 13.  Percentage of request when the mobility speed increases 

C. Average of Retransmitted Packets 
Session Size Impact on the average of Retransmitted 
Packets 

Fig. 14 shows the effect of different session sizes on 
the average of retransmitted packets. Comparing OACK 
and probabilistic algorithm, the performance of the latter 
with a low mobility of 5 m/s causes more retransmitted 
lost packets. This behavior is due to the fact that 
probabilistic algorithm retransmits lost packets to the 
entire receiver nodes; thus, the retransmission of lost 
packet overhead increases relative to the session size. 
Other receiver nodes that have not actually requested a 
retransmission also receive a retransmitted message and 
duplicate retransmitted messages. 

 
Figure 14.  Average of retransmitted packet when the session size 

increases 

Mobility Speed Impact on the Average of Retransmitted 
Packets 

Fig. 15 shows the effect of mobility speed on the 
retransmission packet average. The probabilistic 
algorithm exhibits a higher average of retransmission 
than the others when the mobility speed is more than 10 
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m/s. Comparing the probabilistic algorithm and STRM, 
the average of retransmitted lost packets in the 
probabilistic algorithm increases relative to the mobility 
speed with high mobility. This result is due to the fact 
that probabilistic algorithm retransmits lost messages to 
the entire receiver nodes. From the figure, OACK causes 
less retransmitted request packets than the others when 
the speed increases. This behavior is due to the 
availability of the packets in the buffer of the FS nodes. 

 

 
Figure 15.  Average of retransmitted packet when the mobility speed 

increases 

D. Average End-to-End Delay 
Session Size Impact on the Average End-to-End Delay 

Fig. 16 shows the average end-to-end delay of data 
packets with increasing session sizes. In STRM and 
probabilistic algorithm, the average end-to-end delay 
increases slightly with the group size. STRM has a larger 
delay than the probabilistic algorithm and OACK when 
the session size increases. The reason for this behavior is 
the high control overhead in requesting for lost packets, 
resulting in an overflow in the buffer. OACK exhibits a 
stable and less average delay than STRM and the 
probabilistic algorithm when the session size increases. 

 

 
Figure 16.  Average of end-to-end delay when the session size increases 

Mobility Speed Impact on the Average End-to-End Delay 
Fig. 17 shows the average end-to-end delay as a 

function of mobility speed. The probabilistic algorithm 
has a larger delay than STRM and OACK when the 
mobility speed increases. This difference becomes more 

evident as the mobility speed increases to more than 10 
m/s, as shown in Fig. 17. The reason for this behavior is 
the overflow in the buffer caused by the high control 
overhead in requesting for lost packets. OACK exhibits a 
stable and less average delay than STRM and 
probabilistic algorithm when the mobility speed 
increases. 

 

 
Figure 17.  Average of end-to-end delay when the mobility speed 

increases 

E. Average Recovery Latency 
Session Size Impact on Average Recovery Latency 

Fig. 18 shows the average recovery latency when the 
session size increases. Probabilistic algorithm causes a 
larger latency than STRM and OACK. OACK has less 
recovery latency than the others. The FS buffering nodes 
are selected immediately in OACK and STRM because 
the sender has a full knowledge of the receiver nodes in 
the network. Meanwhile, the probabilistic algorithm has a 
higher latency time than the STRM because the FS nodes 
determined by STRM are used as buffering nodes. Other 
buffering nodes are also determined and used when the 
probability to buffer on these nodes is high when a 
message is generated and is directly sent to the buffering 
nodes. 

 

 
Figure 18.  Average of latency time when the session size increases 

Mobility Speed Impact on Average Recovery Latency 
Fig. 19 shows the effect of mobility speed on the 

average recovery latency. Furthermore, the effect of 
mobility speed on the probabilistic algorithm causes a 
higher average latency compared with OACK and 
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STRM. Probabilistic algorithm causes a larger latency 
than STRM and OACK. OACK has less recovery latency 
than the others. Hence, the latency of OACK does not 
increase further with mobility speed, indicating that the 
algorithm scales well. 

 

 
Figure 19.  Average of latency time when the mobility speed increases 

F. Percentage of Duplicate Packets Performance 
Session Size Impact on the Percentage of Duplicate 
Packets 

Fig. 20 shows the effect of session size on the 
percentage of duplicate packets. Each member calculates 
the percentage of retransmitted packets received. The 
result is averaged over all receivers in the group. 
Furthermore, SSC and SSC-I exhibit less percentage of 
duplicate packets compared with STRM and probabilistic 
algorithm when the session size increases. Probabilistic 
algorithm exhibits a higher percentage of duplicate 
packets than the other algorithms. The reason for this 
behavior is that when the probabilistic algorithm 
retransmits lost requested packets, it multicasts the 
packets to the entire receiver group, thereby causing 
duplicates in the receiver that already received the same 
packets during the transmission time. 
 

 
Figure 20.  Percentage of duplicate packets when the session size 

increases 

Mobility Speed Impact on the Percentage of Duplicate 
Packets 

Fig. 21 shows the effect of mobility speed on the 
percentage of duplicate packets. SSC and SSC-I have less 

percentage of duplicate packets when the mobility speed 
increases. The probabilistic algorithm has a higher 
percentage of duplicate packets than the others. The 
reason for this result is that when the probabilistic 
algorithm retransmits lost requested packets, it multicasts 
these packets to the entire receiver group, causing 
duplicates in the receiver that already received the same 
packets during the transmission time. 

 

 
Figure 21.  Percentage of duplicate packets when the mobility speed 

increases 

VI. CONCLUSION 

This article presented the OACK, SSC, and SSC-I 
algorithms. Buffer management was enhanced through an 
innovative OACK buffering algorithm that explicitly 
addresses the variances in delivery latency for a multicast 
group, caused by buffer overflow. The algorithm reduces 
buffer requirements by adaptively enhancing the selection 
of the FS nodes to buffer the data packets among 
members with larger empty buffer space. The key idea of 
the algorithm is to use the buffer utility approach in 
selecting the FS nodes, and the ordered ACK from 
receiver nodes to a sender node. This approach is a 
powerful technique to achieve high robustness and 
efficiency of a reliable multicast in MANETs. STRM 
optimizes local error recovery through innovative SSC 
and SSC-I algorithms. 

The algorithms enhanced the error recovery by 
eliminating the duplication of retransmission repair 
packets in local groups. In these algorithms, the requested 
packet was multicast only to the receivers that request the 
packet. STRM implements the OACK algorithm to 
decrease the buffer overflow problem by adaptively 
enhancing the selection of the FS nodes and decreasing 
the feedback control packets sent from the receiver nodes. 
Thus, the selection of FS node was enhanced to buffer the 
data packets among suitable members with larger empty 
buffer space. However, the feedback control packets sent 
periodically from receiver nodes acknowledge only the 
last data packet of the transmission window received 
from the sender. STRM implements the SSC and SSC-I 
algorithms to enhance the error recovery in local groups 
by creating a temporary sub-group to overcome the 
duplication problem of the retransmission repair packets. 
Furthermore, the results proved that the SSC and SSC-I 
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algorithms are scalable and can be used for a large 
number of receiver nodes in tree-based protocols, where 
the increments of the average delay time are smaller.  

For future research studies, we intend to evaluate the 
proposed algorithms in various wireless environments, 
along with more realistic and comprehensive mobility 
models and experiment scenarios. 
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