
Reliable Buffering Management Algorithm
Support for Multicast Protocol in Mobile Ad-hoc

Networks

Tariq Alahdal
Faculty of Computer Science and Information System, Thamar University, Thamar, Republic of Yemen

Email: dr.tariq@ieee.org

1Raed Alsaqour, 1Maha Abdelhaq, 2Rashid Saeed, and 3Ola Alsaqour
1Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia

2Faculty of Engineering, Sudan University of Science and Technology (SUST), Khartoum, Sudan
3Faculty of Engineering and Technology, University of Jordan, 11942, Amman, Jordan

Email: {raed, maha}@ftsm.ukm.my, 2eng_rashid@ieee.org, 3alsukour@gmail.com

Abstract: Multicasting is one of the relevant issues of
communication in infrastructure or centralized
administration networks. The reliable delivery of multicast
data packets needs feedback from all multicast receivers to
indicate whether a retransmission is necessary. A reliable
multicast delivery in the wireless Ad-hoc network requires a
multicast packet to be received by all multicast receiver
nodes. Thus, one or all members need to buffer data packet
for possible error recovery. Furthermore, different buffer
strategies are essentially used in existing reliable multicast
protocols towards support error recovery and reducing
buffer overflow. This study proposed two algorithms to
improve the performance of the source tree reliable
multicast (STRM) protocol. The first algorithm was
developed to avoid buffer overflow in the sender node as the
forward server (FS) nodes of STRM. This reduction is
achieved by managing the buffer of the FS nodes, i.e.,
selecting the FS nodes depending on its empty buffer size
and reducing the feedback sent from the receiver nodes to
their FS node. The second algorithm was developed to
decrease duplicated packets in the multicast members of the
local group, which may be achieved by sending the repair
packets to the requesting member. The FS in the local group
should create a dynamic and temporary subgroup whose
members are only those that requested the repair packet
retransmission. The algorithms were tested using detailed
discrete event simulation models encompassing messaging
systems including error, delay, and mobility models to
characterize the performance benefits of the proposed
algorithms compared with the existing wireless Ad-hoc
network protocols. Several experiments were conducted,
revealing numerous results that verify the superior
performance of the proposed algorithms over the existing
algorithms.

Index Terms: Buffer management, ad-hoc networks, forward
servers, reliable multicast

I. INTRODUCTION

Mobile ad-hoc network (MANET) is a collection of
mobile nodes (MNs) that form dynamic and temporary
networks. MNs work in collaborative nature to carry out

a given task. They can receive and transmit data packets
without using any existing network infrastructure or
centralized administration. The reliable multicast delivery
in the MANET requires a multicast packet to be received
by all multicast receiver nodes. Thus, one or all members
need to buffer data packet for possible error recovery.
Buffer management algorithms in existing reliable
multicast protocols essentially use different strategies to
decide the members that should buffer packets for error
recovery, and determine how long these packets should
be buffered to reduce buffer overflow [1].

Earlier studies have demonstrated that several reliable
multicast protocols adopt a distributed error recovery
algorithm that allows one or all members to retransmit
packets lost by other members. In the tree-based reliable
multicast transport protocol (RMTP) [2, 3], a repair
server buffers all data packets received in the current
multicast session. The protocol was originally designed
for multicast file transfer. In this protocol, a repair server
buffers the entire file in a secondary storage. The
approach is feasible only when the size of the data
transmitted in the current session has a reasonable limit.
For a long-lived session or setting where repair servers
lack space, the amount of buffering can become
impractically large. Several reliable multicast protocols
use a stability detection algorithm to detect when a
message is received by all members in the group, and
determine whether the message can safely be discarded
[4]. These protocols require group members to
periodically exchange information on message history
and the set of messages they received. In addition, a
failure detection algorithm is needed to provide
information to the current group membership, causing
high message traffic overhead because the algorithm
requires frequent message exchanges.

The source tree reliable multicast (STRM) [5] protocol
provides a reliable multicast by constructing a logical tree
at the transport layer for local error recovery. The STRM
protocol group multicasts receivers into local groups and

Journal of Communications, Vol. 8, No.2, February 2013

136©2013 Engineering and Technology Publishing
doi: 10.12720/jcm.8.2.136-150

selects small sets of receivers, called FS, as error
recovery representatives. The FS node should keep in its
buffer the packets that were not correctly received from
all multicast members in its local group. At the same
time, the FS node retransmits the repair packet to all
multicast members in its local group using multicast.
However, the STRM protocol has two limitations. The
first is the ability to efficiently manage the FS node
buffer to avoid buffer overflow. When the sender sends
new packets, the FS node is directed to drop new packets
when its buffer is not empty, thereby preventing such
packets from being forwarded. Meanwhile, instructing
the FS node to drop old packets prevents these packets
from being forwarded for a sufficient amount of time.
The second limitation is when the FS node receives a
number of requests for a certain packet from its multicast
members in its local group. The algorithm will retransmit
the requested packet to all group members that belong to
its local region. This retransmission causes duplication
for members that have correctly received the same
packet. These observations were the motivation of the
current study.

The two algorithms proposed in this study aims to
provide an improved way to discard stable packets from
the FS node buffers and decrease duplicated packets at
the receiver nodes. In these algorithms, each FS node
requires their receiver nodes to transmit both positive and
negative acknowledgement to efficiently manage their
buffers. Based on the feedback sent by their receiver
nodes, the FS nodes forecast the packets that do not
require retransmission and remove these particular
packets from the buffer. At the same time, the FS node
retransmits the requested packet to the receiver nodes that
made the request. The results of various simulation
experiments, have revealed the potential benefits of the
proposed algorithms, including the following: (i)
enhancing buffer management through an innovative
proposed buffering algorithm that explicitly addresses the
variances in delivery latency for multicast group caused
by buffer overflow;(ii) decreasing buffer overflow by
adaptively enhancing the FS node selection and
decreasing the feedback control packets sent from the
receiver nodes; (iii) reducing buffer requirements by
adaptively enhancing FS node selection to buffer the data
packets among members that have larger empty buffer
spaces; and (iv) enhancing error recovery by eliminating
the duplication of repair packet retransmission in the
local groups.

The rest of the article is organized as follows:
Section 2 introduces an overview of the mobile ad-hoc
networks, buffer management, and relevant studies.
Section 3 describes the proposed buffer mechanism.
Section 4 presents the simulation scenarios, followed by
the aspects to be studied in section 5. Performance
evaluation and results are discussed in Section 6. The
conclusion is presented in Section 7.

II. BACKGROUND AND RELEVANT STUDIES

A. Mobile Ad-hoc Networks
MANET is a wireless communication that allows

nodes to communicate with or without existing
infrastructures, as shown in Fig. 1. MANET operates in
isolation or requires connection to a fixed network (such
as the Internet) through a base station (gateway).
MANET lacks the centralized administration or standard
support services regularly available on conventional
networks [6],[7].

Fig. 1 shows the MANET with six mobile nodes. If
node N6 wants to communicate with node N4 in the ad-
hoc network, N6 must use a routing protocol to
communicate over multiple hops; for example (N6→
N5→N3→N4).

Figure 1. MANET

The nodes that form a MANET are capable of
receiving and transmitting packets in an ad-hoc manner
without a base station. More importantly, nodes act as an
edge device and a router, and are thus able to route
packets between the source and destination nodes not
within their transmission range. Nodes can be constrained
by battery power or processing capabilities. Nodes have
varying mobility degrees; they can switch off or move
into or out of the range of other nodes in the MANET,
thereby changing the MANET topology. Meanwhile,
wireless connectivity between nodes is limited by
transmission range and signal attenuation due to terrain
and interference. Thus, MANETs are characterized by
low bandwidth, high error rates, intermittent connectivity,
and dynamic topology [8], [6], [9], [10], [11], [12].

Ad-hoc networks employed in several scenarios are
particularly useful in dynamic network environments,
where network topology continuously changes. These
networks are also useful in areas where networking
infrastructure implementation is difficult. An increasing
number of ad-hoc network applications require a sender
to distribute the same data to a large group of receivers.
These applications fall in the category of group
communication, as opposed to the traditional one-to-one
communication [13]. Accordingly, multi-point
communication (i.e., multicast) offers the most efficient
way to support this application by delivering a single
message to multiple recipients [9], [14], [15].

Journal of Communications, Vol. 8, No.2, February 2013

137

B. Buffer management algorithms and relevant studies
For supporting multicast protocol reliability, the error

recovery mechanism is achieved via efficient buffer
management design. An efficient buffer management
algorithm is an indispensable part of an error recovery
mechanism. The existing buffer management algorithms
are classified into reducing the buffer usage, flow control
and providing packet stability.

1) Reducing the buffer usage
In [16], the researchers proposed an efficient buffering

policy where only a small set of receivers buffer the
packet to reduce the total buffer requirement amount.
Upon receiving a packet, a receiver node determines
whether it should buffer the packet using a hash function
based on network address and the packet number.
Receivers that lost packets use a hash function to select
the set of members that have the packet in the buffer and
request a packet retransmission. However, the uniform
selection methods among different receivers do not
consider new members in the system. Thus, scalability is
constrained because the latency for error recovery
increases with the number of participants.

The randomized reliable multicast protocol (RRMP)
[17] is an improvement of the bimodal multicast protocol
(BMP) [18]. BMP uses a simple buffer management
policy, wherein each member buffers packets for a fixed
amount of time after their initial reception before
discarding them. By contrast, the buffer space in RRMP
is divided into a two-phase buffering policy: a feedback-
based short-term buffer and randomized long-term buffer.
The members are grouped into local regions formed
according to their distance from the sender. A receiver
has the member information in its local and parent
regions. Every member that receives a packet buffers it
for a short period of time to facilitate the retransmission
of lost packets in its local region. Only a small random
subset of members in each region continues to buffer the
packet. In RRMP, a member sends request messages to
all members in its local region when it detects a missing
packet. However, this process takes a long time for the
receiver to search and find the correct repair nodes as the
number of participants increase.

In the tree-based reliable multicast transport protocol
(RMTP) [2, 19], a repair server buffers all data packets
received in the current multicast session. The protocol
was originally designed for multicast file transfers. In this
protocol, a repair server buffers the entire file in a
secondary storage. The approach is feasible only when
the size of transmitted data in the current session has a
reasonable limit. For a long-lived session or setting with a
small buffering space in the repair servers, the buffering
amount can become impractically large. A hierarchical
tree-based approach is used in RMTP. Receivers are
grouped into local regions and a special receiver, called
the designated receiver, is assigned in each region. Each
designated receiver has knowledge of the members in its
local region and the sender. The designated receiver in
each local region is responsible for periodically sending
acknowledgments to the sender, processing
acknowledgment from receivers in its domain, and

retransmitting lost packets to the corresponding receivers.
Unfortunately, the periodic feedback policy significantly
delays error recovery. RMTP stores the whole multicast
session data in the secondary memory of the repair nodes
for retransmission, making it poorly suited for transfers of
large data amounts. Some of these problems were
addressed in RMTP-II by the addition of negative
acknowledgment (NAKs) [20].

In the reliable multicast protocol for wireless Ad-hoc
networks (ReMHoc) protocol [21], the error recovery
load is distributed from the sender to all multicast
receivers. In ReMHoc, when a receiver detects a lost
packet, it waits for a random time determined by its
distance from the original data source before sending a
repair request. Repair requests are multicast to the whole
group similar to regular data packets. This process allows
the nearest receiver to retransmit the packet by
multicasting. All receivers in the ReMHoc protocol must
keep all the packets in their buffer for retransmission. In
this process, the sender cannot detect or does not know
the safe time to discard an already sent packet from the
buffer. Similarly, this scheme is not well-scaled because
the requests sent by each receiver for each incorrectly
delivered packet can lead to a request implosion at the
sender node.

A stepwise probabilistic buffering algorithm based on
epidemic algorithms was proposed in [22] to provide
scalability and reliability. The stepwise probabilistic
buffering reduces the amount of buffering by distributing
the buffering load to the entire system where every node
does not have the complete view of the entire receiver
group. In every receiver group, all peers only have partial
knowledge of the participants. In this algorithm, only a
small subset of the node keeps a data message in its long-
term buffer. The long-term buffers are determined
through a stepwise probability search algorithm inspired
by the random forwarding encountered in epidemic
algorithms [18], [23]. A node is susceptible when it has
not yet received an update. The node implements the anti-
entropy algorithm to recover missing update messages.

This algorithm provides probabilistic warranties that
sent operations will be divided to all connected nodes.
The anti-entropy algorithm randomly selects a neighbor
in the local table of neighbors and sends a digest of
received messages. In the anti-entropy process, non-
faulty nodes are always either susceptible or infectious. In
this algorithm, each node periodically picks f (fan-out)
other nodes at random and exchanges its state
information with the selected one. The algorithm uses a
pull-based approach, where data dissemination is
triggered by susceptible nodes when they are picked as
gossip destinations by infectious nodes, to spread
information.

Each node in the stepwise probabilistic buffering
algorithm periodically selects f random nodes from its
partial view and sends a digest including the recent
message history. The node digest contains the state
information for the last d messages the node has received
so far and their bufferer identifiers. Upon receiving a
digest, a node can determine the lacking messages and

Journal of Communications, Vol. 8, No.2, February 2013

138

can request them from the bufferers indicated in the
digest for retransmission. If a bufferer crashed or cannot
retransmit the message, the request can be forwarded to
another bufferer. The source sends buffering request
messages to randomly selected b nodes in its partial view
to determine the bufferers of a data message. Parameter b
is the number of bufferers per message. For a data
message, the bufferer nodes are determined
simultaneously if b > 1. Buffer fullness (BF) node ratio is
the ratio of the number of messages stored in the node
buffer to its long-term buffer capacity. Steps-to-live
(STL) value attached to a buffering request message
indicates the maximum number of times that request
messages can be forwarded among nodes. When a node
receives a buffering request message for a particular data,
it accepts the request with probability (1 – BF).
Otherwise, the node forwards the message to a randomly
selected node from its partial view with a probability
equal to BF. For example, if 90% of the long-term buffer
is full, the node becomes the message bufferer with a
probability of 0.1, and then sends the buffering request to
one of its neighbors with a probability of 0.9.

A decision trade-off exists for the STL value of the
bufferer request messages. Uniform selection of bufferers
is easily achieved when the STL value chosen is large
enough because the request message can visit more nodes
and find a suitable buffer place. However, frequent
exchange of history messages to determine the bufferers
of a data message causes high traffic, resulting to higher
delays because of the bufferer determination rounds.

2) Network flow control
Flow control is an adaptive mechanism that deals with

varying resources such as CPU speed and receiver node
bandwidth. Buffer optimization techniques in this
category adjust the network rate to minimize buffer
overflows at the receiver nodes.

In [24], the researchers investigated the effects of
buffering rate and flow control in several
acknowledgement (ACK)-based and NAK-based reliable
multicast protocols. Most of the rate-based multicast
protocols remain equally vague on that issue because the
absence of NAK from a receiver for a given packet is not
a definite indication that the receiver received the packet.
In other major studies, [25] and [26] proposed a
retransmission control scheme for NAK-based multicast
protocols. Their schemes require the sender to reduce its
transmission rate upon receiving NAKs for several of its
packets. The sender keeps a log of its past transmission
rate to prevent excessive transmission rate decrease. This
scheme was efficient; however it minimizes buffer
overflow occurrences rather than eliminating them, as
that of a sliding window protocol.

A different idea explored in [27] requires every
process to calculate the average buffer capacity among all
communicated processes, and then transmit the
information. When the rate is too high, with respect to the
average, the process locally reduces the rate. Indirectly,
the information sources get such feedback and reduce the
information production rate. However, the information

production rate is adjusted according to the process with
the smallest buffer space.

3) Packet stability
A packet is stable when it is delivered to all group

members. Buffer management approaches that explicitly
take stability into account exist. In [4], the researchers
proposed a stability detection algorithm for discarding
safe packets from the buffers. The members are
partitioned into groups, and every node is included in the
error recovery. This process is achieved by letting the
receivers periodically exchange history information about
the received sets of packets. Eventually, one receiver in
the group becomes aware that all the receivers in the
group successfully received the packet and announces
this to all the group members. Moreover, all members can
safely discard the packet from the buffer. However, this
algorithm causes high message traffic due to the frequent
exchange of history messages.

The search party protocol [28] is another protocol
where timer contribution helps to discard packets from
the buffers. All the members discard packets after a fixed
amount of time to achieve stability. However, the
protocol remains vague on the problem of selecting the
proper time interval for discarding packets. A heuristic
buffer management method based on ACKs and NAKs is
proposed in [29] to provide scalability and reliability. In
every group of receivers, one or more members possess
higher error rates than the other members. These nodes
are those with the least reliable and slowest links. The
idea of this method is that when a message is correctly
received by the nodes, it has been probably received by
all of the other nodes. Thus, repair nodes that buffer the
message can discard it.

Network friendly epidemic multicast [30] combines a
standard epidemic protocol with a novel buffering
technique that combines different selection techniques for
discarding messages in case of a buffer overflow. The
used selection strategies are random purging, age-based
purging, and semantic purging. Random purging refers to
the random discarding of an item from the buffer. Age-
based purging is simply discarding the oldest message,
whereas semantic purging means discarding a message
recognized as obsolete. Obsolescence relation is
determined by the application.

The least recently used (LRU) buffer replacement
scheme is considered in [31] for epidemic information
dissemination. In the LRU scheme, a new message is
placed on the first position and the message at the rear is
discarded. However, when a request arrives for a message
in the buffer, that message is placed on the first position
by moving the front items one position down. The least
used item stays at the rear of the stack and is possibly
next to be discarded.

The aforementioned buffer management algorithms
indicate that several existing approaches are not sufficient
to guarantee an efficient buffer management. This result
could be caused either by the fact that uniform selection
method among different receivers does not consider new
members in the system, or the receiver spends too much
time searching and finding the correct repair nodes as the

Journal of Communications, Vol. 8, No.2, February 2013

139

number of participants increase, or the periodic feedback
policy significantly delays error recovery. Furthermore,
high message traffic due to frequent exchange of history
messages can increase buffer overflow and network
overhead. Moreover, the buffer messages are discarded
by the repair nodes because if these messages were
correctly received by these nodes, it has probably been
received by all of the other nodes. By contrast, the
proposed buffering mechanism appends the silent feature
technique, which gains superior approach performance
along with inferior buffer overflow. In addition, network
overhead directs towards performance improvements to
satisfy the Quality of Service (QoS) requirements for
best-effort and real-time applications.

III. THE PROPOSED BUFFER MANAGEMENT ALGORITHM

This section provides a detailed description of the
proposed ordered ACK (OACK) buffer management
algorithm, along with consideration of its techniques, in
enhancing the local error recovery using sub sub-casting
and the improved of sub sub-casting algorithms.

A. Ordered ACK (OACK) buffer management
As described in [5], the STRM protocol distributes the

responsibility of error recovery among the selected set of
its one hop neighbor nodes. The sender ensures that all
directly FS nodes connected, correctly received certain
packet numbers by checking the ACK received from its
FS nodes. In the next sending interval, the sender sends a
number of new packets equal to those correctly received.
Utilizing the method of computing, the available window
can cause an overflow at the buffer of one or more FS
nodes because the sender does not know the FS node
situation. This problem occurs because each FS must
keep all incorrectly received packets by the buffer of its
receivers. As a result, the FS cannot retransmit all the
retransmission requests from its receiver nodes.
Consequently, the sender node workload increases,
thereby causing more error recovery delays. An OACK
buffer management algorithm adapted by STRM was
proposed in this study to effectively reduce buffer
requirement. The next section describes the OACK buffer
management algorithm.

1) Description of the OACK algorithm
The OACK algorithm was designed to improve FS

node selection. The algorithm reduces buffer usage
because only a small subset of nodes was chosen as
buffer for each message. Furthermore, this algorithm is
applicable to large scale scenarios, provides reliable
delivery, and is adaptable to dynamic addition and
separation in the network. Determining the FS nodes is
initiated by the sender. Upon determining the FS nodes,
their IDs are piggybacked to the data packet and initially
sent to the FS nodes.

The selection forward server process (SFSP) algorithm
[5] is enhanced by allowing the nodes located in the first
hop from the sender to be selected as FS nodes based on
forwarding utility (Uf), as presented in Eq. (1). The
forwarding utility (Uf) is an integrated function of a
node's remaining buffer space utility (Ub), as presented in

Eq. (2), and a neighbor utility (Un), as presented in Eq.
(3). Thus, a buffer awareness element is introduced into
the selection. This element is important because the nodes
selected as FS nodes must have sufficient buffer size to
buffer the data packets for retransmitting requested
packets.

𝑈𝑓 = 𝑈𝑏 ∗ 𝑈𝑛 (1)

𝑈𝑏(𝑖) =
1

1 + 𝑒−𝐵𝑖+𝑠
 (2)

𝑈𝑛(𝑖) =
𝑈𝑇ℎ𝑁𝑖
𝑇𝑇ℎ𝑁𝑖

 (3)

The buffer utility (Ub) in Eq. (2) specifies the

remaining node buffer space. A sigmoid function is used
to determine the utility because it provides a good
estimate of the required behavior, low utility, and slow
change at low buffer; sharp change in utility at medium
buffer; and high utility and slow change at high buffer. Bi
is the remaining internal node buffer space and is mapped
in the sigmoid function. s is defined as half the value of
the full node buffer space to shift the sigmoid function to
obtain the positive value. For (Un) in Eq. 3, the UThNi is
the unallocated two hop neighbors of node i, and TThNi
is the total two hop neighbors of node i. The neighbor
utility (Un) for node i is equal to the number of
unallocated nodes in the two hop pool neighboring node i
divided by the total number of node i neighbors.

2) Example and explanation of the OACK algorithm
Fig. 2 shows an example of the OACK algorithm to

select FS nodes that have a suitable buffer size with the
following neighbor arrangement: N(I)={J,K,L},
N(J)={I,M,N}, N(K)={I,M,N,O,P}, N(L)={I,O,P,Q}.
The sender node I calculates a pool of one hop neighbors
H1={J,K,L} and two hop neighbors H2={M,N,O,P,Q}.
Node L has a unique neighbor (node Q) not reachable
from any other possible one hop nodes (nodes J or K), as
shown in Fig. 2(a). Therefore, node L is added to the FS
set, FSL1={L}. The neighboring nodes of node L are
removed from H2, resulting in H2={M,N} and H1={J,K}.
When no more nodes have unique neighbors, sender node
I calculates the forwarding utilities for the remaining
nodes in H1, as shown in Fig. 2(b).

Node J's forwarding utility is calculated as follows:

𝐵𝐽 = 7

𝑠 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒

2
 =

10
2

= 5

𝑈𝐵(𝐽) =
1

1 + 𝑒−𝐵𝐽+𝑠
 = 0.87

𝑈𝑛(𝐽) =
2
2

 = 1

𝑈𝑓(𝐽) = 𝑈𝑛(𝐽) × 𝑈𝐵(𝐽)
= 0.87

Journal of Communications, Vol. 8, No.2, February 2013

140

Node K's forwarding utility is calculated as follows:

𝐵𝐾 = 2

𝑠 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒

2
 =

10
2

= 5

𝑈𝐵(𝐾) =
1

1 + 𝑒−𝐵𝐾+𝑠
 = 0.05

𝑈𝑛(𝐾) =
2
4

 = 0.05

𝑈𝑓(𝐾) = 𝑈𝑛(𝐾) × 𝑈𝐵(𝐾)
= 0.025

Node J has higher forwarding utility than node K; thus,

the remaining nodes in H2 are allocated to node J,
resulting in SFL1={J,L}, as shown in Fig. 2(c).

Figure 2. Example of the Ordered ACK to select FS nodes

3) The OACK flow control scheme

The OACK algorithm performs the flow control using
the transmission and ACK window. The sender node
maintains a fixed transmission window size. The sender
node periodically multicasts the data packet window to
the neighbor nodes located in its first hop. Similarly, the
selected FS nodes multicast the data packet window to
the receiver nodes located in its local group. In addition,
the receiver node maintains an ACK window and
periodically sends this window to its FS node. An ACK
window carries two fields: <N,L>; where N is the less
sequence number received and L is the last packet
sequence number received in the transmission window.
The L packet acts as an implicit ACK for the transmission
received packet window. The FS node can now safely
discard up to the packet number L from its buffer. The
receiver nodes carry out this procedure for each of the
received transmission windows.

When a receiver node i detects lost packets, it sends a
NAK to its FS node. This NAK contains the sequence
number of the last packet, similar to when all packets had
been correctly received. For instance, assume that the
sender's window size is 10 packets and the first ACK by
node i is supposed to acknowledge packets 10, 20, 30,
and so on. Therefore, if i does not receive packet 19, it
sends a NAK informing that packet 19 was not received
and that packet 18 is the last packet, similar to when all
packets had been correctly received by node i. Node i
continues the same sequence of ACKs regardless of the
lost packet. Hence, the next ACK sent by node i only
acknowledge the correct reception of packets 19 and 20.
This process ensures that the FS node receives at least
one ACK packet from the receiver node i in every
sending window.

The mechanism to advance the transmission window is
to have all FS nodes send an ACK to the sender node.
This ACK contains the highest-numbered packet Pj that
the FS node j can safely discard based on the ACK sent
by its receiver nodes. When some packets are not ACK,
but are still in the buffer of the FS nodes, different FS
nodes would have different buffer sizes. The sender node
can then initially send new packets equal to the available
and sufficient space in the buffer of all FS nodes. Let Pj
be the last packet acknowledged by j; hence, the highest-
numbered packet PH acknowledged by all FS nodes is
given, where NFS is the number of FS nodes. When all FS
nodes have acknowledged PH, the sender can now safely
send the packets up to PH. The summarized OACK flow
control algorithm for each type of nodes, that is, sender,
receiver, and FS, is given in Figs. 3, 4, and 5,
respectively.

Journal of Communications, Vol. 8, No.2, February 2013

141

Figure 3. OACK algorithm of the sender

Figure 4. OACK algorithm of the receiver

Figure 5. OACK algorithm of the FS

4) Stepwise Probabilistic Algorithm
OACK algorithm selects a subset of receiver nodes to

serve as buffers by enhancing the SFSP algorithm,
elaborated in [5] with the buffer size utility. In the
stepwise probabilistic algorithm [22], the set of long-term
buffers are chosen randomly from all receiver nodes.
Every node sends buffering requests randomly to one of
its neighbors with a probability equal to each node’s
buffer fullness ratio. The algorithm provides a fairly
uniform distribution, where every node does not have the
complete view of the entire group of receivers. The
probabilistic algorithm works when the number of
generated messages is lower than the total long-term
buffer capacity of the system. When the long-term buffers
of the nodes become full, and if a member receives a
buffering request message, the node directly sends a
buffering request to one of its neighbors, and the
receiving neighbor performs the same process again.
Therefore, the buffering request is forwarded peer-by-
peer until the STL value expires. The nodes on which the
STL value expires would buffer the corresponding
message. The buffering load distribution uniformity of
the probabilistic algorithm is observed only when the
number of generated messages approaches the total long-
term buffer capacity of the system.

The algorithm uses a probabilistic scheme that works
on every node to determine the bufferers of a message.
Every node sends the buffering requests randomly to one
of its neighbors with a probability equal to the node’s
buffer fullness ratio. The algorithm provides a fairly
uniform distribution, where every node does not have the
complete view of the entire group of receivers.

The algorithm does not provide uniformity before the
nodes reach their long-term buffer sizes, similar to the
case when the number of generated messages exceeds the
total long-term buffer capacity. In the algorithm,
assuming that all buffers are initially empty, neighbors in
the first hop of the sender accept the buffering requests
with higher probability than the farther nodes. Thus, the
buffer levels of the nodes close to the sender node are
much higher, whereas those of the ones far from the
sender are approximately zero. This algorithm is
implemented in the STRM protocol.

The next section explains the enhancement to the
STRM protocol to avoid duplication caused by a
retransmission of lost packets in the FS node local group.

B. Enhancement of the Local Error Recovery
The second proposed enhancement for STRM,

elaborated in the [5], is the local error recovery. STRM
allocates FS nodes in each local region and makes them
responsible for error recovery among all the other
receivers in the same region. These FS nodes retransmit
lost packets to all group members belonging to each
node’s local region. Therefore, this retransmission causes
duplication for members that have already received the
same packet correctly. This section proposes two
algorithms for error recovery to avoid duplication for
multicast data deliveries. The presented algorithms can be
applied to tree-based multicast protocols [32].
Furthermore, dedicated support is provided for protocols

Algorithm FS_OACK(FSi,Pj,Rk)
1. count = 0
2. while (true)
3. if (pktPj from sender arrives) {
4. if (pktPjNOT received before) {
5. storepktPj in buffer
6. increment count
7. endif}
8. endif}
9. if (ACK pktPj from receiver Rk arrives) {
10. P = min { Pj | K

jNj ≤≤1 }

11. remove up to pktP from its buffer
12. if (count ==size of sent window)
13. unicast ACK for P to sender node
14. endif}
15. endif
16. if (NAK pktPj from receiver Rk arrives) {
17. remulticastpktPj

18. P = min { Pj | }

19. remove up to pktP from its buffer
20. if (count == size of sent window) {
21. unicast ACK for P to sender node}
22. endif}
23. endif
24. endwhile

K
jNj ≤≤1

Algorithm Receiver_OACK(FSi,Pj)
1. count = 0
2. while (true)
3. if (pktPj from sender arrives) {
4. if (pktPjNOT received before) {
5. increment count
6. if (count ==size of sent window) {
7. unicast ACK for count to FSi node}
8. endif}
9. endif}
10. endif
11. if (missing pktPj detect) {
12. unicast NAK pktPj to FSi}
13. endif
14. endwhile

Algorithm Sender OACK()
1. FSi = 0 ; for all 1 ≤ i ≤ NFS
2. Pj= 0 ; for all 1 ≤ j ≤ NPKT
3. multicast window of pkts
4. S = size of sent window
5. while (true)
6. if (ACK for pktPjfrom FSi arrives) {

7. selectPH = min { Pj | FS
jNj ≤≤1 }

8. multicastpkts from S+1 to S + PH
9. S = S + PH}
10. endif
11. if (NAK for pktPjfrom FSi arrives) {
12. remulticastpktPj
13. remove up to pktPj-1 from buffer}
14. endif
15. endwhile

Journal of Communications, Vol. 8, No.2, February 2013

142

that organize their group members using local group
multicast and whose leaders are connected with the
sender node. The next section proposes the enhancements
to the local error recovery for the STRM protocol using
Sub Sub-Casting algorithm (SSC) that avoids duplication
of retransmitted packets in local group members.

1) Sub Sub-Casting Algorithm

The SSC algorithm is used for lost packet recovery,
where the multicast tree is partitioned into local groups.
This algorithm is based on the NAK packets received
from the local receiver nodes to the FS nodes. Each FS
node acts as the local deliverer that provides a recovery
service to the nodes of the local group. In this algorithm,
each FS node is required to retransmit lost packets only to
the effected receivers that have requested the packets.

The SSC is an algorithm where the FS nodes send data
packets and receive the ACK/NAK packets from its local
group nodes, which act as a sub-group of the original
multicast group. In this local group, the FS node
multicasts the requested lost packet only to the affected
receiver nodes located in the FS node local group when
the number of the affected receiver nodes requesting for a
certain packet is greater than a specific threshold. This
mechanism allows affected receiver nodes to recover
from the same packet loss with only one retransmission
from the FS node.

Multicasting the lost packet only to the receivers that
request that packet decreases the number of duplicated
packets, thereby, reducing the number of packets
transmitted through the network. This reduction will in
turn increase the performance of the system.
Subsequently, this mechanism requires the FS node to
create a temporary dynamic multicast group, whose
members are only those that have requested the lost
packet, as shown in Fig. 6.

Figure 6. An example of sub sub-casting tree

The created temporary dynamic multicast group is a
sub-group of the local group that is also a sub-group of
the global multicast group. Thus, this group is a sub-
group of another sub-group, denoted as sub sub-casting,
as shown in Fig. 7.

Figure 7. Sub sub-casting algorithm

Any receiver that detects any lost packet is required to
send a NAK to its FS node to build the sub sub-casting
group. The FS node registers the sequence number of the
lost packets and the ID of the receiver node that requests
the lost packet in the retransmission queue. Upon
retransmission, the FS node knows which receiver has
requested for the lost packet. If the number of the receiver
is greater than the multicast threshold, a temporary
multicast group, consisting of the receiver nodes that
have requested for the lost packet, is, therefore, created.
Meanwhile, if the number of receiver nodes requesting
for the packet is smaller than the multicast threshold, the
packet is then unicast to each requesting receiver, as
shown in the SSC algorithm in Fig. 7. The SSC algorithm
cannot be implemented in protocols that use the NAK-
based with NAK suppression because the idea of this
algorithm is to reduce the number of receivers sending
NAK packets to the sender node. Therefore, the SSC
algorithm requires each receiver node to send a separate
NAK packet to the FS nodes for the FS node to identify
all the receiver nodes that need the lost packet.

The next section proposes improvements to the SSC
algorithm to improve its performance in WLANs and
reliability in MANETs. The improved algorithm,
Improved Sub Sub-Casting Algorithm (SSC-I), is
implemented to cause lower delay compared with the
SSC algorithm.

2) Improved Sub Sub-Casting Algorithm
The SSC algorithm attempts to avoid duplication

packets by creating a temporary dynamic multicast group.
The FS nodes retransmit the lost packets only to the
newly created sub-group. However, this solution is
ineffective when the receiver node requesting a
retransmission of the lost packet is distant from its FS
node. Fig. 8 illustrates this case; the forward nodes
located between the FS node and the requesting node
receives the retransmitted packet again to forward the
packet to the requesting node R.

Algorithm SubSub-Casting (THRESHOLD, P)

1. Requesti = nodes that request the pktP
2. if (Requesti ≥ THRESHOLD) {
3. for all Requesti in FSj; for all 1 ≤ j ≤ NFS
4. if (Requesti Status == 0) {// the pkt in the buffer
5. multicast (Requesti(P))}
6. endif}
7. endif}
8. else {
9. for all Requesti in FSj; for all 1 ≤ j ≤ NFS
10. if (Requesti Status == 0) {
11. unicast (Requesti(P))}
12. endif}}

FS

Sub Group

Sub Sub-Group FS

Sub Group

Sub Sub-Group

Journal of Communications, Vol. 8, No.2, February 2013

143

Figure 8. Request and repair in the SSC algorithm

The ACK packets in SSC-I are sent upstream to the FS
nodes at regular intervals, but NAK packets are sent in an
event-driven manner to reduce the end-to-end delay.
Packet losses are identified through gaps in the sequence
numbers of the received packets. In SSC-I, the affected
node R is required to send a retransmission request for
each of the missing packet to recover from such packet
losses. If R does not receive the lost packet before the
ACK time interval, R generates a retransmission request
to its FS node directly. The FS node then unicasts the lost
packet to R.

Fig. 9 shows that data paths are specific to each FS
node. Efficiently recovering from packet losses
necessitates that node R selects the retransmission request
of the lost packet from the node that is an upstream node
on a specific FS's data path. According to Fig. 9, node R
requests retransmissions of packets sent by the FS node
from node B. Node B is the forwarding node to node R
and sends the lost packet to node R directly.

Figure 9. Specific forward data path in SSC-I

IV. SIMULATION SETUP

A. Simulation Environment
The simulation tool was developed for an ad-hoc

network environment to build a reliable multicast
transport protocol that allows a single sender to deliver
packets in an ordered manner to a group of multicast
receivers. Furthermore, given the limited development
resources in simulator tools, a discrete-event simulation
tool for MANET environment was developed in Visual
C++. This tool analyzes the performance of both the
existing and proposed algorithms.

Fig. 10 depicts the block diagram of the developed
simulation tool. The figure shows the data and control
flows inside a component of the simulation tool. The

component can represent a sender or receivers. The data
flow is depicted in a regular dark line, whereas the
control flow is depicted in a dashed line. Two separate
buffers for transmission and retransmission are presented.
Similarly, separate transmission mechanisms are
presented for multicast and unicast. Separate entities are
shown to manage the control messages for group
management and flow control. In addition, separate
buffers are provided for ACK and NAK. The block
diagram contains the algorithms that improve the
multicast, such as SFSP, buffer management, and local
error recovery algorithms. Two main components are
depicted in the simulation design: sender node and
receiver nodes.

Figure 10. Block diagram of the simulation tool

In this study, all nodes and links were assumed to work
properly and none of them fails during simulation. The
simulation program was run ten times with the same input
variables. The results were taken as the average of these
iterations to obtain accurate results. Furthermore, the
MANET topology model was randomly generated for a
fixed number of nodes. The location of each node was
assumed to be on the two-dimensional coordinate system
(x,y), and each location is generated randomly in a
uniform distribution. The variable inputs needed to create
the random topology are as follows: first, the fixed
number of nodes in the network; second, the initial
network area to begin with; third, the mobility model and
the node speeds; and finally, the unique address or ID of
every node.

In addition, the transmission range was 250 m, typical
for mobile devices. The scenario area of the simulation
was limited to 700 m × 700 m to reduce the likelihood of
no connectivity when the nodes are allowed to go beyond
the area. This consideration was based on the session
size. Radio irregularity factors were not considered in
these simulations. Therefore, if node i can send a message
to node j, node j can also send a message to node i. The
parameter settings and values used in the simulation are
shown in Table 1.

Simulation
Engine

Link Delay
Model Error Model

Network
Topology

.

.

.

No. of Nodes
Initial Network Area

Mobility Model

Receiving
Buffer

Transmutation
Buffer

Buffer Management

Local Error Recovery

Multicast Tx

Unicast
Tx

Retransmission
Buffer

Error Recovery

CTRL INQ

Group
Management

Control
Message

Garbage
Collection

Follow
Control

NAK
INQ

ACK
INQ

Data OutputCtrl Output

.

.

.

SFSP

Journal of Communications, Vol. 8, No.2, February 2013

144

TABLE I.
SIMULATION PARAMETERS

Description Value

PACKET_SIZE 512 bytes
NO_NODE 100
SESSION_SIZE Variable
LINK_BW 2 mbps
TRANSMISSION_RANGE 250
AREA_SIZE 700x700 m2
MESSAGE_SIZE 2000 packets
LOSS_RATIO 0.1
NODE_SPEED 0, 5, 10, 15, 20, 25 m/s
QUEUING_DELAY 20–80 ms
PROPAGATION_DELAY 10 ms
PAUSE_TIME 1, 2, 5, 10, 15, 20 s
HELLO_TIME 1 s
ROUTE_TABLE_TIMEOUT 960 ms
MEMBER_TABLE_REFRESH 400 ms
MEMBER_TABLE _TIMEOUT 960 ms
ROUTE_TABLE_REFRESH 160 ms
FG_TIMEOUT 480 ms

B. Performance Metrics
The following performance metrics were used to

evaluate the efficiency and effectiveness of the
algorithms. Duplicate request and retransmitted messages
were taken into account in these measurements.

• Buffering load: Buffering load is the total number of

packets buffered by each node when a specific sender
node is chosen as the message sender.

• Percentage of request packets: Percentage of request
packets is the ratio of the number of requests for lost
packets transmitted by receiver nodes to the total
number of the original data packets transmitted by the
sender.

• Average retransmission packets: Average
retransmission packets are the ratio between the
number of retransmission packets transmitted by the
sender and forwarding nodes and the total number of
the original data packets transmitted by the sender.

• Average end-to-end delay: Average end-to-end
delay is calculated as the average difference between
the time each data packet is transmitted by the sender
and the time the packet is received by the receiver
nodes, and then averaged over the total number of
receiver nodes.

• Average recovery latency: Average recovery latency
is the average difference between the time at which a
receiver node detects each missing packet and the
time at which the missing packet is recovered at that
receiver node, and then averaged over the total
number of receiver nodes.

• Percentage of duplicate packets: Percentage of
duplicate packets is the ratio between the total
retransmitted packets that are duplicates received by
each receiver node to the total number of original data
packets transmitted by the sender. This ratio is then
averaged over the total number of receiver nodes.

V. PERFORMANCE EVALUATION AND RESULT
DISCUSSION

This section presents and discusses the performance of
the OACK, SSC, and SSC-I algorithms. The constant
simulation parameters shown in Table 1 are used
throughout the simulation.

A MANET topology is randomly generated for 100
nodes. The location (x,y) of each node was generated
randomly in a uniform distribution. The buffer capacity
of each node is 20 packets, and 2000 packets are
broadcasted from a single sender. The sender and receiver
nodes were randomly selected. The data packet window
was periodically sent by the sender to the receiver nodes.
The STRM protocol groups receiver nodes into local
regions that provide a high degree of reliability and avoid
the Feedback Implosion Problem, but suffer from buffer
overflow and duplication of received packets. The
OACK, SSC, and SSC-I algorithms are enhancements to
the STRM protocol.

First, the experimental results of the OACK buffering
algorithm are presented. Its comparison with the Stepwise
Probabilistic buffering and STRM protocol in terms of
distributing the buffering load and data dissemination
metrics are also exhibited. The Stepwise Probabilistic
buffering utilizes the selected FS nodes in STRM as long-
term buffers. The STL value is set as 10 hops, gossip
interval is 200 ms, which is equal to the Hello_Time
interval. The First In First Out policy was implemented
for all algorithms when the node buffer as full.
Furthermore, the experimental results of the SSC and
SSC-I algorithms and its comparison with the STRM
protocol in terms of data dissemination metrics are given.
Hence, the following sections present the effects of
various session sizes and different mobility speeds on all
algorithms.

A. Buffering Load
Fig. 11 shows the total number of packets buffered by

each node when a sender node, ID 0, is chosen to be the
message sender. In the experiments, the number of
receiver nodes is 100 and the maximum movement speed
of the nodes is 5 m/s. The probabilistic algorithm utilizes
the selected FS nodes in STRM as long-term buffer and
provides these nodes higher probability to buffer the data
packets for retransmitted requested packets compared
with other nodes, which has the same low probabilities.
This mechanism leads to the buffer of larger number of
packets in the nodes close to the sender; the probability to
buffer in these nodes is increased. The OACK selects the
FS nodes that have a sufficient buffer size among the
suitable nodes in the first hop from the sender. The
OACK exhibits better usage of the buffer load than
STRM and the probabilistic algorithm.

Fig. 11 shows that in all algorithms, some nodes buffer
zero or fewer packets, which may be attributed to either a
relatively higher number of nodes close to the sender in
the first hop or the nodes located far from the sender
during the entire simulation. STRM exhibits a
significantly higher buffering load compared with OACK
and the probabilistic algorithms.

Journal of Communications, Vol. 8, No.2, February 2013

145

Figure 11. Comparison of buffering load, node 0 is the sender node

B. Percentage of Request Packets
Session Size Impact on the Percentage of Request Packets

Fig. 12 shows the percentage of request packets as a
function of session size. As shown in Fig. 12, STRM and
the probabilistic algorithm show comparable percentages
of requests when the session size is less than 40 out of
100 receiver nodes. When the session size is more than
40 receiver nodes, the probabilistic algorithm exhibits an
increase in the percentage of requests because the
buffering nodes eventually receive the data packets
during the data packet sending. The receiver nodes in the
probabilistic algorithm do not send ACK packets to
discard the data packets in the long-term buffers in the
algorithms such as STRM and OACK. This behavior
causes the buffer to overflow in some of its long-term
nodes. From the figure, the OACK exhibits less
percentage of requests than the others.

Figure 12. Percentage of request when the session size increases

Mobility Speed Impact on the Percentage of Request
Packets

Fig. 13 shows the effect of mobility speed on the
percentage of request packets. The mobility speed causes
some FS nodes to move away from the sender node, thus
the sender makes another selection for new FS nodes for
retransmission requests. The figure shows that the
probabilistic algorithm has a higher percentage of
requests than the others when the mobility speed
increases. This result is due to the fact that when the FS
nodes receive a request from their receiver nodes, and the

requested packet is not in the buffer of the FS node, then
the FS node passes the request to the other FS nodes,
thereby increasing the number of requests. In STRM and
OACK, when a request for a certain packet is received,
and this packet is not in the buffer, the FS nodes pass this
request to the sender node. The sender then sends the
request packet. From this figure, OACK has the least
percentage of requests compared with the others.

Figure 13. Percentage of request when the mobility speed increases

C. Average of Retransmitted Packets
Session Size Impact on the average of Retransmitted
Packets

Fig. 14 shows the effect of different session sizes on
the average of retransmitted packets. Comparing OACK
and probabilistic algorithm, the performance of the latter
with a low mobility of 5 m/s causes more retransmitted
lost packets. This behavior is due to the fact that
probabilistic algorithm retransmits lost packets to the
entire receiver nodes; thus, the retransmission of lost
packet overhead increases relative to the session size.
Other receiver nodes that have not actually requested a
retransmission also receive a retransmitted message and
duplicate retransmitted messages.

Figure 14. Average of retransmitted packet when the session size

increases

Mobility Speed Impact on the Average of Retransmitted
Packets

Fig. 15 shows the effect of mobility speed on the
retransmission packet average. The probabilistic
algorithm exhibits a higher average of retransmission
than the others when the mobility speed is more than 10

Number of data source = 2000 pkt, Mobility Speed = 5 m/s

0

10

20

30

40

50

60

70

0 20 40 60 80 100
Node id

Nu
mb

er
 of

 pa
ck

ets
 bu

ffe
re

d

OACK
Probabilistic
STRM

Number of data source = 2000, Mobility Speed = 5 m/s

5

7

9

11

13

15

17

19

21

23

25

0 20 40 60 80 100
Sesion size

Pe
rse

nt
ag

e o
f r

eq
ue

st
pa

ck
ets

 (%
)

STRM
OACK
Probabilistic

5
7
9

11
13
15
17
19
21
23
25

0 5 10 15 20 25
Pe

rc
en

ta
ge

 o
f r

eq
ue

st
 p

ac
ke

ts
 (%

)

Mobility speed (m/s)

Number of data sourc = 2000, Session size = 100 node

STRM

Number of data source = 2000, mobility speed = 5 m/s

5

10

15

20

25

30

35

0 20 40 60 80 100
Session size

Av
er

ag
e o

f r
etr

an
sm

ite
d p

ac
ke

ts STRM
OACK
Probabilistic

Journal of Communications, Vol. 8, No.2, February 2013

146

m/s. Comparing the probabilistic algorithm and STRM,
the average of retransmitted lost packets in the
probabilistic algorithm increases relative to the mobility
speed with high mobility. This result is due to the fact
that probabilistic algorithm retransmits lost messages to
the entire receiver nodes. From the figure, OACK causes
less retransmitted request packets than the others when
the speed increases. This behavior is due to the
availability of the packets in the buffer of the FS nodes.

Figure 15. Average of retransmitted packet when the mobility speed

increases

D. Average End-to-End Delay
Session Size Impact on the Average End-to-End Delay

Fig. 16 shows the average end-to-end delay of data
packets with increasing session sizes. In STRM and
probabilistic algorithm, the average end-to-end delay
increases slightly with the group size. STRM has a larger
delay than the probabilistic algorithm and OACK when
the session size increases. The reason for this behavior is
the high control overhead in requesting for lost packets,
resulting in an overflow in the buffer. OACK exhibits a
stable and less average delay than STRM and the
probabilistic algorithm when the session size increases.

Figure 16. Average of end-to-end delay when the session size increases

Mobility Speed Impact on the Average End-to-End Delay
Fig. 17 shows the average end-to-end delay as a

function of mobility speed. The probabilistic algorithm
has a larger delay than STRM and OACK when the
mobility speed increases. This difference becomes more

evident as the mobility speed increases to more than 10
m/s, as shown in Fig. 17. The reason for this behavior is
the overflow in the buffer caused by the high control
overhead in requesting for lost packets. OACK exhibits a
stable and less average delay than STRM and
probabilistic algorithm when the mobility speed
increases.

Figure 17. Average of end-to-end delay when the mobility speed

increases

E. Average Recovery Latency
Session Size Impact on Average Recovery Latency

Fig. 18 shows the average recovery latency when the
session size increases. Probabilistic algorithm causes a
larger latency than STRM and OACK. OACK has less
recovery latency than the others. The FS buffering nodes
are selected immediately in OACK and STRM because
the sender has a full knowledge of the receiver nodes in
the network. Meanwhile, the probabilistic algorithm has a
higher latency time than the STRM because the FS nodes
determined by STRM are used as buffering nodes. Other
buffering nodes are also determined and used when the
probability to buffer on these nodes is high when a
message is generated and is directly sent to the buffering
nodes.

Figure 18. Average of latency time when the session size increases

Mobility Speed Impact on Average Recovery Latency
Fig. 19 shows the effect of mobility speed on the

average recovery latency. Furthermore, the effect of
mobility speed on the probabilistic algorithm causes a
higher average latency compared with OACK and

Number of data source = 2000 pkt, Mobility speed = 5 m/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100
Session size

Av
er

ag
e e

nd
-to

-en
d

de
lay

 (s
ec

.)

STRM
OACK
Probabilistic

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25
A

ve
ra

ge
 e

nd
-to

-e
nd

 d
el

ay
 (s

ec
.)

Mobility speed (m/s)

Number of data source = 2000 pkt, Number of nodes =
100 STRM

OACK
Probabilistic

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

tim
e

(s
ec

.)

Session size

Number of data source = 2000 pkt, Speed = 5
STRM
OACK
Probabilistic

Journal of Communications, Vol. 8, No.2, February 2013

147

STRM. Probabilistic algorithm causes a larger latency
than STRM and OACK. OACK has less recovery latency
than the others. Hence, the latency of OACK does not
increase further with mobility speed, indicating that the
algorithm scales well.

Figure 19. Average of latency time when the mobility speed increases

F. Percentage of Duplicate Packets Performance
Session Size Impact on the Percentage of Duplicate
Packets

Fig. 20 shows the effect of session size on the
percentage of duplicate packets. Each member calculates
the percentage of retransmitted packets received. The
result is averaged over all receivers in the group.
Furthermore, SSC and SSC-I exhibit less percentage of
duplicate packets compared with STRM and probabilistic
algorithm when the session size increases. Probabilistic
algorithm exhibits a higher percentage of duplicate
packets than the other algorithms. The reason for this
behavior is that when the probabilistic algorithm
retransmits lost requested packets, it multicasts the
packets to the entire receiver group, thereby causing
duplicates in the receiver that already received the same
packets during the transmission time.

Figure 20. Percentage of duplicate packets when the session size

increases

Mobility Speed Impact on the Percentage of Duplicate
Packets

Fig. 21 shows the effect of mobility speed on the
percentage of duplicate packets. SSC and SSC-I have less

percentage of duplicate packets when the mobility speed
increases. The probabilistic algorithm has a higher
percentage of duplicate packets than the others. The
reason for this result is that when the probabilistic
algorithm retransmits lost requested packets, it multicasts
these packets to the entire receiver group, causing
duplicates in the receiver that already received the same
packets during the transmission time.

Figure 21. Percentage of duplicate packets when the mobility speed

increases

VI. CONCLUSION

This article presented the OACK, SSC, and SSC-I
algorithms. Buffer management was enhanced through an
innovative OACK buffering algorithm that explicitly
addresses the variances in delivery latency for a multicast
group, caused by buffer overflow. The algorithm reduces
buffer requirements by adaptively enhancing the selection
of the FS nodes to buffer the data packets among
members with larger empty buffer space. The key idea of
the algorithm is to use the buffer utility approach in
selecting the FS nodes, and the ordered ACK from
receiver nodes to a sender node. This approach is a
powerful technique to achieve high robustness and
efficiency of a reliable multicast in MANETs. STRM
optimizes local error recovery through innovative SSC
and SSC-I algorithms.

The algorithms enhanced the error recovery by
eliminating the duplication of retransmission repair
packets in local groups. In these algorithms, the requested
packet was multicast only to the receivers that request the
packet. STRM implements the OACK algorithm to
decrease the buffer overflow problem by adaptively
enhancing the selection of the FS nodes and decreasing
the feedback control packets sent from the receiver nodes.
Thus, the selection of FS node was enhanced to buffer the
data packets among suitable members with larger empty
buffer space. However, the feedback control packets sent
periodically from receiver nodes acknowledge only the
last data packet of the transmission window received
from the sender. STRM implements the SSC and SSC-I
algorithms to enhance the error recovery in local groups
by creating a temporary sub-group to overcome the
duplication problem of the retransmission repair packets.
Furthermore, the results proved that the SSC and SSC-I

Number of data source = 2000, mobility speed = 5 m/s

0

2

4

6

8

10

0 20 40 60 80 100
Session size

Pe
rc

en
ta

ge
 of

 d
up

lic
at

e p
ac

ke
ts

(%
) STRM

Probabilistic
SSC
SSC-I

0

5

10

15

20

25

30

0 5 10 15 20 25

Pe
rc

en
ta

ge
 o

f d
up

lic
at

e p
ac

ke
ts

 (%
)

Mobility speed (m/s)

Number of data source = 2000, Session size = 100
STRM
Probabilistic
SSC

Journal of Communications, Vol. 8, No.2, February 2013

148

algorithms are scalable and can be used for a large
number of receiver nodes in tree-based protocols, where
the increments of the average delay time are smaller.

For future research studies, we intend to evaluate the
proposed algorithms in various wireless environments,
along with more realistic and comprehensive mobility
models and experiment scenarios.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support by the
Centre for Research and Instrumentation Management
(CRIM), University Kebangsaan Malaysia, Malaysia.
Grant: UKM-GUP-2012-089.

REFERENCES
[1] L. Junhai, X. Liu, and Y. Danxia, "Research on multicast routing

protocols for mobile ad-hoc networks," Computer Networks, vol.
52, pp. 988-997, 2008.

[2] J. C. Lin and S. Paul, "RMTP: A reliable multicast transport
protocol," 1996, vol. 3, pp. 1414-1424.

[3] P. M. Jawandhiya, M. Ali, S. F. Husain, M. Parate, and J.
Deshpande, "Reliable Multicast Transport Protocol: RMTP,"
International Journal of Advanced Computer Science and
Applications, vol. 1, pp. 74-80, 2010.

[4] K. Guo and I. Rhee, "Message stability detection for reliable
multicast," in Proceedings of the 19th IEEE Conference on
Computer Communications (INFOCOM 2000), New York, USA,
2000, vol. 2, pp. 814-823.

[5] T. Al-Ahdal, S. Subramaniam, M. Othman, and Z. Zukarnain, "A
Source Tree Reliable Multicast Protocol for Ad-Hoc Networks,"
The International Arab Journal of Information Technology, vol. 5,
pp. 273-280, 2008.

[6] S. Corson and J. Macker, "Mobile Ad hoc Networking (MANET):
Routing Protocol Performance Issues and Evaluation
Considerations," ed: Mobile Ad-hoc Networks Working Group,
http://datatracker.ietf.org/wg/manet/charter/, 1999.

[7] J. Wu and I. Stojmenovic, "Ad hoc networks," Computer Society,
vol. 37, pp. 29-31, 2004.

[8] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva,
"A performance comparison of multi-hop wireless ad hoc network
routing protocols," in In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking
(MOBICOM'98), Dallas, TX, 1998, pp. 85-97.

[9] I. Chlamtac, M. Conti, and J. J. N. Liu, "Mobile ad hoc
networking: imperatives and challenges," Ad Hoc Networks, vol.
1, pp. 13-64, 2010.

[10] J. Lipman, P. Boustead, and J. Judge, "Neighbor Aware Adaptive
Power Flooding (NAAP) in Mobile Ad Hoc Networks,"
International Journal of Foundations of Computer Science, vol.
14, pp. 237-252, 2003.

[11] C. S. R. Murthy and B. Manoj, Ad hoc wireless networks:
architectures and protocols: Prentice Hall, 2004.

[12] S. A. H. Seno, R. Budiarto, and T. C. Wan, "Survey And New
Approach In Service Discovery And Advertisement For Mobile
Ad Hoc Networks," International Journal of Computer Science
and Network Security (IJCSNS), vol. 7, pp. 275-284, 2007.

[13] G. Benincasa, A. Rossi, N. Suri, M. Tortonesi, and C. Stefanelli,
"An experimental evaluation of peer-to-peer reliable multicast
protocols," in Militart Communications Conference - MILCOM
2011, 2011, pp. 1015-1022.

[14] K. Viswanath, K. Obraczka, and G. Tsudik, "Exploring mesh and
tree-based multicast. Routing protocols for MANETs," IEEE
Transaction on Mobile Computing, vol. 5, pp. 28-42, 2006.

[15] S. Sesay, Z. Yang, and J. He, "A survey on mobile ad hoc wireless
network," Information Technology Journal, vol. 3, pp. 168-175,
2004.

[16] O. Ozkasap, R. Renesse, K. P. Birman, and Z. Xiao, "Efficient
buffering in reliable multicast protocols," Proceedings of the First
International Workshop on Networked Group Communication
(NGC99), Pisa, Italy, pp. 188-203, 1999.

[17] Z. Xiao, K. P. Birman, and R. Van Renesse, "Optimizing buffer
management for reliable multicast", Washington, DC, 2002, pp.
187-196.

[18] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y.
Minsky, "Bimodal multicast," ACM Transactions on Computer
Systems (TOCS), vol. 17, pp. 41-88, 1999.

[19] T. C. Chiang, C. Y. Hsu, and J. L. Chang, "Immediate Group
ACK tree (IGA) for reliable multicast in mobile Ad Hoc
networks," in IEEE 3rd International Conference on
Communication Software and Networks (ICCSN), 2011, pp. 483-
487.

[20] B. Adamson, C. Bormann, M. Handley, and J. Macker, "NACK-
Oriented Reliable Multicast Protocol," Internet draft, IETF, June
2009. Work in progress. http://www. ietf. org/internet-drafts/draft-
ietf-rmt-pi-norm-revised-13. txt. See also NORM web page at
http://cs. itd. nrl. navy. mil/work/norm2009.

[21] A. Sobeih, H. Baraka, and A. Fahmy, "ReMHoc: a reliable
multicast protocol for wireless mobile multihop ad hoc networks,"
Las Vegas, NV, 2004.

[22] E. Ahi, M. Caglar, and O. Ozkasap, "Stepwise probabilistic
buffering for epidemic information dissemination," in
International Conference on Bio-Inspired Models of Network,
Information, and Computing Systems, Cavalese, Italy, 2006, pp.
1-8.

[23] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie,
"From epidemics to distributed computing," IEEE computer
Society, vol. 37, pp. 60-67, 2004.

[24] S. Mishra and L. Wu, "An evaluation of flow control in group
communication," IEEE/ACM Transactions on Networking (TON),
vol. 6, pp. 571-587, 1998.

[25] K. Yamamoto, S. Yoshitsugu, M. Yamamoto, and H. Ikeda,
"Performance evaluation of ACK-based and NAK-based flow
control mechanisms for reliable multicast communications,"
IEICE Transactions on Communications, vol. 84, pp. 2313-2316,
2001.

[26] R. Yavatkar, J. Griffoen, and M. Sudan, "A reliable dissemination
protocol for interactive collaborative applications," in Proceedings
of the 3rd ACM International Conference on Multimedia, San
Francisco, CA, 1995, pp. 333-344.

[27] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui, and A.
M. Kermarrec, "Adaptive gossip-based broadcast," in In IEEE
International Conference on Dependable Systems and Networks
(DSN’03), San Francisco, CA, USA, 2003, pp. 47-56.

[28] A. M. Costello and S. McCanne, "Search party: Using randomcast
for reliable multicast with local recovery," in Proceedings of the
18th IEEE Conference on Computer Communications (INFOCOM
‘99), New York, NY, 1999, pp. 1256-1264.

[29] J. Baek and J. F. Paris, "A heuristic buffer management and
retransmission control scheme for tree-based reliable multicast,"
International Journal of Electronics and Telecommunications
Research Institute (ETRI) Journal, vol. 27, pp. 1-12, 2005.

[30] J. Pereira, U. do Minho, L. Rodrigues, U. De Lisboa, M. Monteiro,
R. Oliveira, and A. M. Kermarrec, "Neem: Network-friendly
epidemic multicast " in Proceedings on 22nd International
Symposium on Reliable Distributed Systems (SRDS’03), Florence,
Italy, 2003, pp. 15-24.

[31] C. Lindemann and O. P. Waldhorst, "Modeling epidemic
information dissemination on mobile devices with finite buffers,"
Pro. of the ACM. Int. Conf. on Measurement & Modeling of
Computer Systems (SIGMETRICS’05), vol. 33, pp. 121-132, 2005.

[32] Y. H. Chen, G. H. Chen, and E. H. K. Wu, "Multiple Trees with
Network Coding for Efficient and Reliable Multicast in
MANETs," in 39th International Conference on Parallel
Processing Workshops (ICPPW), 2010, pp. 581-585.

Tariq Abdullah is an assistance professor in Faculty of
Computer Science & Information Systems, Thamar University,
Thamar, Republic of Yemen. He received his B.Sc. degree in
computer science from Baghdad University, Iraq, in 1998.
M.Sc. degree in distributed computing from University Putra
Malaysia, Malaysia, in 2004 and his PhD degree in computer
networks and protocol design from University Putra Malaysia,
Malaysia, in 2008. His research interests include wireless

Journal of Communications, Vol. 8, No.2, February 2013

149

networks, protocols design, and network performance
evaluation.

Raed Alsaqour is an assistant professor in the Computer
Science Department, Faculty of Information Science and
Technology, Universiti Kebangsaan Malaysia, Malaysia. He
received his B.Sc. degree in computer science from Mu’tah
University, Jordan, in 1997. M.Sc. degree in distributed system
from University Putra Malaysia, Malaysia, in 2003 and his PhD
degree in wireless communication system from Universiti
Kebangsaan Malaysia, Malaysia, in 2008. His research interests
include wireless network, ad hoc network, vehicular network,
routing protocols, simulation, and network performance
evaluation. He also has a keen interest in computational
intelligence algorithms (fuzzy logic and genetic) applications
and security issues (intrusion detection and prevention) over
network.

Maha Abdelhaq received her Bachelor and Master degrees in
Computer Science in 2006 and 2008 from Jordan University,
(Amman, Jordan). She expected to receive her PhD degree in
wireless ad hoc network security in June 2013 from Universiti
Kebangsaan Malaysia, Malaysia. Her research interests include
ad hoc network, routing protocols, network security, artificial
computational intelligence and network performance evaluation.

Rashid Saeed received his PhD majoring in Communications
and Network Engineering, UPM, Malaysia. He is senior
Assistant Professor since 2008 in SUST, Sudan. He was senior
researcher in Telekom Malaysia™, Research and Development
(TMRND) and MIMOS Berhad, in 2007, 2010 respectively. His
areas of research interest include wireless broadband, WiMAX
Femtocell. He successfully award 10 patents (two are U.S) in
these areas. Dr. Rashid is an IEEE member since 2001 and
Member IEM.

Ola Alsqour is a technical support and web development
engineer in GIS & Remote Sensing Department, General
Computer and Electronics Company, Amman, Jordan. She
received her B.Sc. degree in computer engineering from Jordan
University, Jordan, in 2010. She currently is acquiring her
M.Sc. degree in computer engineering from Jordan University,
Amman, Jordan. Her research interests include wireless
network, ad hoc network, computer architecture, remote sensing
and geographical information system.

Journal of Communications, Vol. 8, No.2, February 2013

150

