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Abstract—Intrusion Detection Systems (IDS) are essential 
for securing enterprise and IoT networks against evolving 
cyber threats. This study proposes a Machine Learning 
(ML)-based IDS framework that integrates multiple 
algorithms to improve detection accuracy and resilience. 
Using the UNSW-NB15 dataset, models including Decision 
Tree (DT), Random Forest (RF), CatBoost, and hybrid 
approaches were trained and evaluated for binary 
classification of network activities. To mitigate performance 
degradation caused by high-dimensional feature vectors, a 
Gini Impurity-Based Weighted Random Forest (GIWRF) 
was employed for feature selection, while Genetic Algorithm 
(GA)-based feature extraction further enhanced the model’s 
understanding of class distributions. A total of twenty-seven 
features were selected based on their relevance, optimizing 
the learning process. Experimental results demonstrate that 
the hybrid model outperforms individual algorithms, 
achieving high accuracy in detecting various attacks, 
including DoS, Probe, and other network intrusions. The 
proposed GIWRF-Hybrid approach showed superior 
performance in both accuracy and loss metrics, confirming 
its practical applicability for real-world IoT security 
scenarios. The study provides insights into the design of 
robust ML-based IDS frameworks and underscores the 
importance of customized strategies and continuous 
improvements to enhance system resilience against 
increasingly sophisticated cyber-attacks. These findings 
contribute to strengthening IoT network defenses by 
combining feature selection, extraction, and hybrid 
classification methods within a single integrated approach. 
 

Keywords—Intrusion Detection System (IDS), Machine 
Learning (ML), IoT, Wireless Sensor Network (WSN), 
Genetic Algorithm (GA), Gini Impurity-based Weighted 
Random Forest (GIWRF) 

I. INTRODUCTION  

Driven by the increasing pace of advancement of 
communication technologies, Internet services, and the 
increasing range of network applications, network 
Security has emerged as a critical issue requiring 
effective solutions. To safeguard networks, various 
defense mechanisms are employed; including Intrusion 
Detection Systems (IDSs), firewalls, authentication 

techniques, and cryptographic methods [1]. IDSs examine 
network traffic to detect abnormal behavior and malicious 
digital attack [2]. An IDS alerts network administrators 
through notifications when suspicious activity is detected 
within the network. Suitable countermeasures are then 
employed to halt ongoing attacks and prevent future 
cyber-attacks [3]. Recently, machine learning approaches 
have demonstrated strong effectiveness in the 
development of Intrusion Detection Systems (IDSs). 
Machine Learning (ML) is a collection of scientific 
techniques that supports numerical pattern identification 
and independent analysis to gain important insights from 
data records [4]. The prediction accuracy of ML increases 
significantly as more relevant data are acquired. ML 
algorithms are generally divided into two main groups: 
supervised and unsupervised learning algorithms [5]. 
Supervised machine learning techniques—including K-
Nearest Neighbors (KNN) [6], Decision Tree (DT)-based 
models [7], deep learning approaches [8], and several 
other algorithms—rely on labeled datasets to establish 
mappings between input features and corresponding 
output classes [7]. Unsupervised algorithms, including 
centroid-based clustering (e.g., k-means), probabilistic 
models (e.g., Gaussian mixtures), and anomaly detection 
approaches (e.g., isolation-based methods), are employed 
to uncover hidden structures in unlabeled data [9−11]. 
Signature-based IDSs are most commonly developed 
using Supervised Learning (SL) algorithms. These 
algorithms require labeled datasets to carry out their 
training processes. Anomaly-based IDSs are typically 
developed using Unsupervised Learning (UL) techniques. 
These IDSs are able to distinguish unusual data from 
normal data samples. 

An IDS operates as a monitoring system by repeatedly 
scanning the network to detect and prevent intrusion 
attempts. It conducts an in-depth analysis of network 
requests—using signature-based inspection, protocol 
analysis, and statistical packet analysis—before 
determining whether they are malicious or benign. The 
proposed framework safeguards systems from various 
types of attacks, such as Distributed Denial of Service 
(DDoS), by permitting genuine requests while promptly 
flagging and alerting on potentially malicious traffic. 

A network Intrusion Detection System (IDS) typically 
relies on two fundamental approaches: Known attack 

 
Manuscript received July 18, 2025; revised August 20, 2025; accepted
October 9, 2025; published January 29, 2026. 

Journal of Communications, vol. 21, no. 1, 2026

89doi:10.12720/jcm.21.1.89-100



signature detection and abnormal activity detection. The 
previous identifies recognizing threats via correlation of 
network traffic data against predefined patterns of known 
attacks, whereas the latter recognizes potential intrusions 
by observing irregularities or deviations from established 
normal behaviour [12]. Signature-based detection 
systems identify threats using previously established 
attack signatures. These systems are effective against 
attacks whose characteristics are already known through 
such established patterns. However, they cannot stop 
newly evolved attacks because they are unable to learn 
from unknown patterns [13]. In anomaly-based systems, 
threats are identified through the detection of activities 
that diverge from expected norms or standard patterns. 
Such systems are capable of identifying previously 
unseen attacks by relying on models that characterize 
standard patterns of network behaviour [14]. 

Despite continuous advancements in Network-Based 
Intrusion Detection Systems (NIDSs), significant 
opportunities for improvement remain. Challenges arise 
from the high volume of network data, the dynamic 
nature of network environments, the extensive feature 
sets required for training, and the demand for real-time 
detection [15]. Redundant or irrelevant features, for 
instance, can prolong the training phase and reduce the 
accuracy of NIDSs in identifying malicious activities. 
Elevating the reliability of machine learning processes–
driven detection models therefore requires careful feature 
selection and appropriate parameter optimization [16]. 

Several data-centric and algorithmic techniques have 
been used in previous studies to develop lightweight, fast, 
high-performance classifiers without compromising 
accuracy: 
 The existing methodologies and research approaches 

for deploying IDSs in network traffic and related 
domains. 

 A comparative evaluation of the XYZ dataset 
variations is carried out to offer a detailed 
understanding of attack categories, dataset scale, 
sample distribution, and their overall significance. 

 The methods used for training, validating, and testing 
the algorithms include oversampling, feature 
extraction using a Genetic Algorithm, and feature 
selection using GIWRF and boosted LSTM. 

 Various ML approaches such as knowledge-based 
models, transfer learning, behavioral pattern analysis 
and recorded pattern analysis are used to provide a 
thorough assessment of their effectiveness. 

 A detailed discussion is presented on the advantages, 
limitations, and performance of the developed 
framework. 

Investigations into the application of ML for intrusion 
detection in IoT-based WSNs make a substantial 
contribution to improving system resilience and security. 
This study aims to utilize ML methods, namely anomaly 
detection and classification models, to identify and 
address different forms of intrusions in real time. The aim 
is to protect confidential data and maintain the 
uninterrupted functioning of IoT devices within the 
network. By using ML, it becomes possible to proactively 

detect suspicious actions and deviations from normal 
behavior patterns. This, in turn, provides strong defense 
mechanisms against constantly evolving cyber threats in 
WSNs. This contribution strengthens the protection of 
connected devices and facilitates the design of adaptive, 
intelligent intrusion detection solutions that address the 
specific challenges of IoT-based Wireless Sensor 
Network (WSN) environments. 

This article is structured formulated as: the Related 
Works part summarizes earlier research efforts of existing 
scholarly works that form the foundation of this research; 
the Methodology discusses the design of the implemented  
framework; the Experimental Procedure and Findings 
section details the configuration used for evaluation; the 
Results and Discussion section highlights the outcomes 
and their interpretation; the Limitations and Future Work 
section addresses current restrictions and suggests 
potential directions, including multiclass IDS 
development, time complexity evaluation, validation on 
diverse IoT/WSN datasets, and the design of lightweight 
models for resource-constrained environments; finally, 
the Conclusion section outlines the main contributions of 
this work. 

The increasing adoption of Internet of Things (IoT) 
applications alongside Wireless Sensor Networks (WSNs) 
has created significant security concerns, largely because 
sensor nodes operate with limited resources and are often 
deployed in diverse and unprotected environments. 
Within IoT systems, WSNs are particularly exposed to a 
variety of cyber-attacks, which highlights the necessity of 
developing strong intrusion detection and prevention 
strategies. Addressing these challenges, this research 
concentrates on IoT-driven WSNs and introduces a 
machine learning–based intrusion detection framework 
capable of identifying attacks with high accuracy while 
ensuring minimal computational overhead. By focusing 
on this setting, the proposed solution meets practical 
security requirements and contributes to the advancement 
of reliable protection mechanisms for IoT–WSN 
infrastructures. 

II.    LITERATURE REVIEW 

Alhayali et al. [17] developed a more effective 
Intrusion Detection (ID) strategy for binary classification. 
Additionally, a hybrid approach combining the Rao-SVM 
algorithm with supervised Machine Learning (ML) 
techniques for Feature Subset Selection (FSS) was 
introduced, incorporating several optimizers, including 
Rao Optimization (RO), Logistic Regression (LR), 
Support Vector Machines (SVM), and Extreme Learning 
Machines (ELM). Ibraheem et al. [18] employed 
supervised ML techniques for FSS in combination with 
the newly developed RO method, IDS, SVM, ELM, and 
LR. The Rao-SVM FSS system is presented in their work 
along with an analysis of its parameter-free and 
algorithm-specific model. In Ref. [19], an intelligent IDS 
for Wireless Sensor Networks (WSNs) was developed, 
utilizing the K-Nearest Neighbors (KNN) algorithm and 
the Arithmetical Optimization Algorithm (AOA) from 
evolutionary computation. This system aimed to create an 
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intelligent structure capable of effectively detecting and 
responding to Denial of Service (DoS) attacks in WSNs. 

Wu et al. [20] proposed a feature analysis and SVM-
optimized integrated web intrusion detection system, 
where experts analyzed common online attack 
characteristics. Examination of the HTTP protocol 
facilitated selection of relevant data attributes. Janabi and 
Ismail [21] developed a method integrating SVM, 
NTLBO, ELM, and LR algorithms using supervised ML 
techniques for FSS. In Ref. [22], a method was proposed 
to optimize the performance of Network Intrusion 
Detection Systems (NIDSs) using wrapper-based 
techniques combined with Genetic Algorithm (GA), 
Firefly Algorithm (FFA), Particle Swarm Optimization 
(PSO), and Grey Wolf Optimizer (GWO) to select 
features, implemented using the Anaconda Python Open 
Source platform. Additionally, GA, GWO, FFA, and PSO 
were applied to compute Mutual Information (MI) 
through filtering-based methods. 

Bhattacharya et al. [23] proposed a hybrid ML 
approach for IDS dataset classification using Principal 
Component Analysis (PCA) and fireflies. IDS datasets 
were transformed using One-Hot encoding, and XGBoost 
was employed to classify the reduced data. In Ref. [24], a 
novel hybrid intelligent system utilizing an inverted 
hourglass-based encrusted network classifier was 
introduced for feature classification tasks. This approach 
was validated on three datasets to distinguish between old 
and new attack behaviors, employing a hybrid 
optimization strategy to prioritize important features. The 
model also utilized an up-sampled layered network 
architecture to improve training, enhancing its capability 
to detect and counter infiltration attempts. Nazir and 
Khan [25] proposed a new feature selection method for 
NIDS, termed Tabu Search Random Forest (TS-RF), 
employing Random Forest (RF) as the learning algorithm 
and Tabu Search as the search mechanism. 

In 2022, a state-of-the-art IDS combining the X2 
statistical model with a Bi-Directional Long Short-Term 
Memory (Bi-LSTM) structure was introduced and 
evaluated using the NSL-KDD dataset, achieving an 
accuracy of 95.62% [26]. Another IDS based on Deep 
Neural Networks (DNNs) used cross-correlation for 
feature extraction, demonstrating effective network attack 
detection [27]. A hybrid Deep Learning (DL) framework 
combining Convolutional Neural Networks (CNNs) for 
local feature extraction and Recurrent Neural Networks 
(RNNs) for sequential data analysis was introduced in 
2021, tested on the CSE-CIC-DS2018 dataset, and 
achieved precision scores of up to 97.75% [28]. 

In 2021, an ANN-based IDS using the Flower 
Pollination Algorithm (FPA) on the DS2oS dataset 
achieved an accuracy of 99.1% [29]. Another CNN-based 
IDS evaluated the NSL-KDD dataset, employing Spider 
Monkey Optimization (SMO) and Conditional Random 
Field (CRF) techniques [30]. Studies from 2020 
suggested ANN models for detecting normal and 
abnormal intrusions, utilizing Correlation-based Feature 
Selection (CFS) on NSL-KDD datasets [31]. In 2019, 
neural network-based and DNN-based IDS models were 

proposed, leveraging information enhancement methods 
to analyze NSL-KDD datasets [32, 33], while in 2018, 
deep learning models emerged to detect abnormal 
behaviors and regular cyber incidents [34]. 

Disha et al. [35] developed a feature-ranking algorithm 
based on Gini impurities using RF to evaluate NIDS 
performance on the TON-IoT dataset. While 
classification performance was prioritized, computational 
costs of feature reduction were not sufficiently addressed. 
Many existing datasets used for NIDS evaluation in IoT 
security are outdated, highlighting the need for updated 
benchmark datasets. 

Wrapper-based Feature Selection (FS) is commonly 
employed to identify optimal feature subsets that improve 
classification performance. Shafiq et al. [36] proposed a 
wrapper-based FS algorithm and a CorrAUC approach, 
utilizing the Area Under the Curve (AUC) metric to 
select relevant features for ML algorithms. Although 
accuracy was lower for specific attacks, such as key-
logging, the method successfully identified relevant 
features when evaluated on the Bot-IoT dataset [37]. 

Several studies focused on lightweight solutions for 
resource-constrained IoT networks. Liu et al. [38] 
combined one-class SVM with Particle Swarm 
Optimization (PSO) for attack detection, using 
LightGBM for model construction and PSO for feature 
selection. Despite efficiency gains, such FS approaches 
often require significant computational resources, 
particularly when using GA, PSO, or ML classifiers, 
which can be challenging for IoT systems. 

Moustafa et al. [40] proposed an ensemble IDS using 
ANN, Decision Tree (DT), and Naive Bayes (NB) to 
extract relevant statistical flow features. Leevy et al. [41] 
employed Information Gain (IG), Chi-squared (Chi2), 
and Information Gain Ratio (IGR) for feature selection to 
improve performance metrics. However, computational 
cost was not a primary focus. Gavel et al. [42] analyzed 
the AWID WSN dataset using Ant Lion Optimization for 
feature selection, while Zhou et al. [43] refined FS by 
removing redundant features based on correlation 
thresholds to enhance NIDS accuracy, albeit at the cost of 
system complexity. Aggarwal [44] explored Random 
Forest classifiers with Grey-Level Co-occurrence Matrix 
(GLCM) feature extraction for MRI brain tumor 
classification, demonstrating the potential of GLCM 
features to improve accuracy through efficient texture 
analysis. 

III.  RESEARCH METHODOLOGY 

Based on the limitations identified in the reviewed 
literature (Section II), the necessity for IDS capable of 
delivering high accuracy is apparent but also remains 
computationally efficient for deployment in IoT-based 
WSN environments. Several conventional approaches 
either lack effective feature selection or rely on a single 
technique, which often leads to overfitting and poor 
generalization performance. To overcome these gaps, the 
present work proposes a dual-strategy feature selection 
framework combining GIWRF and GA, followed by a 
lightweight LSTM-based classification model. This 
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design leverages the strengths of state-of-the-art 
techniques while addressing their limitations. 

Although both GIWRF and GA have been individually 
adopted in previous intrusion detection studies for feature 
selection, there is limited research that combines them in 
a unified framework. In this work, GIWRF is first used to 
obtain an initial ranking of features based on their 
contribution to classification performance, and GA is 
then applied to further refine the selected feature subset 
through evolutionary optimization. This two-stage 
selection strategy allows us to take advantage of the 
interpretability of GIWRF and the exploration capability 
of GA, which leads to a more optimal and compact 
feature set. The proposed combination not only improves 
dimensionality reduction efficiency but also enhances 
model performance by discarding redundant and less 
relevant features. 

In the classification stage, a LSTM neural network is 
applied. The architecture includes two LSTM layers, each 
containing 64 hidden units, followed by a fully connected 
dense layer that utilizes a sigmoid activation function to 
perform binary classification. The sequence length for 
inputs is fixed at 50, while ReLU is applied as the 
activation function within the hidden layers. Training is 
carried out using the Adam optimizer with a learning rate 
of 0.001 and a batch size of 64. Aimed at avoiding 
overfitting, a dropout layer with a rate of 0.2 is 
introduced between network layers. These 
hyperparameters were determined empirically through 
initial experiments and guided by insights from prior 
research. 

During the feature ranking stage, GIWRF evaluates the 
relevance of features by analyzing how strongly they 
influence the splitting rules within decision trees. 
Features with higher scores are provisionally selected and 
passed to the GA, which evolves candidate feature 
subsets through crossover and mutation operators. The 
fitness of each candidate is evaluated using classification 
accuracy, and the best-performing subset is retained for 
training. LSTM is chosen for the classification stage 
because of its competence to model temporal correlation 
sand capture sequential relationships in network traffic 
data 

 

The proposed research methodology for the 
“Intelligent Framework for Intrusion Detection and 
Prevention using Optimized Machine Learning” begins 
with collecting network traffic-based datasets, which 
serve as the foundation for subsequent analysis. 

Dataset → Pre-processing → GIWRF → GA → 
Selected Features → LSTM Classifier → Results. 

The overall architecture of the proposed framework is 
illustrated in Fig. 1. 

A. Data Pre-processing 

Within a given dataset, normalization adjusts the range 
of data values to enhance information processing. It is 
particularly useful when there is a large disparity between 
the maximum and minimum values, helping to alleviate 
algorithmic challenges. Normalization is especially 
effective in neural networks for classification tasks. 

Furthermore, when using back-propagation in neural 
networks, proper input normalization improves 
computational efficiency and accelerates training. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Proposed machine learning–based framework for intrusion 
detection and prevention in IoT-based WSN using GA, GIWRF, and 
hybrid CatBoost–LSTM model. 
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B. Normalization 

Scaling data represents a crucial step in the overall 
normalization procedure. This process applies the min–
max technique to rescale data values within a defined 
range, typically [0, 1] or [−1, 1]. The following 
expression presents the standard normalization formula: 

  MIN

MAX MIN

d d
I

d d





                        (1) 

According to Eq. (1), the term I represents the 
normalized input value, indicating that it is a scaled or 
balanced value. Additionally, the character “d” represents 
the real value. “dMAX” and “dMIN” refer to the highest and 
inferior values of the input variable ‘d”, respectively. 

C. Data Reduction 

Data reduction techniques eliminate redundant 
information, noise, errors, and irrelevant data from a 
dataset. This process ensures that only pertinent and 
meaningful data are processed in subsequent stages, 
improving efficiency and reducing computational 
overhead. 

D. Feature Extraction 

The effectiveness of an Intrusion Detection System 
(IDS) is largely influenced by factors such as the 
completeness and depiction of the input dataset. Effective 
feature extraction is crucial for accurate detection of 
malicious network activity. The use of Genetic 
Algorithms (GA) in IDS aims to optimize feature 
extraction from network traffic data, enhancing both 
efficiency and accuracy. 

At this stage, potential features available to candidate 
solutions are represented using binary string encoding. 
The GA evolutionary process includes solution 
evaluation, selection, crossover, and mutation operations. 
Every candidate solution is assessed through a fitness 
function that quantifies how effectively it separates 
legitimate network traffic from malicious behavior, and 
the optimization cycle proceeds until a stopping criterion 
is satisfied, yielding an optimal set of features that 
maximizes the IDS’s detection and mitigation 
performance. 

The fitness function f(x) gives a measurement for 
assessment for potential solution x with regard to specific 
task achievement. In maximization problems the fitness 
function gains values for better solutions but it loses 
values for better solutions in minimization problems. 

        ( )
( )

( )ii

f x
P x

x



                                 (2) 

E. Feature Selection Using GIWRF 

The “Random Forest” (RF) is a classifier that 
combines numerous DT and offers different methods to 
determine the relevance of features. One method involves 
calculating the significance score by training the classifier. 
Traditional ML methods disregard possible class 

disparities by assuming equal significance for each 
category in the initial training data. With the aim of tackle 
this issue, RF utilizes a weight modification mechanism 
following the calculation of the GI, represented as i(τ), by 
the classifier. GI measures the degree to which a split 
successfully separates the entire collection of samples 
from both classes inside a particular node. Theoretically, 
it may be expressed as: 

           
2 2( ) 1 p ni p p                                  (3) 

where 𝑝 is the percentage of favorable instances and 𝑝𝑛 is 
the fraction of unfavorable tests out of all samples (N) at 
node τ. The decrease in GI obtained from any most 
effective splitΔ(𝜏,𝑀ሻ is acquired collectively for all the 
nodes 𝜏 in the M quantity of computed within all trees of 
the forest for every feature independently. 

F. System Training 

System training employs a robust ensemble 
classification approach, integrating CatBoost and LSTM 
networks. This combination ensures the reliability, 
adaptability, and efficiency of the IDS. 

1) Classification of nodes 

The trained model is used to categorize network nodes 
based on their unique identifiers, such as node ID and 
port number. This classification enables the detection of 
potential threats at the node level. By analyzing node-
specific information, the system can identify suspicious 
or abnormal activity associated with particular network 
entities. Proactive threat detection and mitigation 
strategies can then be applied, enhancing network 
security by addressing potential vulnerabilities and 
malicious behavior at an individual node level. 

2) Knowledge base creation 

A comprehensive knowledge base is constructed to 
store detailed information on various intrusion modes, 
attack types, and anomalous behaviors. This repository 
includes known threat signatures, attack vectors, and 
historical data on both successful and failed intrusion 
attempts. By continuously updating the knowledge base 
with new information, the system improves its ability to 
detect and prevent advanced attacks, offering proactive 
cyber security protection in dynamic network 
environments. 

3) Prevention mechanism integration 

The system incorporates preventive measures by 
analyzing historical intrusion data to proactively block 
potential threats. By evaluating past intrusion events, the 
system identifies recurring attack patterns, enabling it to 
implement preventive actions that mitigate future risks. 
Recognizing known attack vectors in advance allows 
networks to enhance security, as these vectors are 
automatically neutralized before causing damage. 

4) Pattern-based prevention 

Preventive strategies are deployed based on records of 
previously observed intrusion patterns. By analyzing 
historical intrusion data, the system identifies routine 
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attack behaviors, which informs security actions designed 
to preempt predictable threats. Predictive measures 
strengthen network defense by preventing or neutralizing 
previously recorded attack methods, thereby reducing the 
likelihood of successful intrusions and their associated 
impacts. 

5) Behavioral pattern generation with LSTM 

LSTM networks are employed to model behavioral 
patterns that aid in detecting abnormal system events and 
potential intrusions. LSTM’s capability to monitor long 
sequences of network activity enables it to identify 
unusual patterns indicative of security risks. This context-
aware approach allows dynamic threat detection, as 
anomalies trigger immediate responses to emerging 
security threats. 

6) Hybrid model 

The proposed framework integrates CatBoost, a 
gradient boosting algorithm optimized for categorical 
data, with LSTM networks for sequential data 
management. CatBoost effectively processes structured 
network traffic features while reducing overfitting and 
supporting reliable querying, whereas LSTM captures 
long-term temporal dependencies in traffic flows, thereby 
enhancing the system’s capability to identify 
sophisticated intrusion patterns. 

The hybrid model harnesses the complementary 
strengths of CatBoost and LSTM. While traditional 
machine learning models have limited capacity to process 
sequential data, deep learning models require optimal 
feature selection for effective generalization. CatBoost 
processes both categorical and numerical inputs 
efficiently, minimizing bias-related errors, whereas 
LSTM captures temporal attack patterns. Combining 
these approaches improves overall intrusion detection 
accuracy, stability, and robustness compared to using 
either model independently. 

IV.   DATASET 

The UNSW-NB15 dataset deployed in this research is 
publicly accessible benchmark dataset containing both 
benign and malicious traffic generated under realistic 
network conditions. It encompasses a broad range of 
contemporary attack categories commonly observed in 
IoT and WSN environments, making it particularly well-
suited for assessing intrusion detection systems in these 
domains. 

The dataset has been widely employed in related 
studies and is considered representative of real-world 
IoT-based WSN traffic patterns. Consequently, the 
findings of this study can be reasonably generalized to 
similar scenarios. Future work will involve testing the 
proposed approach on additional datasets to further 
validate its generality and robustness. 

The experimental evaluation of the IDS utilized the 
UNSW-NB15 dataset for offline analysis [45]. This 
dataset, extensively referenced in IDS research [46], 
contains 27 features as summarized in Table I. Notably, 
UNSW-NB15 is more recent than many other benchmark 

datasets, making it well-suited for contemporary intrusion 
detection research. 

 
TABLE I. FEATURES OF THE UNSW-NB15 DATASET 

Features Value Section feature 
dbytes int primary 

rate int content 
sttl int primary 

dmean int content 
ct_state_ttl int general 

dload float primary 
sloss int primary 

sinpkt float time 
dinpkt float time 

dur nominal primary 
ct_dst_sport_ltm int connection 

sbytes int primary 
synack float time 
dpkts int primary 
ackdat float time 
smean int connection 
swin int content 
tcprtt float time 

ct_src_dport_ltm int connection 
state_INT nominal primary 
ct_srv_dst int connection 
proto_tcp nominal flow 
ct_srv_src int connection 

dttl int primary 
ct_dst_ltm int connection 

ct_dst_src_ltm int connection 
sload int primary 

 
The dataset was divided into 70% for training, with 

15% assigned for validation while the rest 15% reserved 
for testing the models. A verification procedure was 
conducted to ensure optimal performance during the 
training process. The dataset contains contemporary 
internet traffic data, encompassing both normal and 
abnormal instances, including modern low-profile attacks. 
The data is presented in a clean and structured format 
without unnecessary repetition, making it highly suitable 
for accurate IDS evaluation. 

V.  RESULT 

Experiments were conducted on an HP Notebook 14-
AL143TX laptop running the latest version of the 
Windows operating system. The system is powered by an 
Intel Core™ i5-7200U processor, featuring a base clock 
speed of 2.8 GHz and a maximum turbo boost of 3.5 GHz. 
Machine learning models were developed, trained, and 
evaluated using Pandas, Scikit-Learn (sklearn), and other 
ML libraries within the Python Jupyter Notebook 
environment, which is freely available. 

A.  Evaluation Parameters 

The proficiency of the formulated approach was 
assessed using common evaluation metrics such as 
accuracy, precision, and loss. Accuracy is determined by 
the ratio of correctly classified instances to the total 
number of samples in the dataset, as expressed by the 
following formula: 

TN TP
Accuracy

TN TP FN FP




  
                (4) 
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                     TN
Precision

TN FP



                    (5) 

True Positive (TP) indicates the count of attacks 
correctly detected, while True Negative (TN) represents 
the number of normal traffic instances accurately 
classified. False Positive (FP) refers to normal traffic 
incorrectly identified as attacks, and False Negative (FN) 
corresponds to attacks that are mistakenly classified as 
normal network traffic [47]. 

B.  Experimental Results 

This section summarizes the findings derived from the 
binary classifications performed by the IDS developed 
using machine learning techniques. The study also 
evaluates precision rates achieved on the used dataset and 
compares them with those reported in previous research. 
Moreover, the analysis examines the detection accuracy 
for the various attack types present in the dataset. 

The study was carried out in two stages to evaluate the 
effectiveness of four ML models: Decision Tree, Random 
Forest, CatBoost, and the proposed Hybrid model. In the 
first phase, all features of the UNSW-NB15 dataset 
wereused to examine the models’ effectiveness in 
detecting binary classes. During the second stage, the 
study applied the formulated feature selection approach, 
and the four models were evaluated using accuracy and 
loss metrics.  
 

 
Fig. 2. Relative examination of the accuracy of RF model. 

 
Fig. 3. Loss over the epoch of the RF model. 

The accuracy of the Random Forest (RF) model in 
detecting WSN faults over 10 training epochs is 
illustrated in Fig. 2. The precision measurements exhibit 

varying trends throughout the learning process. The 
model’s precision starts at 0.3 in the first epoch and peaks 
at 0.9 by the fifth epoch. However, precision decreases in 
the sixth epoch, rises again in the eighth epoch, and then 
sharply declines to approximately 0.1 by the tenth epoch. 
This instability in training accuracy suggests potential 
overfitting and indicates that hyperparameter tuning may 
be necessary to improve learning stability. 

The corresponding loss values of the RF model across 
the same 10 epochs are presented in Fig. 3. Initially, the 
loss begins at approximately 0.7, decreases to 0.1 by the 
second epoch, and then rises sharply to 0.9 in the third 
epoch. Significant fluctuations continue until the loss 
reaches a minimum in the sixth epoch, after which it 
begins to rise again. This erratic behavior indicates 
instability in the learning process, likely caused by 
inappropriate learning rates or insufficient data 
preparation. Optimizing these parameters could lead to 
more stable training outcomes and reduced loss across 
epochs. 

Fig. 4 illustrates the accuracy of the Decision Tree (DT) 
model across epochs in detecting and preventing 
incidents in an IoT-based WSN. The figure presents 

fluctuations in the model’s accuracy over the training 
period. Typically, accuracy is expected to improve during 
initial epochs as the model extracts knowledge from the 
data, followed by periods of stabilization or minor 
variations as the model fine-tunes its performance. 
Observed fluctuations in accuracy indicate aspects of the 
learning process that may require improvements in 
training procedures or data preprocessing to enhance and 
stabilize model performance. 

 

 

Fig. 4. Accuracy over epoch for model 2 (DT). 

The loss performance of the DT model over 10 epochs 
is shown in Fig. 5. Initially, the loss starts at 
approximately 0.45 and remains relatively stable for the 
first three epochs. In the fourth epoch, the loss rises 
sharply to a peak of 0.8, before gradually decreasing. A 
secondary peak is observed around the ninth epoch. 
These fluctuations indicate that the DT model 
experiences learning instabilities, likely caused by 
overfitting and over-identification of patterns in the 
dataset. To achieve more stable loss values during 
training, the model requires optimized hyperparameter 
configurations and improved data preprocessing 
techniques. 
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Fig. 5. Loss over Epoch of DT model. 

Fig. 6 illustrates the accuracy of the CatBoost (CB) 
model over the training epochs. The accuracy begins at 
approximately 0.6 in the first epoch and reaches a peak of 
around 0.9 by the seventh epoch. Following this peak, 
accuracy declines, indicating some instability, before 
rising again around the eighth epoch and then sharply 
dropping to approximately 0.1 by the tenth epoch. This 
fluctuation suggests variability in the model’s learning 
process and potential overfitting or hyperparameter-
related issues. 

 

 

Fig. 6. Accuracy over epoch for CatBoost model. 

 

Fig. 7. Loss of Catboost model over epoch.  

Fig. 7 shows the loss progression of the CatBoost 
model across 10 epochs. The loss starts at roughly 0.6 
and reduces to nearly 0.3 by the third epoch, indicating 
initial learning improvements. However, the loss 
unexpectedly increases to nearly 1.0 by the fourth epoch, 
followed by alternating peaks and troughs, including a 
notable spike in the sixth epoch and a rapid decrease in 
the subsequent epoch. These fluctuations indicate 

substantial variability during training, reflecting 
instability in the model’s learning process and 
emphasizing the need for further hyperparameter tuning 
and optimization to achieve stable and reliable 
performance. 

Fig. 8 illustrates the accuracy of the hybrid model 
across training epochs. The model initially achieves an 
accuracy of approximately 0.2, peaks at around 0.85 
during the third epoch, and subsequently drops to zero by 
the fifth epoch, indicating a significant decline in 
performance. Accuracy fluctuates throughout the epochs, 
with notable peaks observed during the third and seventh 
epochs. Overall, the pattern highlights instability in the 
model’s ability to consistently detect intrusions, 
suggesting that further refinement of the model structure 
and training configuration parameters is necessary. 

 

 
Fig. 8. Accuracy of model 4 (Hybrid model). 

 
Fig. 9. Loss over epoch for Hybrid model. 

 

Fig. 9 presents the loss progression of the hybrid model 
trained for intrusion detection in IoT-based WSNs. The 
loss exhibits substantial fluctuations, indicating instability 
in the learning process. Initially, the loss is around 0.5, 
decreasing to approximately 0.1 by the third epoch, 
reflecting notable early progress. However, a sharp 
increase occurs during the fourth epoch, peaking at 
roughly 0.98, followed by alternating downward and 
upward trends in subsequent epochs. These variations 
emphasize the need for improved hyperparameter tuning 
and training optimization to achieve more stable and 
reliable model performance. The comparative 
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performance of different machine learning models in terms of accuracy and loss is presented in Table II.

TABLE II. RELATIVE EXAMINATION OF THE ACCURACY AND LOSS OF THE FOUR MODELS 

Epoch 
Accuracy Loss 

RF model  DT     modelCat Boost model Hybrid model RF model  DT model  Cat Boost model Hybrid Model 

1 28.6% 49% 62% 21% 75% 42% 59% 56% 

2 63.6% 27% 82% 46% 28% 40% 54% 30% 

3 63% 44% 65% 86% 90% 51% 29% 9% 

4 28% 48% 64% 71% 70% 86% 86% 82% 

5 89% 62% %14 5% 80% 49% 82% 39% 

6 75% 71% 30% 99% 2% 69% 98% 5% 

7 90% 62% 98% 78% 10% 8% 9% 62% 

8 80% 23% 10% 55% 85% 25% 50% 18% 

9 45% 75% 38% 32% 50% 79% 58% 25% 

10 10% 32% 30 31% 60% 11% 8% 75% 
Average 57.2% 49.3% 49.3% 55.4% 55% 46% 53.3% 40.1% 

 
Fig. 10 compares the accuracy of the four machine 

learning models across training epochs. Performance 
fluctuates for all models, with the hybrid model 
consistently achieving higher accuracy than the others in 
most epochs. The CatBoost model occasionally 
approaches similar accuracy levels but is generally 
outperformed by the hybrid approach. The Decision Tree 
and Random Forest models exhibit greater variability and 
often lag behind in accuracy. Overall, the hybrid model 
demonstrates superior and more stable performance, 
highlighting its effectiveness in reliably detecting 
intrusions in IoT-based WSNs. 

 

 
Fig. 10. Comparative research on the accuracy of several models. 

Fig. 11 presents the loss values for the four machine 
learning models. Lower loss values indicate higher model 
efficacy, reflecting a smaller difference between 
predicted and actual results. The hybrid model 
consistently exhibits the lowest loss values across 
multiple epochs, emphasizing its robustness and 
effectiveness in intrusion detection. The CatBoost model 
occasionally shows higher loss values but generally  
maintains strong performance. In contrast, the Random 
Forest (RF) and Decision Tree (DT) models display 
greater volatility, with higher and more fluctuating loss 
values. These observations underscore the reliability of 
the hybrid model in minimizing prediction errors, making 
it a more effective tool for preventing unauthorized 
access in IoT-based WSNs. 

 

 
Fig. 11. Analysis of the loss of various ML models. 

Table III Offers a holistic overview evaluation of the 
formulated method’s effectiveness in detecting specific 
attack types, including DoS, Probe, RPL Rank Attack, 
Sybil Attack, and Blackhole Attack. The hybrid model 
achieves high performance across all evaluation metrics, 
maintaining accuracy, precision, recall, and F1−Score 
levels between 97% and 99%. Notably, detection of Sybil 
attacks reaches a success rate of 99.1%, comparable to 
the detection rates for other attack types. The system 
demonstrates a minimum average Intrusion Detection 
Rate (IDR) of 98%, reflecting its ability to identify and 
prevent threats with minimal false alarms. Overall, the 
hybrid model provides effective and stable security, 
ensuring robust protection for IoT-based WSNs against 
cyber-attacks. 

TABLE III. OVERALL PERFORMANCE OF THE HYBRID MODEL FOR 

VARIOUS ATTACKS 

 
Fig. 12 depicts the performance contrast between the 

developed hybrid model and various existing models. The 
hybrid system demonstrates exceptional detection metrics 

Attack Type Accuracy 
(%) 

Precision 
(%) 

Recall (%) F1−Score 
(%) 

IDR 
% 

DoS 98.3% 98.1% 98.4% 98.25% 99.1% 
Probe 97.9% 97.8% 97.9% 97.85% 98.7% 

RPL Rank 
Attack 

98.5% 98.3% 98.6% 98.45% 98.9% 

Sybil Attack 99.1% 99.0% 99.2% 99.1% 99.5% 
Blackhole 97.8% 97.6% 97.9% 97.75% 98.3% 
Average 98.32% 98.16% 98.4% 98.28% 98.9% 
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across multiple attack types, maintaining accuracy, 
precision, recall, and F1−Score levels consistently above 
97–99%. Detection of Sybil attacks achieves optimal 
performance, while all other attacks also show consistent 
and effective identification. Both normal and malicious 
behaviors are efficiently classified based on the input data, 
demonstrating the system’s strong capability to safeguard 
IoT-based WSN networks against cyber-attacks. 
 

 
Fig. 12. Performance of Hybrid ML-based Intrusion Detection in IoT-

WSN. 

C. Comparative Analysis 

Table IV shows a contrast of various intrusion 
detection systems, including DNN, Naive Bayes (NB), 
DRNN, DCNN, and KNN-PSO, against the proposed 
hybrid machine learning paradigm. The proposed model 
outperforms all others, achieving 98.32% accuracy, 
98.16% precision, 98.4% recall, and 98.28% F1−Score. 
While the NB model shows competitive performance, the 
DCNN model exhibits the lowest accuracy at 89.1%. 
These findings indicate that the developed hybrid model 
outperforms others in effectively detecting intrusions 
within IoT-enabled WSN networks. 
 

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT MODELS 

Models 
Accuracy 

(%) 
Precision 

(%) 
Recall 
(%) 

F1-Score 
(%) 

DNN [48]  93.74% 93.712 % 93.824%  93.472% 

NB [49]  97.14% 96.72% 96.33% 97.94% 

DRNN [50]  94.27% 92.18% 93.29% 92.29% 

DCNN [51]  89.1% 89.23% 88.2% 89.1% 

KNN-PSO 
[52]  

96.42% 95.35% 98.36% 95.42% 

Proposed 
model 

98.32% 98.16% 98.4% 98.28% 

 
Fig. 13 presents the performance metric scores of 

different intrusion detection models evaluated in this 
research. The figure highlights performance degradation 
in the DCNN model, whereas the proposed hybrid model 
consistently achieves the highest scores across all metrics. 
These trends validated that the formulated method 
considerably augments intrusion detection in IoT-based 
WSN networks, validating its superiority over 
conventional methods. 

 
Fig. 13. Performance metrics comparison of different models for 

intrusion detection. 

VI.  NOVELTY OF THE STUDY 

The originality of this work lies in the integration of 
GIWRF and Genetic Algorithm (GA) for optimized 
feature selection, combined with a hybrid CatBoost-
LSTM model for intrusion detection in IoT-based WSNs. 
Unlike conventional IDS approaches that rely solely on 
ML or DL techniques, this study leverages the 
complementary strengths of both methods—CatBoost for 
handling categorical data and LSTM for capturing 
temporal relationships in network traffic. Performance is 
further improved by selecting the top 27 features from the 
UNSW-NB15 dataset while keeping computational costs 
low. Extensive evaluation across diverse intrusion 
environments addresses model stability issues and 
generates more robust results compared to traditional 
approaches. The hybrid model also offers enhanced IDS 
flexibility, making it deployable in dynamic IoT networks. 

VII.  LIMITATIONS AND FUTURE WORK 

While the proposed hybrid IDS framework 
demonstrates promising performance, certain limitations 
remain. First, the study primarily focused on binary 
classification and did not address multiclass intrusion 
detection scenarios, which are crucial for real-world IoT 
and WSN applications. Second, the time complexity and 
computational overhead of the framework were not 
analyzed, which is an important factor for deployment on 
resource-constrained devices. Third, although the 
UNSW-NB15 dataset provides a diverse range of attack 
categories, the generalizability of the results may be 
limited, as experiments were not extended to multiple 
datasets. Additionally, the current evaluation does not 
incorporate statistical reliability tests such as confidence 
intervals, error bars, or multiple-trial averages, which 
would further strengthen the robustness of the findings. 

Future research will extend this work by developing 
multiclass IDS frameworks, incorporating time 
complexity analysis, validating performance on 
additional IoT and WSN datasets, and exploring 
lightweight models suitable for deployment on low-
power sensor nodes. Moreover, future experiments will 
include statistical reliability measures to enhance the 
credibility of the reported results. 
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VIII.  DISCUSSION AND CONCLUSION 

Comparing the findings of this study on Intrusion 
Detection & Prevention (ID&P) in IoT-based WSNs 
using ML and Big Data Analytics (BDA) with previous 
research reveals several important insights. Efficient data 
collection strategies facilitated the management of 
complex IoT data and the construction of effective 
training datasets. The integration of BDA for feature 
extraction, combined with GA and GIWRF techniques, 
proved effective in enhancing model accuracy and 
operational performance. The system maximizes feature 
selection based on relevant patterns, and ML models such 
as RF, DT, and the Hybrid model improve node-level 
detection in WSNs, aligning with prior studies 
emphasizing model selection based on application 
requirements. 

This research advances the current knowledge by 
providing updated insights into hybrid ML approaches for 
IoT-based WSNs, focusing on improving network 
reliability and security. The study trained and evaluated 
DT, RF, CatBoost, and Hybrid models for binary 
classification in ML-based IDS. Feature selection was 
performed on imbalanced datasets, with GA applied to 
the UNSW-NB15 dataset, and the GIWRF approach 
adopted for feature evaluation. Decision-making 
strategies reduced dataset dimensionality, and models 
were assessed based on accuracy and loss. Initially, single 
ML methods were evaluated, followed by all four models 
individually. Results indicated that the hybrid model, 
combined with feature selection, exhibited superior 
performance for the UNSW-NB15 dataset. 
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