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Abstract—Intrusion Detection Systems (IDS) are essential
for securing enterprise and IoT networks against evolving
cyber threats. This study proposes a Machine Learning
(ML)-based IDS framework that integrates multiple
algorithms to improve detection accuracy and resilience.
Using the UNSW-NBI15 dataset, models including Decision
Tree (DT), Random Forest (RF), CatBoost, and hybrid
approaches were trained and evaluated for binary
classification of network activities. To mitigate performance
degradation caused by high-dimensional feature vectors, a
Gini Impurity-Based Weighted Random Forest (GIWRF)
was employed for feature selection, while Genetic Algorithm
(GA)-based feature extraction further enhanced the model’s
understanding of class distributions. A total of twenty-seven
features were selected based on their relevance, optimizing
the learning process. Experimental results demonstrate that
the hybrid model outperforms individual algorithms,
achieving high accuracy in detecting various attacks,
including DoS, Probe, and other network intrusions. The
proposed GIWRF-Hybrid approach showed superior
performance in both accuracy and loss metrics, confirming
its practical applicability for real-world IoT security
scenarios. The study provides insights into the design of
robust ML-based IDS frameworks and underscores the
importance of customized strategies and continuous
improvements to enhance system resilience against
increasingly sophisticated cyber-attacks. These findings
contribute to strengthening IoT network defenses by
combining feature selection, extraction, and hybrid
classification methods within a single integrated approach.

Keywords—Intrusion Detection System (IDS), Machine
Learning (ML), IoT, Wireless Sensor Network (WSN),
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1. INTRODUCTION

Driven by the increasing pace of advancement of
communication technologies, Internet services, and the
increasing range of network applications, network
Security has emerged as a critical issue requiring
effective solutions. To safeguard networks, various
defense mechanisms are employed; including Intrusion
Detection Systems (IDSs), firewalls, authentication
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techniques, and cryptographic methods [1]. IDSs examine
network traffic to detect abnormal behavior and malicious
digital attack [2]. An IDS alerts network administrators
through notifications when suspicious activity is detected
within the network. Suitable countermeasures are then
employed to halt ongoing attacks and prevent future
cyber-attacks [3]. Recently, machine learning approaches
have demonstrated strong effectiveness in the
development of Intrusion Detection Systems (IDSs).
Machine Learning (ML) is a collection of scientific
techniques that supports numerical pattern identification
and independent analysis to gain important insights from
data records [4]. The prediction accuracy of ML increases
significantly as more relevant data are acquired. ML
algorithms are generally divided into two main groups:
supervised and unsupervised learning algorithms [5].
Supervised machine learning techniques—including K-
Nearest Neighbors (KNN) [6], Decision Tree (DT)-based
models [7], deep learning approaches [8], and several
other algorithms—rely on labeled datasets to establish
mappings between input features and corresponding
output classes [7]. Unsupervised algorithms, including
centroid-based clustering (e.g., k-means), probabilistic
models (e.g., Gaussian mixtures), and anomaly detection
approaches (e.g., isolation-based methods), are employed
to uncover hidden structures in unlabeled data [9-11].
Signature-based IDSs are most commonly developed
using Supervised Learning (SL) algorithms. These
algorithms require labeled datasets to carry out their
training processes. Anomaly-based IDSs are typically
developed using Unsupervised Learning (UL) techniques.
These IDSs are able to distinguish unusual data from
normal data samples.

An IDS operates as a monitoring system by repeatedly
scanning the network to detect and prevent intrusion
attempts. It conducts an in-depth analysis of network
requests—using signature-based inspection, protocol
analysis, and statistical packet analysis—before
determining whether they are malicious or benign. The
proposed framework safeguards systems from various
types of attacks, such as Distributed Denial of Service
(DDoS), by permitting genuine requests while promptly
flagging and alerting on potentially malicious traffic.

A network Intrusion Detection System (IDS) typically
relies on two fundamental approaches: Known attack
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signature detection and abnormal activity detection. The
previous identifies recognizing threats via correlation of
network traffic data against predefined patterns of known
attacks, whereas the latter recognizes potential intrusions
by observing irregularities or deviations from established
normal behaviour [12]. Signature-based detection
systems identify threats using previously established
attack signatures. These systems are effective against
attacks whose characteristics are already known through
such established patterns. However, they cannot stop
newly evolved attacks because they are unable to learn
from unknown patterns [13]. In anomaly-based systems,
threats are identified through the detection of activities
that diverge from expected norms or standard patterns.

Such systems are capable of identifying previously

unseen attacks by relying on models that characterize

standard patterns of network behaviour [14].

Despite continuous advancements in Network-Based
Intrusion  Detection Systems (NIDSs), significant
opportunities for improvement remain. Challenges arise
from the high volume of network data, the dynamic
nature of network environments, the extensive feature
sets required for training, and the demand for real-time
detection [15]. Redundant or irrelevant features, for
instance, can prolong the training phase and reduce the
accuracy of NIDSs in identifying malicious activities.
Elevating the reliability of machine learning processes—
driven detection models therefore requires careful feature
selection and appropriate parameter optimization [16].

Several data-centric and algorithmic techniques have
been used in previous studies to develop lightweight, fast,
high-performance classifiers without compromising
accuracy:

e The existing methodologies and research approaches
for deploying IDSs in network traffic and related
domains.

e A comparative evaluation of the XYZ dataset
variations is carried out to offer a detailed
understanding of attack categories, dataset scale,
sample distribution, and their overall significance.

e The methods used for training, validating, and testing
the algorithms include oversampling, feature
extraction using a Genetic Algorithm, and feature
selection using GIWRF and boosted LSTM.

e Various ML approaches such as knowledge-based
models, transfer learning, behavioral pattern analysis
and recorded pattern analysis are used to provide a
thorough assessment of their effectiveness.

e A detailed discussion is presented on the advantages,
limitations, and performance of the developed
framework.

Investigations into the application of ML for intrusion
detection in IoT-based WSNs make a substantial
contribution to improving system resilience and security.
This study aims to utilize ML methods, namely anomaly
detection and classification models, to identify and
address different forms of intrusions in real time. The aim
is to protect confidential data and maintain the
uninterrupted functioning of IoT devices within the
network. By using ML, it becomes possible to proactively
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detect suspicious actions and deviations from normal
behavior patterns. This, in turn, provides strong defense
mechanisms against constantly evolving cyber threats in
WSNs. This contribution strengthens the protection of
connected devices and facilitates the design of adaptive,
intelligent intrusion detection solutions that address the
specific challenges of IoT-based Wireless Sensor
Network (WSN) environments.

This article is structured formulated as: the Related
Works part summarizes earlier research efforts of existing
scholarly works that form the foundation of this research;
the Methodology discusses the design of the implemented
framework; the Experimental Procedure and Findings
section details the configuration used for evaluation; the
Results and Discussion section highlights the outcomes
and their interpretation; the Limitations and Future Work
section addresses current restrictions and suggests
potential  directions, including  multiclass IDS
development, time complexity evaluation, validation on
diverse [oT/WSN datasets, and the design of lightweight
models for resource-constrained environments; finally,
the Conclusion section outlines the main contributions of
this work.

The increasing adoption of Internet of Things (IoT)
applications alongside Wireless Sensor Networks (WSNs)
has created significant security concerns, largely because
sensor nodes operate with limited resources and are often
deployed in diverse and unprotected environments.
Within IoT systems, WSNs are particularly exposed to a
variety of cyber-attacks, which highlights the necessity of
developing strong intrusion detection and prevention
strategies. Addressing these challenges, this research
concentrates on loT-driven WSNs and introduces a
machine learning—based intrusion detection framework
capable of identifying attacks with high accuracy while
ensuring minimal computational overhead. By focusing
on this setting, the proposed solution meets practical
security requirements and contributes to the advancement
of reliable protection mechanisms for I[oT-WSN
infrastructures.

II. LITERATURE REVIEW

Alhayali et al [17] developed a more effective
Intrusion Detection (ID) strategy for binary classification.
Additionally, a hybrid approach combining the Rao-SVM
algorithm with supervised Machine Learning (ML)
techniques for Feature Subset Selection (FSS) was
introduced, incorporating several optimizers, including
Rao Optimization (RO), Logistic Regression (LR),
Support Vector Machines (SVM), and Extreme Learning
Machines (ELM). Ibraheem et al [18] employed
supervised ML techniques for FSS in combination with
the newly developed RO method, IDS, SVM, ELM, and
LR. The Rao-SVM FSS system is presented in their work
along with an analysis of its parameter-free and
algorithm-specific model. In Ref. [19], an intelligent IDS
for Wireless Sensor Networks (WSNs) was developed,
utilizing the K-Nearest Neighbors (KNN) algorithm and
the Arithmetical Optimization Algorithm (AOA) from
evolutionary computation. This system aimed to create an
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intelligent structure capable of effectively detecting and
responding to Denial of Service (DoS) attacks in WSNs.

Wu et al. [20] proposed a feature analysis and SVM-
optimized integrated web intrusion detection system,
where experts analyzed common online attack
characteristics. Examination of the HTTP protocol
facilitated selection of relevant data attributes. Janabi and
Ismail [21] developed a method integrating SVM,
NTLBO, ELM, and LR algorithms using supervised ML
techniques for FSS. In Ref. [22], a method was proposed
to optimize the performance of Network Intrusion
Detection Systems (NIDSs) using wrapper-based
techniques combined with Genetic Algorithm (GA),
Firefly Algorithm (FFA), Particle Swarm Optimization
(PSO), and Grey Wolf Optimizer (GWO) to select
features, implemented using the Anaconda Python Open
Source platform. Additionally, GA, GWO, FFA, and PSO
were applied to compute Mutual Information (MI)
through filtering-based methods.

Bhattacharya et al. [23] proposed a hybrid ML
approach for IDS dataset classification using Principal
Component Analysis (PCA) and fireflies. IDS datasets
were transformed using One-Hot encoding, and XGBoost
was employed to classify the reduced data. In Ref. [24], a
novel hybrid intelligent system utilizing an inverted
hourglass-based encrusted network classifier was
introduced for feature classification tasks. This approach
was validated on three datasets to distinguish between old
and new attack behaviors, employing a hybrid
optimization strategy to prioritize important features. The
model also utilized an up-sampled layered network
architecture to improve training, enhancing its capability
to detect and counter infiltration attempts. Nazir and
Khan [25] proposed a new feature selection method for
NIDS, termed Tabu Search Random Forest (TS-RF),
employing Random Forest (RF) as the learning algorithm
and Tabu Search as the search mechanism.

In 2022, a state-of-the-art IDS combining the X2
statistical model with a Bi-Directional Long Short-Term
Memory (Bi-LSTM) structure was introduced and
evaluated using the NSL-KDD dataset, achieving an
accuracy of 95.62% [26]. Another IDS based on Deep
Neural Networks (DNNs) used cross-correlation for
feature extraction, demonstrating effective network attack
detection [27]. A hybrid Deep Learning (DL) framework
combining Convolutional Neural Networks (CNNs) for
local feature extraction and Recurrent Neural Networks
(RNNs) for sequential data analysis was introduced in
2021, tested on the CSE-CIC-DS2018 dataset, and
achieved precision scores of up to 97.75% [28].

In 2021, an ANN-based IDS using the Flower
Pollination Algorithm (FPA) on the DS20S dataset
achieved an accuracy of 99.1% [29]. Another CNN-based
IDS evaluated the NSL-KDD dataset, employing Spider
Monkey Optimization (SMO) and Conditional Random
Field (CRF) techniques [30]. Studies from 2020
suggested ANN models for detecting normal and
abnormal intrusions, utilizing Correlation-based Feature
Selection (CFS) on NSL-KDD datasets [31]. In 2019,
neural network-based and DNN-based IDS models were
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proposed, leveraging information enhancement methods
to analyze NSL-KDD datasets [32, 33], while in 2018,
deep learning models emerged to detect abnormal
behaviors and regular cyber incidents [34].

Disha et al. [35] developed a feature-ranking algorithm
based on Gini impurities using RF to evaluate NIDS
performance on the TON-IoT dataset. While
classification performance was prioritized, computational
costs of feature reduction were not sufficiently addressed.
Many existing datasets used for NIDS evaluation in IoT
security are outdated, highlighting the need for updated
benchmark datasets.

Wrapper-based Feature Selection (FS) is commonly
employed to identify optimal feature subsets that improve
classification performance. Shafiq et al. [36] proposed a
wrapper-based FS algorithm and a CorrAUC approach,
utilizing the Area Under the Curve (AUC) metric to
select relevant features for ML algorithms. Although
accuracy was lower for specific attacks, such as key-
logging, the method successfully identified relevant
features when evaluated on the Bot-IoT dataset [37].

Several studies focused on lightweight solutions for

resource-constrained IoT networks. Liu et al [38]
combined one-class SVM with Particle Swarm
Optimization (PSO) for attack detection, using

LightGBM for model construction and PSO for feature
selection. Despite efficiency gains, such FS approaches
often require significant computational resources,
particularly when using GA, PSO, or ML classifiers,
which can be challenging for IoT systems.

Moustafa et al. [40] proposed an ensemble IDS using
ANN, Decision Tree (DT), and Naive Bayes (NB) to
extract relevant statistical flow features. Leevy et al. [41]
employed Information Gain (IG), Chi-squared (Chi2),
and Information Gain Ratio (IGR) for feature selection to
improve performance metrics. However, computational
cost was not a primary focus. Gavel et al. [42] analyzed
the AWID WSN dataset using Ant Lion Optimization for
feature selection, while Zhou et al. [43] refined FS by
removing redundant features based on correlation
thresholds to enhance NIDS accuracy, albeit at the cost of
system complexity. Aggarwal [44] explored Random
Forest classifiers with Grey-Level Co-occurrence Matrix
(GLCM) feature extraction for MRI brain tumor
classification, demonstrating the potential of GLCM
features to improve accuracy through efficient texture
analysis.

III. RESEARCH METHODOLOGY

Based on the limitations identified in the reviewed
literature (Section II), the necessity for IDS capable of
delivering high accuracy is apparent but also remains
computationally efficient for deployment in IoT-based
WSN environments. Several conventional approaches
either lack effective feature selection or rely on a single
technique, which often leads to overfitting and poor
generalization performance. To overcome these gaps, the
present work proposes a dual-strategy feature selection
framework combining GIWRF and GA, followed by a
lightweight LSTM-based classification model. This
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design leverages the strengths of state-of-the-art
techniques while addressing their limitations.

Although both GIWRF and GA have been individually
adopted in previous intrusion detection studies for feature
selection, there is limited research that combines them in
a unified framework. In this work, GIWREF is first used to
obtain an initial ranking of features based on their
contribution to classification performance, and GA is
then applied to further refine the selected feature subset
through evolutionary optimization. This two-stage
selection strategy allows us to take advantage of the
interpretability of GIWRF and the exploration capability
of GA, which leads to a more optimal and compact
feature set. The proposed combination not only improves
dimensionality reduction efficiency but also enhances
model performance by discarding redundant and less
relevant features.

In the classification stage, a LSTM neural network is
applied. The architecture includes two LSTM layers, each
containing 64 hidden units, followed by a fully connected
dense layer that utilizes a sigmoid activation function to
perform binary classification. The sequence length for
inputs is fixed at 50, while ReLU is applied as the
activation function within the hidden layers. Training is
carried out using the Adam optimizer with a learning rate
of 0.001 and a batch size of 64. Aimed at avoiding
overfitting, a dropout layer with a rate of 0.2 is
introduced between network layers. These
hyperparameters were determined empirically through
initial experiments and guided by insights from prior
research.

During the feature ranking stage, GIWRF evaluates the
relevance of features by analyzing how strongly they
influence the splitting rules within decision trees.
Features with higher scores are provisionally selected and
passed to the GA, which evolves candidate feature
subsets through crossover and mutation operators. The
fitness of each candidate is evaluated using classification
accuracy, and the best-performing subset is retained for
training. LSTM is chosen for the classification stage
because of its competence to model temporal correlation
sand capture sequential relationships in network traffic
data

The proposed research methodology for the
“Intelligent Framework for Intrusion Detection and
Prevention using Optimized Machine Learning” begins
with collecting network traffic-based datasets, which
serve as the foundation for subsequent analysis.

Dataset — Pre-processing — GIWRF — GA —
Selected Features — LSTM Classifier — Results.

The overall architecture of the proposed framework is
illustrated in Fig. 1.

A. Data Pre-processing

Within a given dataset, normalization adjusts the range
of data values to enhance information processing. It is
particularly useful when there is a large disparity between
the maximum and minimum values, helping to alleviate
algorithmic challenges. Normalization is especially
effective in neural networks for classification tasks.
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Furthermore, when using back-propagation in neural
networks, proper input normalization improves
computational efficiency and accelerates training.

=

Fig. 1. Proposed machine learning—based framework for intrusion
detectlon and prevention in IoT-based WSN using GA, GIWRF, and
hybrid CatBoost-LSTM model.
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B. Normalization

Scaling data represents a crucial step in the overall
normalization procedure. This process applies the min—
max technique to rescale data values within a defined
range, typically [0, 1] or [-1, 1]. The following
expression presents the standard normalization formula:

I d_dM[N

M

d MAX ~ dM[N

According to Eq. (1), the term I represents the
normalized input value, indicating that it is a scaled or
balanced value. Additionally, the character “d” represents
the real value. “dmax” and “dvy” refer to the highest and
inferior values of the input variable ‘d”, respectively.

C. Data Reduction

Data reduction techniques eliminate redundant
information, noise, errors, and irrelevant data from a
dataset. This process ensures that only pertinent and
meaningful data are processed in subsequent stages,
improving efficiency and reducing computational
overhead.

D. Feature Extraction

The effectiveness of an Intrusion Detection System
(IDS) is largely influenced by factors such as the
completeness and depiction of the input dataset. Effective
feature extraction is crucial for accurate detection of
malicious network activity. The wuse of Genetic
Algorithms (GA) in IDS aims to optimize feature
extraction from network traffic data, enhancing both
efficiency and accuracy.

At this stage, potential features available to candidate
solutions are represented using binary string encoding.
The GA evolutionary process includes solution
evaluation, selection, crossover, and mutation operations.
Every candidate solution is assessed through a fitness
function that quantifies how effectively it separates
legitimate network traffic from malicious behavior, and
the optimization cycle proceeds until a stopping criterion
is satisfied, yielding an optimal set of features that
maximizes the IDS’s detection and mitigation
performance.

The fitness function f(x) gives a measurement for
assessment for potential solution x with regard to specific
task achievement. In maximization problems the fitness
function gains values for better solutions but it loses
values for better solutions in minimization problems.

S ()
Zi (xi)

P(x)= )

E. Feature Selection Using GIWRF

The “Random Forest” (RF) is a classifier that
combines numerous DT and offers different methods to
determine the relevance of features. One method involves

calculating the significance score by training the classifier.

Traditional ML methods disregard possible class
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disparities by assuming equal significance for each
category in the initial training data. With the aim of tackle
this issue, RF utilizes a weight modification mechanism
following the calculation of the GI, represented as i(z), by
the classifier. GI measures the degree to which a split
successfully separates the entire collection of samples
from both classes inside a particular node. Theoretically,
it may be expressed as:

i(ty=1-p, - p, 3)

where ; is the percentage of favorable instances and pn is
the fraction of unfavorable tests out of all samples (N) at
node 1. The decrease in GI obtained from any most
effective splitA(7,M) is acquired collectively for all the
nodes T in the M quantity of computed within all trees of
the forest for every feature independently.

F. System Training

System training employs a robust ensemble
classification approach, integrating CatBoost and LSTM
networks. This combination ensures the reliability,
adaptability, and efficiency of the IDS.

1) Classification of nodes

The trained model is used to categorize network nodes
based on their unique identifiers, such as node ID and
port number. This classification enables the detection of
potential threats at the node level. By analyzing node-
specific information, the system can identify suspicious
or abnormal activity associated with particular network
entities. Proactive threat detection and mitigation
strategies can then be applied, enhancing network
security by addressing potential vulnerabilities and
malicious behavior at an individual node level.

2) Knowledge base creation

A comprehensive knowledge base is constructed to
store detailed information on various intrusion modes,
attack types, and anomalous behaviors. This repository
includes known threat signatures, attack vectors, and
historical data on both successful and failed intrusion
attempts. By continuously updating the knowledge base
with new information, the system improves its ability to
detect and prevent advanced attacks, offering proactive
cyber security protection in dynamic network
environments.

3) Prevention mechanism integration

The system incorporates preventive measures by
analyzing historical intrusion data to proactively block
potential threats. By evaluating past intrusion events, the
system identifies recurring attack patterns, enabling it to
implement preventive actions that mitigate future risks.
Recognizing known attack vectors in advance allows
networks to enhance security, as these vectors are
automatically neutralized before causing damage.

4) Pattern-based prevention

Preventive strategies are deployed based on records of
previously observed intrusion patterns. By analyzing
historical intrusion data, the system identifies routine
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attack behaviors, which informs security actions designed
to preempt predictable threats. Predictive measures
strengthen network defense by preventing or neutralizing
previously recorded attack methods, thereby reducing the
likelihood of successful intrusions and their associated
impacts.

5) Behavioral pattern generation with LSTM

LSTM networks are employed to model behavioral
patterns that aid in detecting abnormal system events and
potential intrusions. LSTM’s capability to monitor long
sequences of network activity enables it to identify
unusual patterns indicative of security risks. This context-
aware approach allows dynamic threat detection, as
anomalies trigger immediate responses to emerging
security threats.

6) Hybrid model

The proposed framework integrates CatBoost, a
gradient boosting algorithm optimized for categorical
data, with LSTM networks for sequential data
management. CatBoost effectively processes structured
network traffic features while reducing overfitting and
supporting reliable querying, whereas LSTM captures
long-term temporal dependencies in traffic flows, thereby
enhancing the system’s capability to identify
sophisticated intrusion patterns.

The hybrid model harnesses the complementary
strengths of CatBoost and LSTM. While traditional
machine learning models have limited capacity to process
sequential data, deep learning models require optimal
feature selection for effective generalization. CatBoost
processes both categorical and numerical inputs
efficiently, minimizing bias-related errors, whereas
LSTM captures temporal attack patterns. Combining
these approaches improves overall intrusion detection
accuracy, stability, and robustness compared to using
either model independently.

IV. DATASET

The UNSW-NB15 dataset deployed in this research is
publicly accessible benchmark dataset containing both
benign and malicious traffic generated under realistic
network conditions. It encompasses a broad range of
contemporary attack categories commonly observed in
IoT and WSN environments, making it particularly well-
suited for assessing intrusion detection systems in these
domains.

The dataset has been widely employed in related
studies and is considered representative of real-world
IoT-based WSN traffic patterns. Consequently, the
findings of this study can be reasonably generalized to
similar scenarios. Future work will involve testing the
proposed approach on additional datasets to further
validate its generality and robustness.

The experimental evaluation of the IDS utilized the
UNSW-NBI15 dataset for offline analysis [45]. This
dataset, extensively referenced in IDS research [46],
contains 27 features as summarized in Table 1. Notably,
UNSW-NBIS5 is more recent than many other benchmark
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datasets, making it well-suited for contemporary intrusion
detection research.

TABLE I. FEATURES OF THE UNSW-NB15 DATASET

Features Value Section feature
dbytes int primary
rate int content
sttl int primary
dmean int content
ct_state_ttl int general
dload float primary
sloss int primary
sinpkt float time
dinpkt float time
dur nominal primary
ct dst sport Itm int connection
sbytes int primary
synack float time
dpkts int primary
ackdat float time
smean int connection
swin int content
teprtt float time
ct src_dport Itm int connection
state INT nominal primary
ct_srv_dst int connection
proto_tcp nominal flow
ct_srv_src int connection
dttl int primary
ct dst Itm int connection
ct dst src_Itm int connection
sload int primary

The dataset was divided into 70% for training, with
15% assigned for validation while the rest 15% reserved
for testing the models. A verification procedure was
conducted to ensure optimal performance during the
training process. The dataset contains contemporary
internet traffic data, encompassing both normal and
abnormal instances, including modern low-profile attacks.
The data is presented in a clean and structured format
without unnecessary repetition, making it highly suitable
for accurate IDS evaluation.

V. RESULT

Experiments were conducted on an HP Notebook 14-
AL143TX laptop running the latest version of the
Windows operating system. The system is powered by an
Intel Core™ i5-7200U processor, featuring a base clock
speed of 2.8 GHz and a maximum turbo boost of 3.5 GHz.
Machine learning models were developed, trained, and
evaluated using Pandas, Scikit-Learn (sklearn), and other
ML libraries within the Python Jupyter Notebook
environment, which is freely available.

A. Evaluation Parameters

The proficiency of the formulated approach was
assessed using common evaluation metrics such as
accuracy, precision, and loss. Accuracy is determined by
the ratio of correctly classified instances to the total
number of samples in the dataset, as expressed by the
following formula:

TN +TP
TN +TP+FN + FP

(4)

Accuracy =
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TN

S - ®)
TN + FP

Precision =

True Positive (TP) indicates the count of attacks
correctly detected, while True Negative (TN) represents
the number of normal traffic instances accurately
classified. False Positive (FP) refers to normal traffic
incorrectly identified as attacks, and False Negative (FN)
corresponds to attacks that are mistakenly classified as
normal network traffic [47].

B. Experimental Results

This section summarizes the findings derived from the
binary classifications performed by the IDS developed
using machine learning techniques. The study also
evaluates precision rates achieved on the used dataset and
compares them with those reported in previous research.
Moreover, the analysis examines the detection accuracy
for the various attack types present in the dataset.

The study was carried out in two stages to evaluate the
effectiveness of four ML models: Decision Tree, Random
Forest, CatBoost, and the proposed Hybrid model. In the
first phase, all features of the UNSW-NBI15 dataset
wereused to examine the models’ effectiveness in
detecting binary classes. During the second stage, the
study applied the formulated feature selection approach,
and the four models were evaluated using accuracy and
loss metrics.

0.9 1

0.8 1

Accuracy
°© o o ©o © o
N w » w o ~

o
-

T T T T T

2 4 6 8
Epoch

Fig. 2. Relative examination of the accuracy of RF model.
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Fig. 3. Loss over the epoch of the RF model.
The accuracy of the Random Forest (RF) model in

detecting WSN faults over 10 training epochs is
illustrated in Fig. 2. The precision measurements exhibit
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varying trends throughout the learning process. The
model’s precision starts at 0.3 in the first epoch and peaks
at 0.9 by the fifth epoch. However, precision decreases in
the sixth epoch, rises again in the eighth epoch, and then
sharply declines to approximately 0.1 by the tenth epoch.
This instability in training accuracy suggests potential
overfitting and indicates that hyperparameter tuning may
be necessary to improve learning stability.

The corresponding loss values of the RF model across
the same 10 epochs are presented in Fig. 3. Initially, the
loss begins at approximately 0.7, decreases to 0.1 by the
second epoch, and then rises sharply to 0.9 in the third
epoch. Significant fluctuations continue until the loss
reaches a minimum in the sixth epoch, after which it
begins to rise again. This erratic behavior indicates
instability in the learning process, likely caused by
inappropriate learning rates or insufficient data
preparation. Optimizing these parameters could lead to
more stable training outcomes and reduced loss across
epochs.

Fig. 4 illustrates the accuracy of the Decision Tree (DT)
model across epochs in detecting and preventing
incidents in an IoT-based WSN. The figure presents
fluctuations in the model’s accuracy over the training
period. Typically, accuracy is expected to improve during
initial epochs as the model extracts knowledge from the
data, followed by periods of stabilization or minor
variations as the model fine-tunes its performance.
Observed fluctuations in accuracy indicate aspects of the
learning process that may require improvements in
training procedures or data preprocessing to enhance and
stabilize model performance.
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Fig. 4. Accuracy over epoch for model 2 (DT).

The loss performance of the DT model over 10 epochs
is shown in Fig. 5. Initially, the loss starts at
approximately 0.45 and remains relatively stable for the
first three epochs. In the fourth epoch, the loss rises
sharply to a peak of 0.8, before gradually decreasing. A
secondary peak is observed around the ninth epoch.
These fluctuations indicate that the DT model
experiences learning instabilities, likely caused by
overfitting and over-identification of patterns in the
dataset. To achieve more stable loss values during
training, the model requires optimized hyperparameter
configurations and improved data preprocessing
techniques.
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Fig. 5. Loss over Epoch of DT model.

Fig. 6 illustrates the accuracy of the CatBoost (CB)
model over the training epochs. The accuracy begins at
approximately 0.6 in the first epoch and reaches a peak of
around 0.9 by the seventh epoch. Following this peak,
accuracy declines, indicating some instability, before
rising again around the eighth epoch and then sharply
dropping to approximately 0.1 by the tenth epoch. This
fluctuation suggests variability in the model’s learning
process and potential overfitting or hyperparameter-
related issues.
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Fig. 6. Accuracy over epoch for CatBoost model.
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Fig. 7. Loss of Catboost model over epoch.

Fig. 7 shows the loss progression of the CatBoost
model across 10 epochs. The loss starts at roughly 0.6
and reduces to nearly 0.3 by the third epoch, indicating
initial learning improvements. However, the loss
unexpectedly increases to nearly 1.0 by the fourth epoch,
followed by alternating peaks and troughs, including a
notable spike in the sixth epoch and a rapid decrease in
the subsequent epoch. These fluctuations indicate
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substantial ~ variability during training, reflecting
instability in the model’s learning process and
emphasizing the need for further hyperparameter tuning
and optimization to achieve stable and reliable
performance.

Fig. 8 illustrates the accuracy of the hybrid model
across training epochs. The model initially achieves an
accuracy of approximately 0.2, peaks at around 0.85
during the third epoch, and subsequently drops to zero by
the fifth epoch, indicating a significant decline in
performance. Accuracy fluctuates throughout the epochs,
with notable peaks observed during the third and seventh
epochs. Overall, the pattern highlights instability in the
model’s ability to consistently detect intrusions,
suggesting that further refinement of the model structure
and training configuration parameters is necessary.
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Fig. 8. Accuracy of model 4 (Hybrid model).
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Fig. 9. Loss over epoch for Hybrid model.

Fig. 9 presents the loss progression of the hybrid model
trained for intrusion detection in IoT-based WSNs. The
loss exhibits substantial fluctuations, indicating instability
in the learning process. Initially, the loss is around 0.5,
decreasing to approximately 0.1 by the third epoch,
reflecting notable early progress. However, a sharp
increase occurs during the fourth epoch, peaking at
roughly 0.98, followed by alternating downward and
upward trends in subsequent epochs. These variations
emphasize the need for improved hyperparameter tuning
and training optimization to achieve more stable and
reliable model performance. The comparative
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performance of different machine learning models in

terms of accuracy and loss is presented in Table II

TABLE II. RELATIVE EXAMINATION OF THE ACCURACY AND LOSS OF THE FOUR MODELS

Accuracy Loss
Epoch RF model DT model Cat Boost model Hybrid model RF model DT model Cat Boost model Hybrid Model
1 28.6% 49% 62% 21% 75% 42% 59% 56%
2 63.6% 27% 82% 46% 28% 40% 54% 30%
3 63% 44% 65% 86% 90% 51% 29% 9%
4 28% 48% 64% 71% 70% 86% 86% 82%
5 89% 62% %14 5% 80% 49% 82% 39%
6 75% 71% 30% 99% 2% 69% 98% 5%
7 90% 62% 98% 78% 10% 8% 9% 62%
8 80% 23% 10% 55% 85% 25% 50% 18%
9 45% 75% 38% 32% 50% 79% 58% 25%
10 10% 32% 30 31% 60% 11% 8% 75%
Average 57.2% 49.3% 49.3% 55.4% 55% 46% 53.3% 40.1%
Fig. 10 compares the accuracy of the four machine
learning models across training epochs. Performance 12
fluctuates for all models, with the hybrid model
consistently achieving higher accuracy than the others in '
. T model
most epochs. The CatBoost model occasionally 08 | i —
approaches similar accuracy levels but is generally . I DT model
outperformed by the hybrid approach. The Decision Tree 5% CafRoost
and Random Forest models exhibit greater variability and 04 - .g;?g;ld modsl
often lag behind in accuracy. Overall, the hybrid model 02 1 ] u
demonstrates superior and more stable performance,
highlighting its effectiveness in reliably detecting 0 "
. . . 1 2 3 4 5 [ 7 8 9 10
intrusions in IoT-based WSNs. Epoch
o Fig. 11. Analysis of the loss of various ML models.
. Table III Offers a holistic overview evaluation of the
formulated method’s effectiveness in detecting specific
L08 | | wRF model attack types, including DoS, Probe, RPL Rank Attack,
g I D! mods Sybil Attack, and Blackhole Attack. The hybrid model
067 | CatBocst mods] achieves high performance across all evaluation metrics,
04 I = Hybrid model maintaining accuracy, precision, recall, and F1—Score
levels between 97% and 99%. Notably, detection of Sybil
02 attacks reaches a success rate of 99.1%, comparable to
the detection rates for other attack types. The system
0 2 3 4 s 6 1 s e 1w demonstrates a minimum average Intrusion Detection
Epoch Rate (IDR) of 98%, reflecting its ability to identify and

Fig. 10. Comparative research on the accuracy of several models.

Fig. 11 presents the loss values for the four machine
learning models. Lower loss values indicate higher model
efficacy, reflecting a smaller difference between
predicted and actual results. The hybrid model
consistently exhibits the lowest loss values across
multiple epochs, emphasizing its robustness and
effectiveness in intrusion detection. The CatBoost model
occasionally shows higher loss values but generally
maintains strong performance. In contrast, the Random
Forest (RF) and Decision Tree (DT) models display
greater volatility, with higher and more fluctuating loss
values. These observations underscore the reliability of
the hybrid model in minimizing prediction errors, making
it a more effective tool for preventing unauthorized
access in loT-based WSNss.
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prevent threats with minimal false alarms. Overall, the
hybrid model provides effective and stable security,
ensuring robust protection for IoT-based WSNs against
cyber-attacks.

TABLE III. OVERALL PERFORMANCE OF THE HYBRID MODEL FOR
VARIOUS ATTACKS

Attack Type Accuracy Precision Recall (%) F1-Score IDR
(%) (%) (%) %

DoS 98.3% 98.1% 98.4% 98.25% 99.1%
Probe 97.9% 97.8% 97.9% 97.85% 98.7%
RPLRank  gg 50, 98304 98.6%  98.45%  98.9%

Attack

Sybil Attack  99.1% 99.0% 99.2% 99.1% 99.5%
Blackhole 97.8% 97.6% 97.9% 97.75% 98.3%
Average 98.32% 98.16% 98.4% 98.28% 98.9%

Fig. 12 depicts the performance contrast between the
developed hybrid model and various existing models. The
hybrid system demonstrates exceptional detection metrics
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across multiple attack types, maintaining accuracy,
precision, recall, and F1—Score levels consistently above
97-99%. Detection of Sybil attacks achieves optimal
performance, while all other attacks also show consistent
and effective identification. Both normal and malicious
behaviors are efficiently classified based on the input data,
demonstrating the system’s strong capability to safeguard
IoT-based WSN networks against cyber-attacks.

M Accuracy (%) MPrecision (%) ®Recall (%) ®F1-Score (%) MIDR

Blackhole

Probe RPL Rank

Attack

Sybil Attack Average

Fig. 12. Performance of Hybrid ML-based Intrusion Detection in IoT-
WSN.

C. Comparative Analysis

Table IV shows a contrast of various intrusion
detection systems, including DNN, Naive Bayes (NB),
DRNN, DCNN, and KNN-PSO, against the proposed
hybrid machine learning paradigm. The proposed model
outperforms all others, achieving 98.32% accuracy,
98.16% precision, 98.4% recall, and 98.28% F1—Score.
While the NB model shows competitive performance, the
DCNN model exhibits the lowest accuracy at 89.1%.
These findings indicate that the developed hybrid model
outperforms others in effectively detecting intrusions
within loT-enabled WSN networks.

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT MODELS

Models Accuracy Precision Recall F1-Score
(%) (%) (%) (%)

DNN [48] 93.74% 93.712 % 93.824% 93.472%

NB [49] 97.14% 96.72% 96.33% 97.94%
DRNN [50] 94.27% 92.18% 93.29% 92.29%
DCNN [51] 89.1% 89.23% 88.2% 89.1%
KNE;I—;]’SO 96.42% 95.35% 98.36% 95.42%
P:ﬁgngd 98.32% 98.16% 98.4% 98.28%

Fig. 13 presents the performance metric scores of
different intrusion detection models evaluated in this
research. The figure highlights performance degradation
in the DCNN model, whereas the proposed hybrid model

consistently achieves the highest scores across all metrics.

These trends validated that the formulated method
considerably augments intrusion detection in loT-based
WSN networks, validating its superiority over
conventional methods.

98

—+— Accuracy (%)

== Precision (%)
Reeall (%)

i F1 -ScoOrE (%)

86 I
DNN [48]

| | I
NB[49] DRNN[50] DCNN[51] KNN-PSO  Proposed

152] model

Fig. 13. Performance metrics comparison of different models for
intrusion detection.

VI. NOVELTY OF THE STUDY

The originality of this work lies in the integration of
GIWRF and Genetic Algorithm (GA) for optimized
feature selection, combined with a hybrid CatBoost-
LSTM model for intrusion detection in IoT-based WSNs.
Unlike conventional IDS approaches that rely solely on
ML or DL techniques, this study leverages the
complementary strengths of both methods—CatBoost for
handling categorical data and LSTM for capturing
temporal relationships in network traffic. Performance is
further improved by selecting the top 27 features from the
UNSW-NBIS5 dataset while keeping computational costs
low. Extensive evaluation across diverse intrusion
environments addresses model stability issues and
generates more robust results compared to traditional
approaches. The hybrid model also offers enhanced IDS
flexibility, making it deployable in dynamic IoT networks.

VII. LIMITATIONS AND FUTURE WORK

While the proposed hybrid IDS framework
demonstrates promising performance, certain limitations
remain. First, the study primarily focused on binary
classification and did not address multiclass intrusion
detection scenarios, which are crucial for real-world IoT
and WSN applications. Second, the time complexity and
computational overhead of the framework were not
analyzed, which is an important factor for deployment on
resource-constrained devices. Third, although the
UNSW-NBIS5 dataset provides a diverse range of attack
categories, the generalizability of the results may be
limited, as experiments were not extended to multiple
datasets. Additionally, the current evaluation does not
incorporate statistical reliability tests such as confidence
intervals, error bars, or multiple-trial averages, which
would further strengthen the robustness of the findings.

Future research will extend this work by developing
multiclass IDS  frameworks, incorporating time
complexity analysis, validating performance on
additional IoT and WSN datasets, and exploring
lightweight models suitable for deployment on low-
power sensor nodes. Moreover, future experiments will
include statistical reliability measures to enhance the
credibility of the reported results.
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VIII. DISCUSSION AND CONCLUSION

Comparing the findings of this study on Intrusion
Detection & Prevention (ID&P) in IoT-based WSNs
using ML and Big Data Analytics (BDA) with previous
research reveals several important insights. Efficient data
collection strategies facilitated the management of
complex IoT data and the construction of effective
training datasets. The integration of BDA for feature
extraction, combined with GA and GIWRF techniques,
proved effective in enhancing model accuracy and
operational performance. The system maximizes feature
selection based on relevant patterns, and ML models such
as RF, DT, and the Hybrid model improve node-level
detection in WSNs, aligning with prior studies
emphasizing model selection based on application
requirements.

This research advances the current knowledge by
providing updated insights into hybrid ML approaches for
IoT-based WSNs, focusing on improving network
reliability and security. The study trained and evaluated
DT, RF, CatBoost, and Hybrid models for binary
classification in ML-based IDS. Feature selection was
performed on imbalanced datasets, with GA applied to
the UNSW-NBI15 dataset, and the GIWRF approach
adopted for feature evaluation. Decision-making
strategies reduced dataset dimensionality, and models
were assessed based on accuracy and loss. Initially, single
ML methods were evaluated, followed by all four models
individually. Results indicated that the hybrid model,
combined with feature selection, exhibited superior
performance for the UNSW-NB15 dataset.
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