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Abstract—Wireless communication is continuously evolving. 
Signals compete in the spectrum as there is a demand for data 
transfer. There is also a growing demand for radio spectrum, 
resulting in congestion. With the advancement of deep 
learning, there are numerous applications in which it could 
be utilized; this could be used as a solution to the current issue. 
Given the state of wireless communication, this research aims 
to achieve a higher accuracy rate regarding spectrum sensing 
of noise, Long-Term Evolution (LTE), New Radio (NR), and 
radar through deep learning. The following methods are used: 
a) different Cellular Neural Network (CNN) models such as 
resnet18, resnet50, mobilenetv2, etc., b) modifying segments 
of code, c) manipulation of the dataset. For the results, the 
modified normalized confusion matrix values significantly 
increased compared to the pre-modified version. For the 
spectrogram sensing, the received spectrogram, true signal 
labels, and estimated signals were dominated mainly by noise. 
Based on the graph, the frame mean Intersection over Union 
(IoU) has noticeably increased; however, based on data 
metrics, the mean IoU decreased. There is an increase in 
global accuracy, mean accuracy, Weighted IoU, and Mean 
BF Score. In conclusion, the objective of increasing the 
accuracy rate was met through various modifications, such 
as using different CNN architectures, parameter adjustments, 
and manipulating the given data set. However, the decrease 
in the mean IoU should also be considered, as it is also part 
of the accuracy measurement. 
 
Keywords—5G, deep learning, radar, signals, spectrum 
sensing 
 

I. INTRODUCTION 

Wireless communications has become widespread over 
the years of modern technology. According to the study of 
Barb and Otesteanu [1], wireless communication systems 
such as Long Term Evolution (LTE/4G) and New Radio 
(5G/NR) are continuously evolving. With this trend in the 
community, there is a higher demand for data transfer. Due 
to the intense demand, there is competition for the 
bandwidth and latency in the spectrum. In addition, aside 

from the existing wireless communication, there are on-
going deployments for other innovative networks such as 
the 6th Generation Mobile System (6G). Furthermore, with 
wireless communication such as LTE and 5G, there is also 
a growing demand for radio spectrum for radar, resulting 
in congestion [2]. 

Given the state of wireless communication, this research 
aims to achieve a higher accuracy rate in terms of spectrum 
sensing of airport surveillance radar (ASR/Radar), LTE, 
5th generation technology (5G/NR), and Gaussian noise 
(Gauss). This paper is divided into several sections, 
including the topic introduction, the methodology used, 
the results acquired, the discussion about the comparison 
of the existing related studies, and the overall conclusion 
for this paper. 

II. LITERATURE REVIEW 

A. Integrated  Sensing and Communication 

The concept of integrated sensing and communications 
refers to the combination of both wireless and radar 
sensing. It acts as a single system wherein it senses, 
collects, and communicates the information in a single go, 
compared to the previous architecture/s, where both 
signals are treated differently. As per the study of  
Liu et al. [3], ISAC is expected to considerably improve 
spectral and energy efficiencies. ISAC is a design 
methodology that integrates sensing and communication 
functionalities to achieve efficient usage and mutually 
benefit one another. In the case of implementing additive 
white Gaussian noise for both radar and wireless 
connections, one might think that these noises have only 
detrimental effects on the system; however, in a real 
scenario, this noise plays a crucial role in the ISAC model 
as it creates a realistic channel, ensuring that the system 
can handle real-life conditions. 

B. Deep Learning in Radar and Wireless Communication 

With the ongoing state of deep learning, there are 
numerous applications in which it could be utilized. In the 
context of radar and wireless communication, deep 
learning could be used as a solution to the current spectrum 
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traffic problem. As Nasser et al. [4] stated, machine 
learning and deep learning have been employed in wireless 
communication to manage the spectrum efficiently. In 
cognitive radio systems, machine learning and deep 
learning were also used to enhance spectrum sensing 
performance. There are two phases involved in learning 
techniques, namely: learning and prediction. In traditional 
spectrum sensing, secondary users must determine the 
threshold for the test statistic before deciding if primary 
users are present. Various parameters, such as noise, 
channel, and primary users, should be determined 
beforehand, as the threshold can be based on false alarm 
and detection rates. Applying machine learning and deep 
learning eliminates the need for the parameters.  

C. The Current Challenges in Spectrum Sensing 

In spectrum sharing, signals share the vacant bands to 
avoid collisions, including three major spectrum access, 
selection of channels, and spectrum allocation [5]. 
Spectrum Decision deals with the analysis of the band and 
is responsible for decision-making [2]. The efficient 
implementation of cognitive radios into wireless networks 
gives rise to a tremendous number of optimization 
problems with multiple objectives [6]. Another issue 
related to radar is the increase in bandwidth requirement. 
However, it was addressed by Reed et al. [7] through fixed 
frequency bands; it is still seen as an issue, as bandwidth 
plays a key role in performing operations. The Federal 
Communications Commission indicates that fewer radio 
frequencies are conducive to operating cost-effective 
wireless cellular and mobile broadband [8]. Several 
Cognitive Radios working in the same frequency band of 
primary users can severely affect the spectrum sensing 
process [9]. Given the state of wireless communication, 
this study aims to achieve a higher accuracy rate regarding 
spectrum sensing of noise, LTE, NR, and Radar through 
deep learning. 

III. MATERIALS AND METHODS 

A. Spectrum Sensing Flowchart using Deep Learning 

Fig. 1 provides a detailed flowchart describing the code 
simulation's overall structure in MATLAB. This chart is a 
visual guide to understand the data processing workflow 
and the interactions between each sub-category. The latter 
part provided a detailed explanation involving the 
sequence of data processing throughout the code. 

1) Setup of the waveform 

The first step was to set up the waveform used in radar 
or wireless systems. The signal’s center frequency is 2.8 
GHz with a sampling frequency of 62.44 MHz. It then 
calculated the pulse repetition by almost 1050 per second 
with a pulse width of 1 microsecond. Finally, a 
RectangularWaveform function was used. 

2) Setup of the antenna 

The following step is to set up the antenna; this segment 
defines the parabolic parameters of an antenna: the radius 
and focal length of 2.5 meters. The horn exciter and the 

reflector were tilted 90°. Finally, the conformal array 
function was used for the shape of the antenna. 

 
Fig. 1. Flowchart illustrating the structured flow from setting up the 

variables, generating the data, and evaluating the metrics in MATLAB. 

3) Setup of the transmitter and receiver 

The next step focused on the setup for the transmitter 
and receiver. The transmit power is set to 25 kW while the 
transmit gain is 32.8% which is defined through the use of 
phased.Transmitter function. In addition, the rxpos_horiz 
and rxpos_vert are the ranges for the receiver. 

4) Define radar position 

For the radar position, the radar transmitter’s position 
was set at (0,0,5) meters, and the Scattering MIMO 
Channel function was used to create a radar environment. 
Under the ConformalArray function, parameters such as 
CarrierFrequency, SpecifyFrequency, SpecifyAtmosphere, 
etc, were used to simulate the environment. 

5) Definition of the transmitter position 

In defining the wireless transmitter position, this 
segment positioned the transmitter at (200.0.450) using a 
taper type condition under the ConformalArray function.  
Similar to the previous code segments, this section also 
created its environment. 

6) Generation of the training data 

A zip file from an online source, Ref. [10], was extracted 
to generate the train data, containing both the training and 
testing datasets. This part was intended to set up the 
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machine learning model to recognize the signals, LTE, 5G, 
Radar, and Noise. The training image was set to 50 while 
the image size was [480 640 3]. The images were then 
organized according to their labels and split into training 
and validation sets. The next part focused on the pixel-
level classifier and the deep learning model. 

7) Training of the deep learning model 

As for the deep learning model, this is the primary focus 
of spectrum sensing. The code utilized DeepLabV3+ with 
a backbone of MobileNetV2. Under the training Options 
function, minibatch size, maxepochs, learn rate schedule, 
etc., were defined. Additional data augmentation was also 
incorporated, including Rand Rotation, Rand X Reflection, 
Rand Y Reflection, etc. After the augmentations, the data 
was trained. Since the train Now is set to false, the pre-
trained model was loaded. 

8) Generation of the testing data 

To generate a test data segment, the code generated 120 
images for evaluating the trained data. It then used the 
helper Generate Radar Comm Data to simulate the radar 
and communication data. After the test data were 
generated, it was loaded using image Data Store; the 
semantics function was used to apply the testing data to the 
training data, in which image segments are classified by 
predicting the type of signal for each pixel.  

9) Evaluation of the performance metrics 

In the last segment of the code, the pixel Label Datastore 
function was used to identify the truth labels of the image 
by reading the actual class label from PDF files. The true 
and predicted labels were compared, and the evaluate 
Semantic Segmentation function was used to calculate data 
metrics. The expected visual outputs are the Confusion 
Matrix, Received Spectrogram, True Signal Labels, 
Estimated Signal Labels, and the Mean IoU, which 

showcases the accuracy values of the given data set within 
the created simulation. 

D. Modifications for Increasing the Accuracy of the 
Spectrum Sensing Model 

With the given flowchart of the code, a series of 
alterations within the parameters were made to increase the 
accuracy of spectrum sensing. This modification includes 
the trial and error in using different models for the 
convolutional neural network, specific values for each 
function in the given code, and the modification of the data 
sets between the train and test folders. These steps were 
necessary to determine slight differences that could 
significantly influence the resulting output values. 

1) Convolutional neural network in MATLAB 

A convolutional neural network type is one of the deep 
learning methods used in the study, in which various 
models were used to find the best-fitting model that could 
yield a significantly higher accuracy. In addition, 
according to a study by Qin et al. [11], MobileNetV2 has 
faster identification speed. It requires fewer computational 
resources than traditional deep CNNs. Before 
encountering MobileNetV2, several models were also 
tested, such as ResNet18 [12], ResNet50, MobileNetV2, 
Xception, InceptionResNetV2, EfficientNetb0, and 
DenseNet201; however, all models failed to improve the 
accuracy slightly. From the pre-modified version, the base 
network is ResNet50. Upon testing the different models, 
the MobileNetv2, while less complex, is greater than 
ResNet50.  

2) Code modifications 

Various modifications are made in the original code on 
spectrum sensing with deep learning for radar and wireless 
communications. Table I shows the different 
modifications in terms of the code given by MATLAB. 

TABLE I. CODE DIFFERENCE BETWEEN PRE-MODIFIED AND MODIFIED 

Pre-modified Modified Used Values 
Num Training Data=500 Num Training Data = 450 500,450 

ng opts = training Options (“adam”) sgdm, adam 
Mini Batch Size = 40 Mini Batch Size = 20 40,80,100,20 

Max Epochs = 40 Max Epochs = 20 40,80,100,20 
Initial Learn Rate = 0.02 Initial Learn Rate = 0.0001 0.02,0.01,0.0001 

Learn Rate Drop Period = 10 Learn Rate Drop Period = 50 10,30,50 
Learn Rate Drop Factor = 0.01 Learn Rate Drop Factor = 0.05 0.01,0.05 

Validation Patience = 5 Validation Patience = 30 5,15,30 
N/A rxpos_horiz_minimax = [−1000 1000] N/A 
N/A rxpos_vert_minimax = [0 2000] N/A 

 

3) Radar communication sensing spectrum data 

The original dataset [10] has been modified for this 
study. The folder includes two subfolders: 
RadarCommTrainData with a total of 8802 various files 
and RadarCommTestData with 1765 files. The ASR, LTE, 
5G, and Gauss are the signals that can be seen on the 
spectrum. The researcher did an 80/20% file hatching in 
which 20% of a specific data type from the folder 
RadarCommTrainData was moved to the 
RadarCommTestData folder; the summary of the original 
number of files of both folders, RadarCommTestData and 

RadarCommTrainData, can be seen in Table II. For 
example, the data type label_ASR_5G_gauss*.hdf has a 
total of 500 files, 20% of which are the files from 401 to 
500, which were moved to the other folder. For other files 
with a total of 467, such as data_ASR_5G_LTE_gauss.png, 
only the remaining 67 were transferred.  

The images shown in Fig. 2 are the sample files from the 
folder RadarCommTrainData. The image on the left, 
labeled as data_asr_lte1.png, shows strokes of mostly blue 
signals. However, notice a small band mixture of red and 
yellow in the middle. This band signifies signals, 
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specifically ASR and LTE, on this data image. On the 
other hand, the image on the right, labeled 
data_asr_lte_gauss1.png, is a fuzzy image showing 
scattered patches of yellow, green, and blue, which can 
suggest that the signals detected in this image are mostly 
noise. Both images have the labels for ASR and LTE; 

however, when the Gaussian noise was added, it overlaid 
most of the signals. This addition might affect the 
detection of signals on the spectrum due to the noise. 
However, note that there are 400 images to be trained for 
each data type. 

TABLE II. ORIGINAL NUMBER OF FILES OF RADAR COMM TRAIN DATA AND RADAR COMM TEST DATA FOLDERS 

File Name Number of Files (Radar Comm Train Data) Number of Files (Radar Comm Test Data) 
label_ASR_5G.hdf 500 100 

label_ASR_5G_LTE_gauss.hdf 467 94 
label_ASR_5G_LTE.hdf 467 94 

label_ASR_5G.hdf 500 100 
label_ASR_LTE_gauss.hdf 500 100 

label_ASR_LTE.hdf 500 100 
data_ASR_5G_gauss.png 500 100 

data_ASR_5G_LTE_gauss.png 467 94 
data_ASR_5G_LTE.png 467 94 

data_ASR_5G.png 500 100 
data_ASR_LTE_gauss.png 500 100 

data_ASR_LTE.png 500 100 
data_ASR_5G_gauss.png_original 500 100 

data_ASR_5G_LTE_gauss.png_original 467 94 
data_ASR_5G_LTE.png_original 467 94 

data_ASR_5G.png_original 500 100 
data_ASR_LTE_gauss.png_original 500 100 

data_ASR_LTE.png_original 500 100 
label_ASR_5G.hdf 500 100 

label_ASR_5G_LTE_gauss.hdf 467 94 
Total 8802 1765 

 
Fig. 2. Comparison of data signals from the radar comm train data 

folder. 
 

 
Fig. 3. Comparison of data signals from the radar comm test data 

folder. 

Fig. 3 shows the sample images from the Radar Comm 
Test Data folder. On the left is the data_asr_lte1.png, 
where distinct strips of colored lines are clearly visible. 
These strips indicate that ASR and LTE can be detected on 
the image. On the right, the data_asr_lte_gauss1.png 
similarly shows the same pattern as the previous figure, 
wherein the overall image became vague with the added 
Gaussian noise, making it difficult to detect signals. Notice 

that both images exhibit the same structure (fuzzy image 
with Gaussian noise added). It is important to note that 
both are from different datasets, one is for training and the 
other is for testing. To increase the accuracy of the created 
deep learning approach, some of the images from the 
training images were transferred to the folder of the testing 
dataset folder. 

E. ISAC Receiver Design  

The concept for this equation was based on an ISAC 
receiver that received communication signals from a signal 
while experiencing interference from a sensing system [3]. 
The general formula of the received code was expressed as: 

 
𝒴ሺ𝑡ሻ ൌ  𝒴஼ሺ𝑡ሻ ൅ 𝒴ோ ሺ𝑡ሻ ൅ 𝓏ሺ𝑡ሻ 

 
𝒴ሺ𝑡ሻ ൌ  ∑ 𝒳ሺ𝑛ሻ ℰ ሺ𝑡 െ 𝑛𝛵ሻேିଵ

௡ୀ଴ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ             (1) 

Comms Signal 

൅ ෍  ෍ 𝑐௝𝑔௝ሺ𝑛ሻ ℰ ൫𝑡 െ 𝑛𝛵 െ 𝜏௝൯

ேିଵ

௡ୀ଴

௃

௝ୀଵᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
 

            Radar Interference 
൅ 𝓏ሺ𝑡ሻถ 

Noise 

Eq. (1) signifies the sum of communication signals, 
coded radar signal, and noise in the time domain. 𝒴ሺ𝑡ሻ 
stands for the total received signal at time ሺ𝑡ሻ;  𝒴஼ሺ𝑡ሻ is the 
signal generated from the communication, 𝒴ோ ሺ𝑡ሻ stands 
for radar, and 𝓏ሺ𝑡ሻ is for the noise. The 𝜀 ሺ𝑡ሻ is the basic 
pulse for the Nyquist criterion, for a duration of 𝑇. 𝑁 is the 
code length for both radar and communication. The 𝜏௝ and 
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𝑐௝ is for the delay and complex channel between the 𝑗 th 
radar signal. The 𝑔௝ሺ𝑛ሻ is the nth code for the 𝑗 th radar 
signal; and lastly, 𝒳ሺ𝑛ሻ is the nth communication signal 
sample [3]. 

In this design, the system receives a mix of 
communication and radar signals. The concept of sparsity, 
wherein only a few radar signals are active, allows the 
receiver to isolate and retrieve both the radar and 
communication signals. Through this, decoding the signal 
is possible without the use of specific software. 

IV. RESULTS AND DISCUSSIONS 

A. Normalized Confusion Matrix 

Figs. 4−5 highlight the normalized confusion matrices 
created using MATLAB. Fig. 4 illustrates the created 
accuracy rate for LTE, which is 93.8%, 80.5% for 5G New 
Radio, 92.5% for noise, and 99.2% for radar. Following 
the reconfigurations, the new matrix on Fig. 5 displays a 
new set of accuracy rate for LTE which is 94.6 % (increase 
rate of 0.8%); for 5G, the rate decreased by 1.0% resulting 
into a 79.5% accuracy rate; for noise, the increase rate was 
0.3% resulting to 92.8%; and lastly, for radar, an increase 
of 0.3% was created resulting into 99.5% accuracy rate. 

 
Fig. 4. Pre-modified normalized confusion matrix. 

 
Fig. 5. Modified normalized confusion matrix. 

B. Spectrogram Sensing 

In Figs. 6 and 7, a received spectrogram was analyzed 
using the spectrogram function. Prior to reconfiguration, 

the latter portion displays an increased portion of bright 
blue regions, which is most likely noise. As for the true 
signal labels, the 5G signal dominated the pre-
modifications spectrogram compared to the latter version, 
in which the noise occupied the spectrogram mostly. 
Similarly, for the estimated signal labels, the original 
spectrogram shows 5G as the prevailing signal, compared 
to the revised version in which the noise becomes the 
dominant classification. Notably, the radar lines on the 
latter version appeared fragmented compared to before, 
where the lines were continuously connected. 

 

 
Fig. 6. Pre-modified spectrum sensing including received spectrogram, 

true signal labels, and estimated signal labels. 
 

 
Fig. 7. Modified spectrum sensing including received spectrogram, true 

signal labels, and estimated signal labels. 

C. Frame Mean IoU 

Figs. 8−9 present the Frame Mean IoU, which compares 
the predicted and the true labels across the number of 
frames. In these models, it is notably visible that there is a 
difference after the modifications. The following are the 
discrepancies between sets of given IoU and number of 
frames: for IoU values between 0.2−0.3, it can be noticed 
that on the right model, the bar graph is slightly above the 
20 point mark of number of frames; for 0.3−0.4, the 
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number of frames exceeded the 100 point; for 0.5−0.6, 
though it exceeded the 50 point, there is still a difference 
between the graphs; for both sectors 0.7−0.8 and  0.8−0.9, 

both points were increased exceeding the 100 point frame 
mark. 

TABLE III. DATA METRICS BETWEEN PRE-MODIFIED AND MODIFIED MODEL 

Data Version Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score 
Pre-modified 0.89313 0.91483 0.70508 0.81645 0.83124 

Modified 0.89442 0.91588 0.70277 0.81945 0.84242 

 
D. Data Set Metrics 

Table III presents the overall data metrics obtained using 
semantic segmentations between noise, 4G, 5G, and Radar 
signals. The global accuracy shows an increase of 0.14% 
increase; for mean accuracy, the increase is equivalent to 
0.11%; mean IoU experienced a decrease of about 0.32%; 
for weighted IoU, there is an increase of 0.36%; lastly, the 
mean BF Score improved by 1.34%.  

 

Fig. 8. Pre-modified frame means IoU. 

 
Fig. 9. Modified frame mean IoU. 

E. Accuracy in Using Spectrum Sensing with Deep 
Learning 

Based on the acquired data, an increase in the diagonal 
values of the normalized confusion matrix was observed. 
The increase in the diagonal cells indicates a higher 
accuracy [13]. This outcome also shows that the code and 
data modifications create a better prediction at identifying 

the signals. However, despite the improvement in correct 
predictions, there are still misclassifications, as changes in 
the off-diagonal values were evident. Jayapalan and Anuar 
[14] indicated that the diagonal cells relate to accurately 
classified observations. In contrast, the off-diagonal cells 
correspond to observations that were inaccurately 
classified. The model demonstrated an improved accuracy 
in predicting LTE, noise, and radar, except for NR, since 
the diagonal value decreased.  

As for the spectrogram sensing function, based on the 
received spectrogram, true signal labels, and estimated 
signal labels, the presence of noise became prevalent 
among the spectrograms. In addition, according to Ref. 
[15], the background noise in spectrograms may hide the 
foreground pixels (signals) in the noise. There could be 
three interpretations within these results: a) the given 
dataset has a higher segment of noise compared to the 
other signals, b) the model might be weakly labeling the 
other signals as noise, and c) the model used might be too 
sensitive in a way that any uncertain points were identified 
as noise.  

Proceeding to the IoU, based on the bar graph, it can be 
noticed that there is a slight “increase” within each 
segment; however, based on the Mean IoU of Table 3, a 
decrease was observed. This result could mean that the 
predicted regions overlap the true labels, creating 
misclassifications. However, in terms of the increase of 
global accuracy, mean accuracy, Weighted IoU, and Mean 
BF Score, it was suggested that a better model with 
improved performance was used. 

1) Accuracy comparison between machine learning 
models 

To compare the accuracy result, related literature in 
spectrum sensing was used. However, these past studies 
were primarily focused on identifying 5G and LTE signals 
only.  A study by Huynh et al. [18] found that through 
using the model of a Convolutional Network (ConvNet), 
the simulation achieved a 95% mean accuracy and 91% 
mean IoU at a medium SNR level. On the other hand, a 
study from Nguyen et al. [19], with the same medium SNR 
level, the improved DeepLabV3+ model achieved a global 
accuracy of 75% while the mean IoU is at 59% which is 
mainly affected by the components’ Adaptive Dilation 
Rate (ADR) and Attention Mechanism (ATM). The same 
study also used MobileNetV2, ResNet18, and ResNet50 
backbones. In comparison with the current study, the value 
for MobileNetV2 is 74.44% with the use of both ATM and 
ADR, compared to the global accuracy of the current study, 
which is 89.44%. However, in the case of the study of 
Nguyen et al. [20], it was noted that ConvNet and 
DeeplabV3+ exhibit lower accuracy, with rates of 39.69% 
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and 46.26%, respectively, negatively impacting their 
predictive performance. It can be reasonably assumed that 
various factors, such as the data sets used and the 
methodology employed during the simulation with these 
studies, might have influenced the resulting values. 

F. T-Test Statistical Analysis for Pre-modified and 
Modified Model 

Table IV depicts the use of the t-test analysis to test if 
the data acquired have a significant difference. The data 
used for the t-test are the raw percentages from the 
normalized confusion matrices of both the pre-modified 
and modified models. The test employed a one-tailed 
distribution with a paired type design. The obtained p-
value from the test is 0.40596806. Since the p-value is 
higher than the usual alpha level (0.05), it can be 
interpreted that there is no significant difference between 
the two sets of data. 

TABLE IV. T-TEST ANALYSIS FROM NORMALIZED CONFUSION 

MATRIX DATA 

Data Type Pre-modified Modified 
LTE 93.80% 94.60% 
NR 80.50% 79.50% 

Noise 92.50% 92.80% 
Radar 99.20% 99.50% 

p-value = 0.40596806 

V. CONCLUSION 

In conclusion, the research objective was met by 
increasing the accuracy rate through utilizing different 
CNN architectures, manipulation of the data set, and 
adjusting the parameters of the code. However, even 
though the accuracy rate increased, the decrease in the 
mean IoU should also be considered, as it is also part of 
the accuracy measurement. What can be inferred from this 
study is that the manipulation of the dataset created a 
significant difference. The model used can also be 
considered in a way that alters the accuracy rate based on 
its complexity compared to the previous models used. 
Although different CNN models were used, dataset 
manipulation proved most significant, yielding 
improvements when comparing the pre-modified and 
modified normalized confusion matrix. This outcome also 
indicates that the study increased the accuracy; however, 
statistical analysis determined no significant difference in 
comparing the results of pre-modified and modified 
models. 

For recommendation, it is suggested that future 
researchers pursuing similar studies select a compatible 
model (not a generic nor too complex) for the data to be 
accurate and aligned with one another. Another 
recommendation is to use another proportion (60/40 or 
50/50) for the data set, which will also determine the 
accuracy. Lastly, filtering, noise level, or thresholding 
techniques can reduce noise factors and improve 
classifications. 
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