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Abstract—Wireless communication is continuously evolving.
Signals compete in the spectrum as there is a demand for data
transfer. There is also a growing demand for radio spectrum,
resulting in congestion. With the advancement of deep
learning, there are numerous applications in which it could
be utilized; this could be used as a solution to the current issue.
Given the state of wireless communication, this research aims
to achieve a higher accuracy rate regarding spectrum sensing
of noise, Long-Term Evolution (LTE), New Radio (NR), and
radar through deep learning. The following methods are used:
a) different Cellular Neural Network (CNN) models such as
resnetl8, resnet50, mobilenetv2, etc., b) modifying segments
of code, ¢) manipulation of the dataset. For the results, the
modified normalized confusion matrix values significantly
increased compared to the pre-modified version. For the
spectrogram sensing, the received spectrogram, true signal
labels, and estimated signals were dominated mainly by noise.
Based on the graph, the frame mean Intersection over Union
(IoU) has noticeably increased; however, based on data
metrics, the mean IoU decreased. There is an increase in
global accuracy, mean accuracy, Weighted IoU, and Mean
BF Score. In conclusion, the objective of increasing the
accuracy rate was met through various modifications, such
as using different CNN architectures, parameter adjustments,
and manipulating the given data set. However, the decrease
in the mean IoU should also be considered, as it is also part
of the accuracy measurement.

Keywords—5G, deep learning, radar, signals, spectrum
sensing

I. INTRODUCTION

Wireless communications has become widespread over
the years of modern technology. According to the study of
Barb and Otesteanu [1], wireless communication systems
such as Long Term Evolution (LTE/4G) and New Radio
(5G/NR) are continuously evolving. With this trend in the
community, there is a higher demand for data transfer. Due
to the intense demand, there is competition for the
bandwidth and latency in the spectrum. In addition, aside
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from the existing wireless communication, there are on-
going deployments for other innovative networks such as
the 6™ Generation Mobile System (6G). Furthermore, with
wireless communication such as LTE and 5G, there is also
a growing demand for radio spectrum for radar, resulting
in congestion [2].

Given the state of wireless communication, this research
aims to achieve a higher accuracy rate in terms of spectrum
sensing of airport surveillance radar (ASR/Radar), LTE,
5% generation technology (5G/NR), and Gaussian noise
(Gauss). This paper is divided into several sections,
including the topic introduction, the methodology used,
the results acquired, the discussion about the comparison
of the existing related studies, and the overall conclusion
for this paper.

II. LITERATURE REVIEW

A. Integrated Sensing and Communication

The concept of integrated sensing and communications
refers to the combination of both wireless and radar
sensing. It acts as a single system wherein it senses,
collects, and communicates the information in a single go,
compared to the previous architecture/s, where both
signals are treated differently. As per the study of
Liu et al. [3], ISAC is expected to considerably improve
spectral and energy efficiencies. ISAC is a design
methodology that integrates sensing and communication
functionalities to achieve efficient usage and mutually
benefit one another. In the case of implementing additive
white Gaussian noise for both radar and wireless
connections, one might think that these noises have only
detrimental effects on the system; however, in a real
scenario, this noise plays a crucial role in the ISAC model
as it creates a realistic channel, ensuring that the system
can handle real-life conditions.

B. Deep Learning in Radar and Wireless Communication

With the ongoing state of deep learning, there are
numerous applications in which it could be utilized. In the
context of radar and wireless communication, deep
learning could be used as a solution to the current spectrum
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traffic problem. As Nasser et al. [4] stated, machine
learning and deep learning have been employed in wireless
communication to manage the spectrum efficiently. In
cognitive radio systems, machine learning and deep
learning were also used to enhance spectrum sensing
performance. There are two phases involved in learning
techniques, namely: learning and prediction. In traditional
spectrum sensing, secondary users must determine the
threshold for the test statistic before deciding if primary
users are present. Various parameters, such as noise,
channel, and primary users, should be determined
beforehand, as the threshold can be based on false alarm
and detection rates. Applying machine learning and deep
learning eliminates the need for the parameters.

C. The Current Challenges in Spectrum Sensing

In spectrum sharing, signals share the vacant bands to
avoid collisions, including three major spectrum access,
selection of channels, and spectrum allocation [5].
Spectrum Decision deals with the analysis of the band and
is responsible for decision-making [2]. The efficient
implementation of cognitive radios into wireless networks
gives rise to a tremendous number of optimization
problems with multiple objectives [6]. Another issue
related to radar is the increase in bandwidth requirement.
However, it was addressed by Reed et al. [7] through fixed
frequency bands; it is still seen as an issue, as bandwidth
plays a key role in performing operations. The Federal
Communications Commission indicates that fewer radio
frequencies are conducive to operating cost-effective
wireless cellular and mobile broadband [8]. Several
Cognitive Radios working in the same frequency band of
primary users can severely affect the spectrum sensing
process [9]. Given the state of wireless communication,
this study aims to achieve a higher accuracy rate regarding
spectrum sensing of noise, LTE, NR, and Radar through
deep learning.

III. MATERIALS AND METHODS

A. Spectrum Sensing Flowchart using Deep Learning

Fig. 1 provides a detailed flowchart describing the code
simulation's overall structure in MATLAB. This chart is a
visual guide to understand the data processing workflow
and the interactions between each sub-category. The latter
part provided a detailed explanation involving the
sequence of data processing throughout the code.

1) Setup of the waveform

The first step was to set up the waveform used in radar
or wireless systems. The signal’s center frequency is 2.8
GHz with a sampling frequency of 62.44 MHz. It then
calculated the pulse repetition by almost 1050 per second
with a pulse width of 1 microsecond. Finally, a
RectangularWaveform function was used.

2) Setup of the antenna

The following step is to set up the antenna; this segment
defines the parabolic parameters of an antenna: the radius
and focal length of 2.5 meters. The horn exciter and the
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reflector were tilted 90°. Finally, the conformal array
function was used for the shape of the antenna.

[ Set up waveform ]

[ Set up antenna ]

.

Set up transmitter and
receiver

—_—

Define Radar Position ]

)

Define Wireless ‘

Transmitter Position

!

Generate Train Data ]

!

Train Deep Learning
Model

!

[ Generate Test Data ]

!

Evaluate the Metrics ]

!

End

—_—

—_—

—_—

—_—

Fig. 1. Flowchart illustrating the structured flow from setting up the
variables, generating the data, and evaluating the metrics in MATLAB.

3) Setup of the transmitter and receiver

The next step focused on the setup for the transmitter
and receiver. The transmit power is set to 25 kW while the
transmit gain is 32.8% which is defined through the use of
phased.Transmitter function. In addition, the rxpos_horiz
and rxpos_vert are the ranges for the receiver.

4) Define radar position

For the radar position, the radar transmitter’s position
was set at (0,0,5) meters, and the Scattering MIMO
Channel function was used to create a radar environment.
Under the ConformalArray function, parameters such as
CarrierFrequency, SpecifyFrequency, SpecifyAtmosphere,
etc, were used to simulate the environment.

5) Definition of the transmitter position

In defining the wireless transmitter position, this
segment positioned the transmitter at (200.0.450) using a
taper type condition under the ConformalArray function.
Similar to the previous code segments, this section also
created its environment.

6) Generation of the training data

A zip file from an online source, Ref. [10], was extracted
to generate the train data, containing both the training and
testing datasets. This part was intended to set up the
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machine learning model to recognize the signals, LTE, 5G,  showcases the accuracy values of the given data set within
Radar, and Noise. The training image was set to 50 while  the created simulation.

the image size was [480 640 3]. The images were then
organized according to their labels and split into training

and validation sets. The next part focused on the pixel- ] ] ]
level classifier and the deep learning model. With the given flowchart of the code, a series of

alterations within the parameters were made to increase the
accuracy of spectrum sensing. This modification includes
As for the deep learning model, this is the primary focus  the trial and error in using different models for the
of spectrum sensing. The code utilized DeepLabV3+ with  convolutional neural network, specific values for each
a backbone of MobileNetV2. Under the training Options  function in the given code, and the modification of the data
function, minibatch size, maxepochs, learn rate schedule,  sets between the train and test folders. These steps were
etc., were defined. Additional data augmentation was also  necessary to determine slight differences that could
incorporated, including Rand Rotation, Rand X Reflection,  significantly influence the resulting output values.
Rand Y Reflection, etc. After the augmentations, the data 1) Convolutional neural network in MATLAB

was trained. Since the train Now is set to false, the pre- ) ]
trained model was loaded. A convolutional neural network type is one of the deep

learning methods used in the study, in which various
models were used to find the best-fitting model that could

To generate a test data segment, the code generated 120 yield a significantly higher accuracy. In addition,
images for evaluating the trained data. It then used the  according to a study by Qin ef al. [11], MobileNetV2 has
helper Generate Radar Comm Data to simulate the radar  faster identification speed. It requires fewer computational
and communication data. After the test data were  resources than traditional deep CNNs. Before
generated, it was loaded using image Data Store; the  encountering MobileNetV2, several models were also
semantics function was used to apply the testing datato the  tested, such as ResNetl8 [12], ResNet50, MobileNetV2,
training data, in which image segments are classified by =~ Xception, InceptionResNetV2, EfficientNetb0, and
predicting the type of signal for each pixel. DenseNet201; however, all models failed to improve the
9) Evaluation of the performance metrics accuracy slightly. From the pre-modified version, the base
network is ResNet50. Upon testing the different models,

In t'he last segment thhq code, the pixel Label Datgstore the MobileNetv2, while less complex, is greater than
function was used to identify the truth labels of the image ResNet50

by reading the actual class label from PDF files. The true

and predicted labels were compared, and the evaluate 2) Code modifications

Semantic Segmentation function was used to calculate data Various modifications are made in the original code on
metrics. The expected visual outputs are the Confusion  spectrum sensing with deep learning for radar and wireless
Matrix, Received Spectrogram, True Signal Labels, communications. Table 1 shows the different
Estimated Signal Labels, and the Mean IoU, which  modifications in terms of the code given by MATLAB.

D. Modifications for Increasing the Accuracy of the
Spectrum Sensing Model

7) Training of the deep learning model

8) Generation of the testing data

TABLE I. CODE DIFFERENCE BETWEEN PRE-MODIFIED AND MODIFIED

Pre-modified Modified Used Values
Num Training Data=500 Num Training Data = 450 500,450
ng opts = training Options (“adam”) sgdm, adam
Mini Batch Size = 40 Mini Batch Size = 20 40,80,100,20
Max Epochs = 40 Max Epochs = 20 40,80,100,20
Initial Learn Rate = 0.02 Initial Learn Rate = 0.0001 0.02,0.01,0.0001
Learn Rate Drop Period = 10 Learn Rate Drop Period = 50 10,30,50
Learn Rate Drop Factor = 0.01 Learn Rate Drop Factor = 0.05 0.01,0.05
Validation Patience = 5 Validation Patience = 30 5,15,30
N/A rxpos_horiz_minimax = [-1000 1000] N/A
N/A rxpos_vert minimax = [0 2000] N/A

RadarCommTrainData, can be seen in Table II. For
. . . example, the data type label ASR 5G_gauss*.hdf has a

The original dataset [10,] has been modified for this total of 500 files, 20% of which are the files from 401 to
study. ~ The . folder . includes ~ two subfolders: 500, which were moved to the other folder. For other files
RadarCommTrainData with a total of 8802 various files with a total of 467, such as data ASR_5G_LTE_gauss.png,
and RadarCommTestData with 1765 files. The ASR, LTE, only the remaining 67 were transferred. -

5G, and Gauss are the signals that can be seen on the The images shown in Fig. 2 are the sample files from the
spectrum. The researcher did an 80/20% file hatching in 14 RadarCommTrainData. The image on the left
which 20% of a specific data type from the folder  |ppeled as data asr Itel.png, shows strokes of mostly blue

RadarCommTrainData v.vas moved  to  the signals. However, notice a small band mixture of red and
RadarCommTestData folder; the summary of the original yellow in the middle. This band signifies signals,

number of files of both folders, RadarCommTestData and

3) Radar communication sensing spectrum data
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specifically ASR and LTE, on this data image. On the
other hand, the image on the right, labeled
data asr Ite gaussl.png, is a fuzzy image showing
scattered patches of yellow, green, and blue, which can
suggest that the signals detected in this image are mostly
noise. Both images have the labels for ASR and LTE;

however, when the Gaussian noise was added, it overlaid
most of the signals. This addition might affect the
detection of signals on the spectrum due to the noise.
However, note that there are 400 images to be trained for
each data type.

TABLE II. ORIGINAL NUMBER OF FILES OF RADAR COMM TRAIN DATA AND RADAR COMM TEST DATA FOLDERS

File Name Number of Files (Radar Comm Train Data) Number of Files (Radar Comm Test Data)
label ASR_5G.hdf 500 100
label ASR 5G LTE gauss.hdf 467 94
label ASR 5G_LTE.hdf 467 94
label ASR 5G.hdf 500 100
label ASR LTE gauss.hdf 500 100
label ASR_LTE.hdf 500 100
data ASR 5G_gauss.png 500 100
data_ ASR_5G_LTE gauss.png 467 94
data ASR 5G LTE.png 467 94
data ASR 5G.png 500 100
data ASR LTE gauss.png 500 100
data ASR_LTE.png 500 100
data_ ASR 5G_gauss.png original 500 100
data ASR 5G LTE gauss.png original 467 94
data ASR 5G _LTE.png original 467 94
data ASR_5G.png original 500 100
data ASR _LTE gauss.png_original 500 100
data ASR_LTE.png original 500 100
label ASR 5G.hdf 500 100
label ASR 5G _LTE gauss.hdf 467 94
Total 8802 1765

=T R A i R S R A

Fig. 2. Comparison of data signals from the radar comm train data
folder.

Fig. 3. Comparison of data signals from the radar comm test data
folder.

Fig. 3 shows the sample images from the Radar Comm
Test Data folder. On the left is the data asr Itel.png,
where distinct strips of colored lines are clearly visible.
These strips indicate that ASR and LTE can be detected on
the image. On the right, the data asr Ite gaussl.png
similarly shows the same pattern as the previous figure,
wherein the overall image became vague with the added
Gaussian noise, making it difficult to detect signals. Notice
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that both images exhibit the same structure (fuzzy image
with Gaussian noise added). It is important to note that
both are from different datasets, one is for training and the
other is for testing. To increase the accuracy of the created
deep learning approach, some of the images from the
training images were transferred to the folder of the testing
dataset folder.

E.  ISAC Receiver Design

The concept for this equation was based on an ISAC
receiver that received communication signals from a signal
while experiencing interference from a sensing system [3].
The general formula of the received code was expressed as:

Y©) = Ye(®©) +Yr () +2(0)
Y@

>

j=1

= Y=o X(m) € (t —nT)

Comms Signal
N-1

Z cigi(n) € (t —nT — rj)

n=0

(1

Radar Interference
+z(t)
Noise

Eq. (1) signifies the sum of communication signals,
coded radar signal, and noise in the time domain. Y (t)
stands for the total received signal at time (t); Y (t) is the
signal generated from the communication, Y (t) stands
for radar, and z(t) is for the noise. The € (t) is the basic
pulse for the Nyquist criterion, for a duration of T. N is the
code length for both radar and communication. The 7; and
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¢j is for the delay and complex channel between the j™
radar signal. The g;(n) is the nth code for the j™ radar
signal; and lastly, X (n) is the n communication signal
sample [3].

In this design, the system receives a mix of
communication and radar signals. The concept of sparsity,
wherein only a few radar signals are active, allows the
receiver to isolate and retrieve both the radar and
communication signals. Through this, decoding the signal
is possible without the use of specific software.

IV. RESULTS AND DISCUSSIONS

A. Normalized Confusion Matrix

Figs. 4-5 highlight the normalized confusion matrices
created using MATLAB. Fig. 4 illustrates the created
accuracy rate for LTE, which is 93.8%, 80.5% for 5G New
Radio, 92.5% for noise, and 99.2% for radar. Following
the reconfigurations, the new matrix on Fig. 5 displays a
new set of accuracy rate for LTE which is 94.6 % (increase
rate of 0.8%); for 5G, the rate decreased by 1.0% resulting
into a 79.5% accuracy rate; for noise, the increase rate was
0.3% resulting to 92.8%; and lastly, for radar, an increase
0f 0.3% was created resulting into 99.5% accuracy rate.

C ion Matrix

LTE 93.8%

NR 80.5%

True Class

92.5%

Noise

Radar 99.2%

LTE NR Noise

Predicted Class

Radar

Fig. 4. Pre-modified normalized confusion matrix.

Normalized Confusion Matrix

LTE 94.6% 1.1% 2.2% 2.2%
NR 9.8% 9.5% 8.4% 2.3%
2
ko
o
[
=
=
Noise 21% 2.9% 92.8% 2.2%
Radar 0.1% 0.1% 0.3% 99
ISTE NR Noise Radar
Predicted Class
Fig. 5. Modified normalized confusion matrix.
B.  Spectrogram Sensing

In Figs. 6 and 7, a received spectrogram was analyzed
using the spectrogram function. Prior to reconfiguration,
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the latter portion displays an increased portion of bright
blue regions, which is most likely noise. As for the true
signal labels, the 5G signal dominated the pre-
modifications spectrogram compared to the latter version,
in which the noise occupied the spectrogram mostly.
Similarly, for the estimated signal labels, the original
spectrogram shows 5G as the prevailing signal, compared
to the revised version in which the noise becomes the
dominant classification. Notably, the radar lines on the
latter version appeared fragmented compared to before,
where the lines were continuously connected.

Received Spectrogram

0
-0.2

1

=
=l 05
£-06
F o8
0
-30 -20 -10 0 10 20 30
Frequency (MHz2)
True signal labels
Radar
g NR
[}
£ - LTE
= -
Noise
-30 -20 -10 0 10 20 30
Frequency (MHz2)
Estimated signal labels
Radar
g NR
[}
£ - LTE
= -

-30 -20 -10 0

Frequency (MHz2)

10 20 30

Fig. 6. Pre-modified spectrum sensing including received spectrogram,
true signal labels, and estimated signal labels.
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w-02F
%-OA F NR
E-O06F LTE
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Fig. 7. Modified spectrum sensing including received spectrogram, true
signal labels, and estimated signal labels.

C. Frame Mean loU

Figs. 89 present the Frame Mean IoU, which compares
the predicted and the true labels across the number of
frames. In these models, it is notably visible that there is a
difference after the modifications. The following are the
discrepancies between sets of given IoU and number of
frames: for IoU values between 0.2—0.3, it can be noticed
that on the right model, the bar graph is slightly above the
20 point mark of number of frames; for 0.3—0.4, the
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number of frames exceeded the 100 point; for 0.5-0.6,
though it exceeded the 50 point, there is still a difference
between the graphs; for both sectors 0.7-0.8 and 0.8—0.9,

both points were increased exceeding the 100 point frame
mark.

TABLE III. DATA METRICS BETWEEN PRE-MODIFIED AND MODIFIED MODEL

Data Version Global Accuracy  Mean Accuracy Mean IoU Weighted IoU Mean BF Score
Pre-modified 0.89313 0.91483 0.70508 0.81645 0.83124
Modified 0.89442 0.91588 0.70277 0.81945 0.84242

D. Data Set Metrics

Table III presents the overall data metrics obtained using
semantic segmentations between noise, 4G, 5G, and Radar
signals. The global accuracy shows an increase of 0.14%
increase; for mean accuracy, the increase is equivalent to
0.11%; mean IoU experienced a decrease of about 0.32%);
for weighted IoU, there is an increase of 0.36%; lastly, the
mean BF Score improved by 1.34%.

Frame Mean |
100 T ae\ea OU‘

90

80 -

70

60 -

50 -

40

Number of Frames

30

20 -

0.1

0.2 0.3 0.4 0.5

loU

0.6 0.7 0.8 0.9

Fig. 8. Pre-modified frame means IoU.

Frame Mean loU
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o
o

(2]
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0.2 0.3 0.4 0.5

loU
Fig. 9. Modified frame mean IoU.

0.6 0.7 0.8 0.9

E.  Accuracy in Using Spectrum Sensing with Deep
Learning

Based on the acquired data, an increase in the diagonal
values of the normalized confusion matrix was observed.
The increase in the diagonal cells indicates a higher
accuracy [13]. This outcome also shows that the code and
data modifications create a better prediction at identifying
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the signals. However, despite the improvement in correct
predictions, there are still misclassifications, as changes in
the off-diagonal values were evident. Jayapalan and Anuar
[14] indicated that the diagonal cells relate to accurately
classified observations. In contrast, the off-diagonal cells
correspond to observations that were inaccurately
classified. The model demonstrated an improved accuracy
in predicting LTE, noise, and radar, except for NR, since
the diagonal value decreased.

As for the spectrogram sensing function, based on the
received spectrogram, true signal labels, and estimated
signal labels, the presence of noise became prevalent
among the spectrograms. In addition, according to Ref.
[15], the background noise in spectrograms may hide the
foreground pixels (signals) in the noise. There could be
three interpretations within these results: a) the given
dataset has a higher segment of noise compared to the
other signals, b) the model might be weakly labeling the
other signals as noise, and c) the model used might be too
sensitive in a way that any uncertain points were identified
as noise.

Proceeding to the IoU, based on the bar graph, it can be
noticed that there is a slight “increase” within each
segment; however, based on the Mean IoU of Table 3, a
decrease was observed. This result could mean that the
predicted regions overlap the true labels, creating
misclassifications. However, in terms of the increase of
global accuracy, mean accuracy, Weighted IoU, and Mean
BF Score, it was suggested that a better model with
improved performance was used.

1) Accuracy comparison between machine learning
models

To compare the accuracy result, related literature in
spectrum sensing was used. However, these past studies
were primarily focused on identifying 5G and LTE signals
only. A study by Huynh et al. [18] found that through
using the model of a Convolutional Network (ConvNet),
the simulation achieved a 95% mean accuracy and 91%
mean IoU at a medium SNR level. On the other hand, a
study from Nguyen et al. [19], with the same medium SNR
level, the improved DeepLabV3+ model achieved a global
accuracy of 75% while the mean IoU is at 59% which is
mainly affected by the components’ Adaptive Dilation
Rate (ADR) and Attention Mechanism (ATM). The same
study also used MobileNetV2, ResNet18, and ResNet50
backbones. In comparison with the current study, the value
for MobileNetV2 is 74.44% with the use of both ATM and
ADR, compared to the global accuracy of the current study,
which is 89.44%. However, in the case of the study of
Nguyen et al. [20], it was noted that ConvNet and
DeeplabV3+ exhibit lower accuracy, with rates of 39.69%
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and 46.26%, respectively, negatively impacting their
predictive performance. It can be reasonably assumed that
various factors, such as the data sets used and the
methodology employed during the simulation with these
studies, might have influenced the resulting values.

F.  T-Test Statistical Analysis for Pre-modified and
Modified Model

Table IV depicts the use of the t-test analysis to test if
the data acquired have a significant difference. The data
used for the t-test are the raw percentages from the
normalized confusion matrices of both the pre-modified
and modified models. The test employed a one-tailed
distribution with a paired type design. The obtained p-
value from the test is 0.40596806. Since the p-value is
higher than the usual alpha level (0.05), it can be
interpreted that there is no significant difference between
the two sets of data.

TABLE IV. T-TEST ANALYSIS FROM NORMALIZED CONFUSION
MATRIX DATA

Data Type Pre-modified Modified
LTE 93.80% 94.60%
NR 80.50% 79.50%

Noise 92.50% 92.80%
Radar 99.20% 99.50%

p-value = 0.40596806

V. CONCLUSION

In conclusion, the research objective was met by
increasing the accuracy rate through utilizing different
CNN architectures, manipulation of the data set, and
adjusting the parameters of the code. However, even
though the accuracy rate increased, the decrease in the
mean IoU should also be considered, as it is also part of
the accuracy measurement. What can be inferred from this
study is that the manipulation of the dataset created a
significant difference. The model used can also be
considered in a way that alters the accuracy rate based on
its complexity compared to the previous models used.
Although different CNN models were used, dataset
manipulation proved most significant, yielding
improvements when comparing the pre-modified and
modified normalized confusion matrix. This outcome also
indicates that the study increased the accuracy; however,
statistical analysis determined no significant difference in
comparing the results of pre-modified and modified
models.

For recommendation, it is suggested that future
researchers pursuing similar studies select a compatible
model (not a generic nor too complex) for the data to be
accurate and aligned with one another. Another
recommendation is to use another proportion (60/40 or
50/50) for the data set, which will also determine the
accuracy. Lastly, filtering, noise level, or thresholding
techniques can reduce noise factors and improve
classifications.
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