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Abstract—In the context of energy-based spectrum sensing,
effective noise reduction is paramount to enhance the Signal-
to-Noise Ratio (SNR) and improve the probability of
detection, particularly in cognitive radio networks. This
paper presents a novel approach that synergistically
combines Fractional Bernstein Approximation, Fast Fourier
Transform (FFT), and Convolutional Neural Networks (CNN)
to robustly detect signals under noisy conditions. The
Fractional Bernstein Approximation is employed as a pre-
processing step to smooth the signal and mitigate noise effects.
FFT is then utilized to transform the signal into the frequency
domain, where CNN is applied to extract features that
differentiate between signal and noise. Performance metrics
such as SNR improvement, probability of detection, and
computational efficiency are analysed under different noise
scenarios. Our results demonstrate that the proposed method
significantly outperforms other approaches, particularly in
low SNR environments, offering a robust and scalable
solution for spectrum sensing. The suggested approach is
compared in this work against a number of other methods,
including CNN with windowing segmentation for
Quadrature Phase Shift Keying (QPSK) and 8PSK
modulations and cyclisation features. The combination of
CNN features and QPSK signals with the Bernstein
polynomial approximation maintains a higher P; (~96%) at
lower SNRs (—10 dB) than cyclisation features.

Keywords—fractional bernstein approximation, fast fourier
transform, convolutional neural networks, windowing
segmentation, cyclisation features

1. INTRODUCTION

Cognitive Radio (CR) has emerged as a promising
paradigm to address spectrum scarcity by enabling the
dynamic utilization of unused spectral bands. It allows
Secondary Users (SUs) to opportunistically access the
licensed spectrum of Primary Users (PUs) without causing
harmful interference [1, 2]. The effectiveness of CR
systems critically depends on accurate spectrum sensing,
which determines the presence or absence of PU activity.
Among various sensing techniques, energy detection has
gained popularity due to its simplicity, low
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implementation cost, and compatibility with diverse signal
environments. However, its performance degrades
significantly in low Signal-to-Noise Ratio (SNR)
conditions, under fading channels, and in the presence of
noise uncertainty [3]. To address these limitations, several
alternative approaches have been proposed, including
cyclisation feature detection [4], autocorrelation-based
detection [5, 6], matched filtering [7, 8], and noise power-
based dynamic threshold estimation [9]. While these
methods enhance the probability of detection (P;) and
reduce the probability of false alarm (P), they often
demand prior knowledge of PU signals or incur higher
computational complexity. Fourier transform—based
spectrum sensing has also been extensively explored,
offering efficient frequency-domain analysis.
Nevertheless, conventional FFT methods suffer from
spectral leakage and resolution loss due to windowing
effects, particularly when dealing with weak signals.
Overlapping FFT structures have been investigated as a
potential remedy [10]. Beyond Fourier methods, Time-
Frequency Distributions (TFDs) such as the Short-Time
Fourier Transform (STFT), Continuous Wavelet
Transform (CWT), and S-Transform provide improved
time—frequency localization. Despite their advantages,
these methods face inherent challenges, including
resolution trade-offs, cross-term interference, and high
computational overhead [11, 12]. Signal segmentation
plays a critical role as a pre-processing step in enhancing
spectral estimation accuracy. Traditional segmentation
techniques often lack robustness when handling
nonstationary or noisy signals. Recently, polynomial-
based methods such as Fractional Bézier Bernstein
Polynomial (FBBP) segmentation have shown promise in
improving the representation of nonstationary data,
offering smooth approximations and noise resilience.
Motivated by these limitations, this study proposes a
novel energy-based spectrum sensing framework that
integrates three complementary components: (i) FBBP
segmentation for improved time-frequency representation,
(ii) FFT for efficient spectral analysis, and (iii) a
Convolutional Neural Network (CNN) for robust feature
extraction and classification. The proposed framework
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aims to enhance detection probability and noise robustness
under challenging CR scenarios. The remainder of this
paper is organized as follows. Section II presents a detailed
literature review on deep learning—based spectrum sensing,
segmentation methods, and FFT-based sensing approaches.
Section III provides a brief overview of the conventional
energy detector. Section IV introduces the proposed
method, which combines FBBP segmentation, CNN-based
feature extraction, and FFT analysis. Section V discusses
experimental results and performance comparisons with
existing methods. Finally, Section VI concludes the work
and outlines potential directions for future research.

II. LITERATURE SURVEY

Energy detection has long been regarded as one of the
most widely adopted spectrum sensing techniques in
cognitive radio networks due to its low implementation
complexity and adaptability to diverse signal
environments. However, its primary limitation lies in the
reliable detection of signals at low Signal-to-Noise Ratio
(SNR) under conditions of unpredictable noise variance.
Classical fast Fourier Transform (FFT)-based detectors
improve detection performance when applied to high
discrete frequency bins, but this enhancement comes at the
cost of degraded frequency resolution [13]. To address
these shortcomings, recent efforts have focused on
augmenting FFT-based methods. For instance, a parallel
FFT framework with dynamic sample weighting guided by
machine learning has been proposed to enhance frequency
resolution, detection probability (P;), and adaptability
under low SNR conditions. Nevertheless, the increased
architectural and implementation complexity poses
challenges for practical deployment [13]. Similarly, Yadav
et al.[14] proposed a hardware-efficient design integrating
windowing, averaging, and polyphase filters to reduce
computational load without significantly compromising
detection accuracy.

In parallel, Deep Learning (DL) approaches have been
increasingly applied to overcome the limitations of
traditional energy detection. A notable example is the
hybrid CNN-Transformer architecture proposed in Ref.
[15], which leverages Convolutional Neural Networks
(CNNp) for local feature extraction alongside transformer
blocks for long-range dependency modeling, thereby
improving spectrum utilization efficiency.

Signal segmentation, an essential step in pre-processing
and detection, plays a critical role in FFT-based sensing.
Early methods relied on statistical hypothesis testing (e.g.,
t-test and F-test [16]) and clustering algorithms [17, 18].
While these techniques performed reasonably well for
stationary or noise-free signals, they exhibited high
sensitivity to noise and often required extensive parameter
tuning. To address these limitations, wavelet-based
segmentation methods, particularly the Wavelet
Transform Modulus Maxima (WTMM) approach [19, 20],
became popular due to their ability to capture abrupt signal
variations across multiple scales. However, their
performance depends heavily on the choice of wavelet
basis and decomposition depth.
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Hybrid methods emerged as a means to combine the
strengths of multiple techniques. For example, the
integration of fuzzy C-means clustering with wavelet
analysis demonstrated improved robustness in noisy
environments [21], while discrete wavelet transforms with
Principal Component Analysis (DWT-PCA) improved
computational efficiency in biomedical applications [22].
More recently, adaptive segmentation methods such as
sliding window approaches [23], Temporal Convolutional
Networks (TCNs) [24], and CNN-based models [25-30]
have achieved high segmentation accuracy in non-
stationary and complex signals. Despite these advances,
most of these techniques have been validated primarily on
speech, biomedical, or synthetic datasets, with limited
evaluation in real-world radio environments. Across the
literature, three major methodological trends can be
observed:

e FFT enhancement and hybridization through parallel
processing, adaptive thresholds, and integration with
machine learning techniques.

Deep learning-based segmentation and detection,
particularly models that exploit time-frequency
representations for improved performance.
Multiresolution and statistical fusion methods, such as
wavelet—clustering hybrids, that enhance robustness
under noisy conditions.

Despite these advancements, three important research
gaps remain. First, handling low SNR and noise
uncertainty continues to be a fundamental challenge, with
classical FFT detectors proving inadequate and ML/DL
methods hindered by training and hardware complexity.
Second, the generalizability of segmentation methods is
limited, as most have not been validated in real cognitive
radio environments. Finally, the use of polynomial-based
approximations in spectrum sensing remains largely
unexplored. Bernstein polynomials, in particular, offer
smooth and flexible spectral approximations that can
effectively handle noise and irregularities while reducing
computational complexity [31]. Their application to FFT-
based energy detection presents a novel and underexplored
research direction.

III. CONVENTIONAL ENERGY DETECTION METHOD

In Cognitive Radio (CR) networks, energy detection
continues to serve as a fundamental spectrum sensing
approach for identifying the presence of primary (licensed)
users within a specified frequency band. The primary goal
of this technique is to detect unoccupied spectral regions,
commonly referred to as spectrum holes, which can
subsequently be exploited by secondary (unlicensed) users
without introducing harmful interference to primary
transmissions. The energy detection process typically
involves four sequential stages: (i) signal acquisition, (ii)
pre-processing, (iii) energy computation, and (iv)
threshold comparison. As illustrated in Fig. 1, a digital
energy detector consists of several core components,
including a noise pre-filter (low-pass filter), an Analog-to-
Digital Converter (ADC), a square-law device, an
averaging (integration) unit, and a decision-making
module [32]. The pre-filter mitigates out-of-band noise
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and adjacent-channel interference, while the ADC
transforms the continuous-time signal into discrete
samples, enabling further spectral analysis—often through
a fast Fourier Transform (FFT). The square-law device
then estimates the instantaneous signal energy, which is
subsequently averaged over a defined observation interval.
Finally, the mean energy is compared against a
predetermined threshold to infer the presence or absence
of a primary user. Although energy detection is
computationally efficient and conceptually
straightforward, its performance is significantly degraded
under low Signal-to-Noise Ratio (SNR) conditions and in
scenarios characterized by noise uncertainty. These
limitations pose critical challenges for reliable spectrum
sensing in practical CR implementations, motivating
ongoing research into advanced detection strategies and
robust statistical models.

PU
Signal

A/D
Converter

Decision
Making

Noise
[Pre- Filter

Squaring

L Averaging
device

device

Fig. 1. Block diagram of conventional energy detection method.

The signal detection at the secondary user can be
described as a binary hypothesis testing problem with
noise, depending on whether the original user is idle or
busy is given by.

Hypothesis 0 (h): signal is not present.

Hypothesis 1 (h;): signal is present.

After sampling the received signal, y, the nth sample y(7)
can be expressed as [33]:

_ (ne(m) th
= y(m) = {x((]m) +ny(m) : h(i

(M

y(n): received sample at time n, x(m): PU signal sample,
ny(m) : additive white Gaussian noise (AWGN). The
likelihood ratio for the binary hypothesis test in Eq. (1) can
be obtained by applying the Neyman-Pearson criterion to
the hypothesis issue. it is given by:

Fylhoeo
= N\ p = 2ot
R fymae
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Following appropriate filtering, sampling, squaring, and
integration in digital implementation, the energy detector's
test statistic is provided by:

= A= Zhoalym)? 3)
where N is number of samples. With a Large N, improved
detection is achievable at low SNR. For P; and P, the
Central limit Theorem (CLT) provides better
approximations. This means that SNR< -20dB can be
roughly expressed as (e.g., =20 dB), [+2y =1 or 1+y =1.
The approximated test statistics at low SNR is expressed
as [34]:

N(N(202,),N(20%)?) for hy
N(N(203,)(1 +7v),N(203,)%) for hy

An established threshold A is needed to determine
whether or not there is a primary user signal. This
threshold A is used to calculate P; and Py performance.
Because the threshold might range from 0 to oo, choosing

4)
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the right one is crucial for an appropriate operating
threshold. Both Prand P, increase when A lowers, and
both Py and P; decrease when A increases. The chosen
threshold on for a given constant Py can be obtained by
using [45]:

=& = (@' (P )VN)VN24,,%) ®)

Another crucial factor in achieving higher false alarm
and detection probabilities (P and Py) is the number of
samples (N) according to the specified observation frame.
The function of the SNR determines the lowest quantity of
samples needed for a particular detection probability (P,)
and false alarm probability (Pf). The necessary quantity of
samples (M) is provided by:

>M=[Q*(P)—-Q P2y +11°y2 (6)

The necessary number of samples can be roughly
calculated using the oscillatory noise at low SNR, is
provided by:

- [o~'(Pp)-0 ' P)]”
[r=(o=7)l

where p is a parameter that can represent the noise signal’s
uncertainty. A detector’s practical energy test statistic,
which makes use of Noise Power (NP), which is estimated
as:

=M

(7

n=als@m)? ®)

1
= M =gagn
where, 262 is the estimated noise variance.

The SNR in the case above is obtained as:
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As with hypothesis under H0, noise can be calculated in

practice using noise-only samples. When K is the total

samples that contain simply noise, then & can be stated as:

(N+K)

== & (10)

In Energy Detector (ED)-based spectrum sensing, the
number of samples and the threshold value represent the
two most critical design parameters. These factors directly
influence the detector’s performance by affecting the noise
variance estimation and the achievable Signal-to-Noise
Ratio (SNR). In conventional ED implementations,
particularly under low-SNR conditions, an infinite number
of samples would theoretically be required to achieve the
desired probability of detection (P;) and probability of
false alarm (Py,) for a fixed threshold value. Consequently,
determining an optimal threshold necessitates highly
precise noise variance estimation, which, if inaccurate,
may lead to an increased false alarm rate. A major
limitation of energy-based detection techniques lies in
their reduced reliability under low-SNR regimes with
uncertain noise variance. Specifically: 1). Spectral
Resolution Trade-off: The use of Fast Fourier Transform
(FFT)-based implementations demands a large number of
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samples to achieve finer frequency resolution, which in
turn reduces temporal resolution. 2). Stochastic Signal
Characteristics: The inherently random nature of the
received signal, coupled with uncertainties in threshold
selection, degrades detection performance, particularly in

low-SNR scenarios. 3). Complexity—Performance Balance:

While probability-based ED schemes can achieve near-
optimal performance with relatively low computational
complexity, they often require extensive training
procedures, thereby limiting practical applicability.

These limitations highlight the fundamental challenges
associated with ED-based spectrum sensing, particularly
in environments characterized by low SNR and
unpredictable noise variance, and emphasize the need for
more robust detection strategies in cognitive radio
networks.

IV. METHODOLOGY

Spectrum interpolation achieves optimal performance
when the input signal is windowed prior to Fast Fourier
Transform (FFT) computation. The application of
windowing functions-such as Gaussian, Blackman, and
Hanning-enhances the interpolation accuracy by reducing
spectral leakage. In particular, combining a Gaussian
interpolation scheme with a Gaussian window has been
shown to yield significant improvements in spectral
estimation accuracy. The standard procedure involves
generating N windowing coefficients and multiplying
them with the FFT input samples. The application of a
window function can also be interpreted as a form of signal
segmentation, wherein a continuous signal is divided into
smaller segments, each representing a localized portion of
the original signal. Signal segmentation, however, poses a
fundamental challenge: the accurate determination of
segment boundaries. Inefficient segmentation often leads
to distortion in the time-frequency representation, thereby
limiting the resolution of evolved Time—Frequency
Distributions (TFDs). A persistent drawback of fhost TFD
approaches is the inherent trade-off between time and
frequency resolution. Inadequate resolution may cause the
loss of critical spectral components, which directly reduces
the probability of detection (P,;). This issue is particularly
pronounced under low Signal-to-Noise Ratio (SNR)
conditions, where missing spectral features further
degrade detection reliability.

A. Specific Problems Addressed

Noise and Signal Irregularities: Conventional
segmentation methods often exhibit limited robustness
in the presence of noise and irregular signal
characteristics. These limitations result in reduced
accuracy and unreliable performance in practical
scenarios. Therefore, a smooth and adaptable
approximation framework is required to effectively
mitigate noise effects and accommodate irregularities
in the signal structure.

Inefficiencies in Frequency Domain Transformation:
The direct application of the Fast Fourier Transform
(FFT) to noisy signals frequently introduces spectral
leakage, thereby obscuring relevant frequency
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components and degrading feature extraction quality.
To address this, appropriate pre-processing techniques
are essential to suppress noise, enhance the visibility of
significant spectral features, and ensure a more reliable
frequency-domain representation.

Challenges in Complex Pattern Recognition: Manual
feature extraction from FFT spectra is often inadequate
for capturing intricate or non-linear signal patterns.
Such limitations hinder the classification performance
in tasks requiring high sensitivity to subtle variations.
Consequently, an automated and efficient feature
extraction approach is necessary to improve pattern
recognition capabilities and enhance overall
classification accuracy.

Limitations of Traditional Energy Detection: Classical
energy detection methods are highly susceptible to
false alarms and missed detections due to noise
fluctuations and signal irregularities. This reduces their
reliability in accurately identifying the presence or
absence of signals based on energy patterns. A more
robust detection mechanism is therefore needed to
provide consistent performance under adverse channel
conditions.

B. Proposed Solution

This work addresses these problems through the
following steps:
e Signal Segmentation Using Bernstein Polynomials:
Employing Bernstein polynomials for signal
segmentation  provides smooth and flexible
approximations, effectively handling noise and
irregularities.

FFT and Pre-processing: Transforming the segmented
signals to the frequency domain using FFT and
applying pre-processing techniques (e.g., logarithmic
scaling and smoothing) to enhance spectral features
and reduce noise

CNN for Feature Extraction: Utilizing a CNN to
automatically extract meaningful features from the pre-
processed FFT output, leveraging the CNN’s ability to
learn complex patterns and improve classification
accuracy.

Energy Detection: Performing energy detection on the
classified segments to accurately identify the presence
or absence of signals based on predefined energy
thresholds, ensuring reliable spectrum sensing.
This study proposes an integrated framework for signal
segmentation and spectrum sensing, as illustrated in Fig. 2,
which combines Bernstein polynomial approximation,
Fast Fourier Transform (FFT), Convolutional Neural
Networks (CNN), and energy detection techniques. The
methodology begins with signal segmentation using
Bernstein polynomials, which offer smooth and adaptable
approximations, thereby reducing the adverse effects of
noise and signal irregularities. Following segmentation,
each signal segment is transformed into the frequency
domain through the FFT.

To ensure reliable spectral representation, the FFT
output undergoes a pre-processing stage that employs
logarithmic scaling and smoothing techniques. This step
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enhances salient spectral features while suppressing noise,
thus facilitating more effective feature extraction. The pre-
processed spectral data are then analyzed by a CNN, which
automatically extracts discriminative features and
identifies complex spectral patterns. The CNN'’s ability to
learn hierarchical representations significantly improves
classification performance compared to manual feature
engineering approaches. Subsequent to feature extraction,
energy detection is applied to the classified segments. The
energy of each segment is computed, and a threshold-
based decision rule is employed: if the calculated energy
exceeds a predefined threshold, the presence of a signal is
confirmed; otherwise, the segment is classified as signal-
absent.

Signal segmentation via

Bernstein Polynomial
Approximation
fit Bo()=X{% b (t) *

FFT Transformation
N-Point FFT
Frequency bins | Xs(k) |

RF Base Band
samples
x(t)

Pre-processing of FFT

Power =| Xs(f) |2

smoot and shape -pre-

Feature Extraction and
Classification using CNN
Input: spectrum
Output: power signal
flow:(Conv-BN-ReLU) -> GAP-
>Dense->SoftMax

Energy detection on
FFT Spectra via
CNN

| segm
Bernstein Polynomial
Approximation, FFT
Transformation, FFT

Fig. 2. Block diagram of proposed comprehensive approach.

By integrating Bernstein polynomial-based
segmentation, FFT transformation, CNN-driven feature
extraction, and robust energy detection, the proposed
framework enhances both the accuracy and reliability of
spectrum sensing. This holistic approach effectively
addresses challenges posed by noise, spectral leakage, and
complex pattern recognition, thereby enabling precise
segmentation and efficient detection of energy patterns.
The results demonstrate that the methodology offers a
practical and resilient solution for spectrum sensing in
modern communication systems.

Notations and variables used in text and equations are
described below
e x[n]: Discrete-time received baseband samples.

x(?): Continuous-time baseband signal.

Bu(®)= X&) Bim (t) Xc;: Bernstein  polynomial
approximation of order m,

X[k]: K" FFT bin of the signal.

[IXTk]l: Magnitude spectrum.

|XTk]1?: Power spectrum.

T: Energy detection statistic.

A: Decision threshold, set from a desired false-alarm
probability Pr.

Hy: Hypothesis — channel is idle (no signal).

H,: Hypothesis — channel is occupied (signal present)
signal segmentation.
Signal segmentation refers to the process of dividing a
continuous signal into smaller segments, each of which
captures distinct characteristics of the original signal. A
central challenge in this process lies in determining

Power spectra
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appropriate segment boundaries that accurately reflect the
underlying structure and dynamics of the signal.
Conventional segmentation approaches often struggle to
detect abrupt changes or rapid transitions, thereby limiting
their ability to represent local variations effectively. To
address this limitation, the present work employs a
modified Fractional Bézier-Bernstein Polynomial (FBBP)
method for signal segmentation. In this approach, the
signal is modeled as a piecewise polynomial function,
where each segment is represented by a fractional Bézier
curve. A Bézier curve, in general, is a parametric curve
defined by a set of control points that govern its curvature
and overall shape. Within the proposed segmentation
framework, points of inflection in the signal are identified
and utilized as control points. This enables the method to
more precisely capture local structural variations and
dynamic behaviors. A point of inflection corresponds to a
location where the curvature of the curve changes direction.
Identifying such points involves detecting critical points in
the signal and evaluating whether the concavity changes at
those locations. By incorporating inflection points as
control parameters, the FBBP-based segmentation
technique provides a more accurate and adaptive
representation of signal dynamics, particularly in regions
characterized by sharp transitions or irregular patterns.

C. Approximating a Non-stationary Signal Using Bezier
Curve

The input consists of an oscillatory signal represented
by the fractional Bezier Bernstein curve with degree d and
data points p0, pl, ..., pn—1. A Fractional Bezier curve
approximation of the signal that has segmentation and
control points at points of inflection is the output. The
traditional Bernstein-Bezier polynomial is extended to
non-integer degree values by the fractional Bernstein-
Bezier polynomial. The fractional Bernstein Bezier
polynomial of degree d and order a is defined as:

d
d
= Baain = Z (k)
0

ra+1)
ra—k+Drtk+a—-d)

i i
(ﬁ)k(l —ﬁ)d i

(11)

d is polynomial degree, a is polynomial order, i is index
ranging from 0 to N and N is number of discrete parameter
value. The fractional parameter o of the Bezier polynomial
in Eq. (1) is between 0 and 1. When «a is an integer, the
fractional Bernstein-Bezier polynomial simplifies to the
classical Bernstein-Bezier polynomial. When working
with data that is not consistently spaced or when more
precise control over the curve’s shape is needed, it is very
helpful. The polynomial for non-integer value of o is
generalized using the gamma function; with the binomial
coefficient (Z) added. The contribution of a control point
to the polynomial evaluation at the discrete parameter

value % is represented by each term in the summation. The

formula computes the index % fractional Bezier Bernstein

basis function, which establishes the i control point's

influence on the overall curve. Ultimately, create a
fractional Bezier curve that roughly represents the non-
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stationary signal by adding together these basis functions
for each control point.

In order to use the Fractional Bezier curve to
approximate the non-stationary signal, first determine the
Bernstein polynomial basis functions. For t in the interval
[0, 1], the Bernstein polynomial basis function bi, d(f) is
given as:

= ba() = ()i — )¢t (12)

where 7 and 7 are in the range [0, d] and [0, 1], respectively.
By adding up the control points and adjusting for weight
using the Bernstein polynomial basis functions, which are
as follows: the first Bezier curve B,(f) is created.

= Ba() = X255 big () X ¢ (13)

Points of inflexion are regarded as control points,
therefore determining the values of ‘¢’ at which the 2
derivative of Ba(f) changes sign will yield the points of
inflexion xo, X1,..., Xm1.

d®Bq(t) Zd 2 d%dip(8)

=
dt? dt?

X ¢; (14)

Utilizing the acquired points of inflection, establish the
control points. In a similar manner, by mapping ¢; = Ba(x;)
for i in [0, m—1], the control points for the Bezier curve are
determined as the locations of intersection. Following
basis function calculation, Using the Fractional Bezier
Bernstein polynomial as well as the control points ¢; = p;,
for i € [0, d—1], construct the Fractional Bezier curve Bq(%).
the Bernstein polynomial with fractional Bezier is given as

= By(t) = %53 B, (D) x ¢ (15)

Lastly, the Fractional Bezier curve may be evaluated as
follows to approximate the non-stationary signal at data
point p;:

-5 (t)-

ay__ 1@+  iykeq
[Zk 0( )r(a—k+1)r(k+a—d) (N) a

ﬁ)d K x e (16)
Determine the error that exists between the points on the

Fractional Bezier curve Bq4 ( )and the original data points

pi. One may quantify the error by use the squared
Euclidean distance is given by.

pta ()|

e p;: Original data point (sample of the non-stationary
signal) at index i.

n(l):

)

Se=Y"r]

Value of the frctional Bézier curve

approximation of the signal at normalized position (#)

e d: Degree of the Bézier curve (order of approximation).

e i:Index of the data/sample point, where i=0, 1, ..., n—1i
=0, 1, dots, n-1, i=0,1,..., n—1.

e N : Normalization constant (usually equal to the
number of points or maximum index), used to map

discrete index iii into the unit interval [0, 1].

e ¢; : Control point coefficients (weights) for the Bézier
curve representation. These are estimated during curve
fitting.

. (‘?): L. Binomial coefficient.
i) T =

e a : Fractional parameter (controls the "fractionality" or
flexibility of the curve, extending standard Bézier
formulation).

e I'() : Gamma function,
(ie.,J(n) =Mm—-1)).

e n: Total number of original data points in the signal.

e e : Total squared Euclidean error (quantifies
approximation accuracy).

Using a least square fitting method, modify the control
points (ci) in the fractional Bezier curve Bu(f) to minimize
the error ‘e’. Fig. 3 demonstrates how the fractional
Bernstein approximation function is used to segment and
approximate the synthetic signal x(¢). Within certain time
periods, the signal varies with three unique multiple
components. Eq. (14) is utilized to identify the points of
inflection linked to these numerous frequency contents.
Shown graphically on the approximate polynomial Bd(t)
in Fig. 3. These points of inflection are used as control
points for each instance (i/N) in the approximation Bezier
curve given by Eq. (16) to get the segmented signal.
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Fig. 3. Segmentation of signal using fractional Bernstein Bezier curve
approximation.

D. Fast Fourier Transform (FFT)

Following signal approximation, the Fast Fourier
Transform (FFT) is applied to evaluate the frequency-
domain characteristics of the signal. Both the Bernstein
polynomial framework and the FFT play distinct yet
complementary roles in spectrum sensing, particularly in
the context of energy detection. The FFT decomposes the
time-domain signal into its constituent frequency
components, thereby enabling the estimation of power
levels across different frequency bands. This information
is essential for determining whether a particular frequency
band is occupied or vacant. Once the spectral components
and their corresponding power levels are obtained through
the FFT, Bernstein’s inequality can be employed to further
enhance the decision-making process. Specifically,



Journal of Communications, vol. 21, no. 1, 2026

Bernstein’s inequality provides probabilistic bounds that
allow for the estimation of detection likelihood under
noisy conditions. By quantifying the uncertainty
associated with signal presence in the frequency spectrum,
it contributes to more robust and reliable detection
outcomes. Thus, while the FFT serves as a tool for
transforming and analyzing the spectral content of signals,
Bernstein’s inequality supports statistical evaluation by
strengthening  detection reliability in noise-prone
environments. Together, these methods form a
complementary framework that improves the accuracy of
energy detection-based spectrum sensing.

Let Bq (t,) be the discrete-time signal representation, where
t » is the n-th sample point and Bq (t») is the discrete-time
signal. The discrete signal has the following expression:

= By(t) = 550 B, i1 (ta) X ¢; (18)

where By qi/n (t,) the Bernstein basis polynomial with
fractional Bézier parameters.c; are the coefficients. The
FFT of the signal B,(t,) is denoted by X(k), where k is the
frequency bin index. The X(k) represent the FFT of the
signal Ba(tn) where k is the frequency bin index.

2kmn

= X(k) = ¥N1B,(t) e v (19)
for k=0, 1, 2, ..., N-1. Substitute B,;(t,) into above
equation.

= X(k) = ¥ (zgtol B, i(tn)x ci)e—f”‘% (20)
"IN
.2knn
= X0 = 28+ o (SN B, 060 e N @2D)
"N

The inner sum can be defined as Xi(k), signifying the
input of the i-th Bernstein polynomial to the FFT:

.2kmn
= Xi(k) = 3N4B, it e N (22)
"N
Thus, the X(k) can represent as:
=Xk =Y8 % ¢; x X;(k) (23)

The Bernstein Polynomial Approximation purpose is
Smooth segmentation of the time-domain signal before
FFT to reduce noise-induced fluctuations in energy
detection. some of advantages of Bernstein Polynomial
Approximation are: 1). Shape-preserving, 2). Low
variance, 3). Numerical stability,4. Robust to low SNR.
The Challenges in real-world systems are 1).
Computational cost increases with polynomial order mmm
if implemented naively, 2). Requires tuning mmm for
trade-off between smoothing and detail retention, 3).
Hardware implementation may need fixed-point
approximations for speed.

E. Convolution Neural Network

In low-SNR scenarios, typically encountered in
cognitive radio and dynamic spectrum access systems, two
major challenges degrade the performance of traditional
energy detection, 1). Noise Uncertainty, 2). Loss of
Discriminative Features. To address these limitations, a
Convolutional Neural Network (CNN) is incorporated in
the proposed sensing framework. Convolutional Neural

Network (CNN) addresses these limitations by: 1). Feature
Learning Beyond Energy. 2). Pre-trained Knowledge for

Noise-Invariant Detection. 3). Nonlinear Decision
Boundaries.
In energy detection-based spectrum sensing, a

Convolutional Neural Network (CNN) may be utilized to
accurately determine whether or not a frequency band is
occupied after calculating the signal's FFT. This is a
suggested CNN architecture designed specifically for this
job. In order to minimize dimensionality, pooling layers
are added after a few convolutional layers to aid in the
extraction of significant features from the FFT output.
More intricate patterns are captured with the aid of the
deeper convolutional layers. The output layer and fully
linked layers ultimately yield the final categorization
determination. With the ability to be adjusted depending
on the particulars of the dataset, this model is made to
handle the frequency-domain representation of the signal
for spectrum sensing applications in an effective manner.
Using the frequency-domain representation of signals
acquired by the Fast Fourier Transform (FFT), a
Convolutional Neural Network (CNN) architecture suited
for energy detection-based spectrum sensing is proposed
in this paper. The size of the FFT result, which is usually
shown as a one-dimensional array, serves as the CNN’s
input. The first two 1D convolutional layers in the
architecture include 32 and 64 filters, a kernel size of 3,
and ReLU activation functions. A max-pooling layer with
a pool size of 2 comes next. This is followed by another
max-pooling layer for additional dimensionality reduction
and deeper convolutional layers with 128 and 256 filters
while keeping the same kernel size and activation function.
After these layers' outputs are flattened, they are passed
through fully linked layers that use ReLU activation and
have 256 and 128 units, respectively. One neuron with a
sigmoid activation function makes up the final output layer.
Its purpose is to do binary classification, which tells us
whether or not a certain frequency band is occupied. The
model is assembled utilizing the Adam optimizer with
binary cross-entropy as the loss function. Accuracy,
precision, and recall metrics are used for assessment. This
architecture offers a reliable solution for spectrum sensing
in cognitive radio networks since it is especially designed
to collect and analyze spectral data quickly.

Approximation segmentation and CNN Method (see
Algorithm 1).

Algorithm 1:
Inputs:
e x(?): Received signal over time t
n: Degree of the Bernstein polynomial
T: Observation period
0: Detection threshold
NFFT: Number of FFT points
CNN (+): Pre-trained Convolutional Neural
Network model
Output:
e  Decision D €{0,1}: 0 indicates the spectrum band
is vacant, 1 indicates it is occupied.
Step 1: Compute the energy signal E(f) over the
observation period TTT.

Step 2: Normalize the time variable t to the interval [0, 1].
tl t—tmin

Umax—tmin
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where t,,,, and t,,;, are the maximum and minimum
time values in the observation period.
Step 3: Apply Bernstein polynomial approximation to

the energy signal E (t) obtain a smoothed version B,,(E, t").

Step 4: Apply FFT to the Smoothed Energy Signal.

Xp(f) = FFT(B,(E,t" ), Npgr).

Step 5: Calculate the Power Spectral Density (PSD):

Eg(f) = |1X5(f)|? Compute the power spectral density
Eg(f) from the magnitude squared of the FFT result.

Step 6: Normalize the approximated power spectral
density E5(f) as required for CNN input.

Step 7: Reshape the normalized power spectral density
Eg(f) into the format required by the CNN (e.g., 1D array
or 2D matrix).

Step 8: Extract Features Using CNN: Feed the power
spectral density Egz(f) into the CNN to extract relevant
features and obtain a decision score or probability.

Step 9: Make Classification
1 if CNN(Ez(f)) =0

0 if CNN(Ez(f)) <®©

Compare the CNN output to the detection threshold 0 to
determine if the spectrum band is occupied (1) or vacant
(0).

Step 10: Return the Final Decision: Output D, indicating
whether the spectrum band is occupied (1) or vacant (0).

Decision:D={

F. Cyclostationary Feature Detection for Spectrum
Sensing

By taking use of the periodicity present in the modulated
signals, cyclisation feature identification is a spectrum
sensing approach used in cognitive radio networks to
identify the presence of Main Users (PU). This technique
is based on the observation that most communication
signals, because of their coding, multiplexing, and
modulation techniques, display periodic statistical features
like mean and autocorrelation, which give rise to
cyclisation traits. There is periodic autocorrelation in
modulated signals. The expression for the autocorrelation
function is:

= R, (t,7) = E[x()x* (t — 7)] 24)
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where x* (t) is the complex conjugate of x(t) and 7 is the
time lag. If R, (t, 7) is periodic with period T, the signal
x(?) s considered to be second-order cyclostationary. This
is to be expressed as

= R (t,7) = R, (t + Tp, 7) (25)

The Fourier transform of the cyclic autocorrelation
function with respect to the time lag t is known as the
Spectral Correlation Density (SCD). It displays the
correlation between a signal’s spectral components at
various cyclic frequencies @. The SCD S, (f, a) is given
by:

= S,(f,0) = [ RE () e /2 7de (26)

0

alpha

Fig. 5. Spectrum of cyclisation features for primary user signal without
noise.

where fis the frequency and « is the cyclic frequency. The
signal is represented in two dimensions by the SCD in both
the frequency (f) and cyclic frequency (o) domains. To
separate a modulated signal from noise, which usually
lacks cyclisation characteristics, the SCD shows peaks at
particular cyclic frequencies. Fig. 5 and Fig. 6 displays the
cyclisation property of the signal sample sequence
example.
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Fig. 6. Spectrum of cyclisation features for primary user signal with
noise.

The spectral correlation density is examined by
concentrating on the feature values primarily along the line
corresponding to @ = 0 and f = 0 in order to effectively
convey cyclisation characteristics for spectrum sensing.
The spectral correlation is sampled 64 times by setting the
spectral frequency (f) and cyclic frequency (o) to zero.
This yields two 64 x 1 cyclisation feature vectors, Cy. S«
and Cy.Sy. The unique cyclic characteristics of the
received signal are represented by these vectors. These
cyclisation data are merged with energy and power
spectrum features to generate a 64 x 4 feature matrix,
which is then used to create a full feature set for spectrum
sensing.

G. Segmentation of Signal Using Windowing

Time domain Frequency domain
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Fig. 7. Hamming window function and its spectrum.
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Fig. 8. Triangular window function and its spectrum.

However, because FFT processes the received signal
arbitrarily, there are certain concerns with energy leakage
surrounding the real signal due to the discontinuity in its
extraction. Using windowing techniques is a widely
recommended strategy to reduce energy leaks. How much
of a suppressive impact it has depends on the particular
window function that is used. This approach involves
multiplying the received time-domain signal by the
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assigned window function. Concurrently, the signal that is
ready for FFT is presented via the window processing
technique. When a signal is segmented using windowing,
a window function, such as a rectangular, Hamming,
Hanning, or Blackman window, is applied to divide the
signal into smaller, overlapping segments. Let the whole
continuous-time signal be represented by x(t). By applying
a window function w(t) of length N samples to this signal,
a windowing approach of signal segmentation is
performed. One definition for the segmented signal x,,(7) is:
Xuw(O)=x()xw(f) 27)
Some examples of windowing functions and associated
spectra are shown in Figs. 7 and 8.

H. Neural Network Architectures and Training Settings

To promote transparency and reproducibility, the
architectures of both the Convolutional Neural Network
(CNN) and the Linear Neural Network (Linear Net) are
explicitly documented. The structural specifications of
each model are summarized in Table I and Table II,
respectively, with accompanying explanatory notes
provided to clarify their design choices and functional
roles within the proposed framework.

TABLE I. CNN ARCHITECTURE

Layer Parameters Activation
Input (1x64x2) -
Convolution 1 4 filters, kernel=2x2, stride=1, pad=1 -
Max Pooling 1 Kernel=2x2, stride=1 -
Convolution 2 8 filters, kernel=2x2, stride=2, pad=1 -
Max Pooling 2 Kernel=2x2, stride=1 -
Fully Connected 1 128 neurons Sigmoid
Fully Connected 2 84 neurons Sigmoid
Fully Connected 3 48 neurons Sigmoid
Output Layer 2 neurons (binary classification) SoftMax
The Convolutional Neural Network (CNN),

summarized in Table I, is designed to extract hierarchical
spatial features from two-dimensional input signals. The
convolutional layers are responsible for capturing
localized patterns within the data, while the fully
connected layers integrate these features into higher-level
representations suitable for decision-making. Nonlinearity
is introduced through the use of sigmoid activation
functions, enabling the network to model complex
relationships within the input. Finally, a SoftMax layer is
employed at the output stage to provide probabilistic
classification, allowing the input signals to be categorized
into two distinct classes.

The Linear Neural Network (LinearNet), summarized in
Table II, adopts a conventional feed-forward architecture.
In this design, the extracted signal features are first
flattened into a one-dimensional vector, which is then
processed through successive fully connected layers to
learn class boundaries. Although computationally efficient
and structurally simple, the absence of convolutional
layers limits its capacity to capture complex local patterns
within the data. Consequently, LinearNet exhibits reduced
representational power compared to the CNN, particularly
in tasks requiring hierarchical feature extraction.
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TABLE II. LINEARNET ARCHITECTURE

TABLE IV. STATISTICAL RESULTS (MEAN + STANDARD DEVIATION)

Layer Parameters Activation
Input Flattened (64 x 2) =128 -
Fully Connected 1 64 neurons Sigmoid
Fully Connected 2 32 neurons Sigmoid
Fully Connected 3 16 neurons Sigmoid
Output Layer 2 neurons SoftMax

I Training Configuration (Common to Both Models)

To ensure fairness, both models were trained under
similar conditions:
Optimizer: SGD with momentum (0.9).
Learning Rate: 0.01, decayed by StepLR (x 0.1
every 20 epochs).
Batch Size: 16 (LinearNet), 32 (CNN).
Epochs: 15 for LinearNet, 50 for CNN.
Loss Function: CrossEntropyLoss (CNN), MSE
with one-hot encoding (LinearNet).
Data Split: Train 60%, Validation 20%, Test 20%.
These standardized hyperparameters provide a
reliable basis for comparing the two architectures.

J. Dataset Split and Parameter Tuning

The dataset was partitioned into three subsets: 60% for
training, 20% for validation, and 20% for testing. This
division ensured an adequate volume of data for model
training while preserving independent validation and test
sets for unbiased  performance assessment.
Hyperparameters, including the learning rate and batch
size, were selected empirically based on validation
outcomes to optimize model performance. While the CNN
required a deeper configuration to achieve higher
classification accuracy, the LinearNet demonstrated faster
convergence but exhibited performance saturation at
comparatively lower accuracy levels.

K. Convergence and Computational Complexity

Table III indicates the comparison the training duration,
parameter count, and inference latency of both models
while the Convolutional Neural Network (CNN) incurs
higher computational demands during the training phase,
it demonstrates superior detection accuracy, rendering it
more appropriate for applications where reliability is of
paramount importance. In contrast, the LinearNet exhibits
faster training times and reduced computational overhead,
making it a more suitable choice for lightweight or
resource-constrained environments.

TABLE III. CONVERGENCE AND COMPLEXITY COMPARISON

Training Time Inference Latency

Model (50 epochs) Parameters (per sample)
—25 seconds B 1.8 ms (GPU), 6.2
CNN (GPU) 32,000 ms (CPU)
. —10 seconds _ 1.1 ms (GPU), 4.8
LinearNet (GPU) 10,000 ms (CPU)

L. Statistical Analysis

To address variability, each experiment was repeated
five times with different random seeds. The averaged
performance across runs is summarized in Table IV.
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Validation Test Py Py
Model Accuracy Accuracy (£SD) (£SD)
90.6% =+ 0942+  0.084 +
0, 0,
CNN 91.3% + 1.2% 1.5% 001 0.008
. 84.9% + 0902+ 0.116+
0, 0,
LinearNet 85.7% £ 1.6% 1.8% 0.02 0.010

As presented in Table IV, the Convolutional Neural
Network (CNN) consistently outperforms the LinearNet
across multiple trials, achieving a higher probability of
detection (Pd) and a lower probability of false alarm (Pf).
Moreover, the relatively smaller standard deviations
highlight the stability and reliability of the CNN, thereby
reinforcing its robustness in noisy environments.

V. RESULTS

The dataset preparation for the network’s training is
involved, two types of band-pass modulated signals—
QPSK and 8PSK—with a carrier frequency of 10 kHz are
simulated in MATLAB. A raised cosine filter with a roll-
off factor of 0.5 is utilized as the pulse shaping filter. The
signal travels across a Rayleigh fading channel with many
paths. The delays vector is [0.001 s, O s]. It is assumed that
the noise is Gaussian white noise. The signal is configured
to while it travels across the AWGN channel, the SNR
drops from -20 to 5. After running the received signal via
the fraction Bernstein approximation, the spectral
component FFT is found. Spectral components are where
the features are taken from. After Bernstein approximation
and before FFT, the received signal is sampled 1280 times
after going through the AWGN and Rayleigh channels.
The spectral components are then put into a feature
extractor to create feature matrices. “Signal 0” and “signal
17 are the two types included in the train dataset. Only the
feature matrixes pertaining to noise samples are contained
in “signal 0,” whereas the feature matrixes related to
signals, comprising main signal and noise, are contained in
“signal 1.” There are around 5000 data points in each sort
of signal. The test dataset is used to evaluate the
performance of the spectrum sensing model. The model’s
performance may be assessed using two parameters:
probability of detection (P;) and probability of false alarm
(Ps). For QPSK and 8PSK signals, the probability of
detection (P,) is computed for each test signal at different
SNRs using simply CNN, CNN with windowing, and
CNN with fraction Bernstein approximation. The various
plots for the aforementioned are displayed in Fig. 9. The
CNN+WD is represented as CNN with window
segmentation and CNN+B as CNN with fraction Bernstein
approximation segmentation. The probability of detection
(P,) is found to be nearly constant across all techniques at
high SNRs (-5 dB to 5 dB), with 100% of P; being
attained. At Low SNR (-10 dB), the QPSK received signal
with Bernstein approximation segmentation and CNN
features gives better P; nearly about 96% of P; compared
with QPSK with CNN. Overall, it appears that the greatest
notable gain in spectrum sensing performance for both
QPSK and PSK signals comes from combining CNN with
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Bernstein polynomial approximation. It is discovered that
the model performs pretty poorly for both signal types
when the SNR is low (<15 dB). As shown in Fig. 9 and
Fig. 10 shows SNR increases cause Pd to rise and Pf to
fall. Pd will be greater than 80% and Pf will be less than
10% when the SNR is greater than —10.
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Fig. 9. Probability of detection (P;) performance comparison between
QPSK and 8-PSK in terms of CNN, CNN+ window segment and CNN
+Bernstein approximation segmentation.
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Fig. 10. Probability of False Alarm ( Pr) performance comparison
between QPSK and 8-PSK in terms of CNN, CNN+ window segment and
CNN +Bernstein approximation segmentation.

The probability of detection (P;) and probability of
False Alarm (Py) when SNR rises is seen in Fig. 11 and
Fig. 12. These provide an analysis of the detection
performance of several signal types, including cyclisation
features, across a range of SNR situations. In comparison
to cyclisation features, the state-of-the-art methods—such
as CNN in conjunction with the Bernstein polynomial
approximation—perform noticeably better at low SNR
levels. It shows that for all investigated strategies; the
detection probability approaches 100% at SNRs (above
—5 dB). The combination of CNN features and QPSK
signals with the Bernstein polynomial approximation
maintains a higher P; (~96%) at lower SNRs (—10 dB)
than cyclisation features. P;  generally, rises with
improved SNR, and better sophisticated techniques such
as QPSK signals. Fig. 9 and Fig. 10 illustrate the detection
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performance in-case of 8PSK signal. The cyclisation curve
demonstrates the extremely poor performance in both
8PSK and QPSK signal cases, where the P; is around 50%
between —15 and —10 dB SNR. The curves shown by
proposed method (CNN+B) illustrate the more detection
performance difference between QPSK and 8PSK
modulations. When the system using CNN with Bernstein
Approximation segments, the QPSK modulation achieves
more than 20 % of P; compared to the 8PSK modulation
between —15 and —10 dB SNR.

Tables V and VI illustrate that at Low SNR Performance
(-15 dB) the conventional Cyclisation Feature Detection
technique demonstrates a detection rate of 48% at an SNR
of -15 dB. While the CNN + Bernstein Approximation
further boosts detection performance to 70%, the CNN +
Windowing approach improves detection performance to
58%. This illustrates the value of utilizing CNN and the
Bernstein approximation, which together capture more
discriminative signal characteristics even at extremely low
SNR. At SNR Performance (-10 dB) the Cyclisation
feature detection rate stays low at 47% at —10 dB SNR.
CNN + Windowing, on the other hand, considerably
increases to 74%, while CNN + Bernstein Approximation
reaches an even greater detection rate of 96%. This
noteworthy increase demonstrates how reliable the CNN +
Bernstein Approximation method is. At =5 dB the Both
CNN-based techniques exhibit extremely high detection
rates at an SNR of -5 dB, with CNN + Windowing
achieving 98% and CNN + Bernstein Approximation
100%, respectively. While it still trails behind the CNN-
based methods, the Cyclisation Features method also
becomes better, highlighting the supremacy of deep
learning-based approaches under high SNR settings.

TABLE V. DETECTION PERFORMANCE COMPARISON OF VARIOUS

METHODS FOR QPSK SIGNAL
SNR in Cyclisation CNN+ CNN+.
. . Bernstein
dB Features windowing L.
approximation
-15 48% 58% 70%
-10 47% 74% 96%
=5 86% 98% 100%

The detection performance of QPSK and 8PSK signals
was evaluated under Rayleigh fading and AWGN channels
using three approaches: a baseline CNN, CNN with
window segmentation (CNN+WD), and CNN with
Bernstein polynomial approximation—based segmentation
(CNN+B). The performance was assessed in terms of
probability of detection (P;) and probability of false alarm
(Pr). As shown in Figs. 9 and 10, all methods achieve
nearly perfect detection (P; = 100%) for SNR > -5 dB,
indicating that CNN-based approaches can reliably
discriminate between signal and noise under moderate-to-
high SNR conditions. However, significant performance
differences emerge at low SNRs. At —10 dB, CNN+B
attains approximately 96% P, for QPSK, outperforming
CNN+WD (74%) and cyclisation detection (47%). Even at
—15 dB, CNN+B maintains 70% P; for QPSK, while
CNN+WD and cyclisation detection decline to 58% and
48%, respectively. A consistent modulation-dependent
trend is observed: QPSK outperforms 8PSK across all
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methods under low-SNR conditions. For instance, at —10
dB, CNN+B achieves 96% P; for QPSK but only 82% for
8PSK, reflecting the reduced noise robustness of 8PSK due
to its smaller Euclidean distance between constellation
points.

TABLE VI. DETECTION PERFORMANCE COMPARISON OF VARIOUS
METHODS FOR 8PSK SIGNAL

s CNN+
SNR in dB Cyclisation .CNN+. Bernstein
Features windowing . .
approximation
-15 48% 56% 64%
-10 47% 73% 82%
-5 86% 97% 99%
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Fig. 11. Probability of detection (P,;) performance comparison between
cyclisation feature and CNN, CNN+ window segment, CNN +Bernstein
approximation segmentation for QPSK signal case.
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Fig. 12. Probability of False Alarm ( Pf) performance comparison

between cyclisation feature & CNN, CNN+ window segment, CNN
+Bernstein approximation segmentation for QPSK Signal case.

False alarm probability results, presented in Figs. 10—14,
show a monotonic decrease with increasing SNR for all
methods. CNN+B consistently exhibits the lowest P,
demonstrating that Bernstein polynomial approximation
not only enhances P; but also suppresses false detections
by producing more discriminative spectral features. At
SNR = -10 dB, CNN-based methods maintain Pr below
10%, while cyclisation detection records significantly
higher false alarms. Figs. 11—14 further illustrate the
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limitations of cyclisation detection: at —15 to —10 dB, P,
remains at only 47-50% with elevated Pf, as noise masks
cyclostationary periodicities. In contrast, CNN+B nearly
doubles P; under the same conditions, highlighting the
effectiveness of combining deep learning with Bernstein-
based spectral smoothing.

Probability of Detection%
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-10 5 0 5
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Fig. 13. Probability of detection (P;) performance comparison between

cyclostationary feature & CNN, CNN+ window segment, CNN

+Bernstein approximation segmentation for 8-PSK signal case.
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Fig. 14. Probability of False Alarm ( Pf) performance comparison
between cyclostationary feature & CNN, CNN+ window segment, CNN
+Bernstein approximation segmentation for 8PSK Signal case.

Overall, two key performance regimes emerge. In the
high-SNR regime (> -5 dB), all methods achieve near-
perfect detection, with CNN-based models offering lower
false alarm rates than cyclisation detection. In the low-
SNR regime (< -10 dB), CNN+B significantly
outperforms both CNN+WD and cyclisation methods,
particularly for QPSK, due to its superior spectral
approximation and feature discriminability. Furthermore,
QPSK consistently demonstrates higher noise tolerance
than 8PSK, owing to its wider constellation spacing.
Collectively, these results establish CNN+B as a robust
and reliable spectrum sensing approach under adverse low-
SNR conditions, offering substantial improvements over
both conventional cyclisation techniques and baseline
CNN models.

VI. CONCLUSION

This work integrates deep learning methods, namely
Convolutional Neural Networks (CNNs), with Bernstein
polynomial approximation to propose an optimum strategy
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for energy detection-based spectrum sensing. The
suggested approach makes use of the approximation
characteristics of Bernstein polynomials to increase CNN
feature extraction, which significantly boosts spectrum
sensing detection performance, particularly in low Signal-
to-Noise Ratio (SNR) situations. The experimental results
show that for both QPSK and 8PSK signals, CNN-based
approaches perform better than classic Cyclisation Feature
Detection and CNN with windowing techniques at all SNR
levels. This is especially true for CNN paired with
Bernstein approximation. Better feature extraction and
higher detection rates are made possible by the CNN
architecture's integration of the Bernstein approximation,
particularly in low SNR situations. The experimental
findings, supported by the statistical evidence in Table IV,
demonstrate that the CNN achieves superior accuracy,
higher probability of detection (Py), and lower probability
of false alarm (Pf) compared to the LinearNet This
demonstrates how sophisticated deep learning methods
may be used to improve cognitive radio networks’
spectrum sensing capabilities. In future, investigate
advanced CNN architectures, such as residual connections
and attention-based mechanisms, to further improve
classification performance.
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