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Abstract—In the context of energy-based spectrum sensing, 
effective noise reduction is paramount to enhance the Signal-
to-Noise Ratio (SNR) and improve the probability of 
detection, particularly in cognitive radio networks. This 
paper presents a novel approach that synergistically 
combines Fractional Bernstein Approximation, Fast Fourier 
Transform (FFT), and Convolutional Neural Networks (CNN) 
to robustly detect signals under noisy conditions. The 
Fractional Bernstein Approximation is employed as a pre-
processing step to smooth the signal and mitigate noise effects. 
FFT is then utilized to transform the signal into the frequency 
domain, where CNN is applied to extract features that 
differentiate between signal and noise. Performance metrics 
such as SNR improvement, probability of detection, and 
computational efficiency are analysed under different noise 
scenarios. Our results demonstrate that the proposed method 
significantly outperforms other approaches, particularly in 
low SNR environments, offering a robust and scalable 
solution for spectrum sensing. The suggested approach is 
compared in this work against a number of other methods, 
including CNN with windowing segmentation for 
Quadrature Phase Shift Keying (QPSK) and 8PSK 
modulations and cyclisation features. The combination of 
CNN features and QPSK signals with the Bernstein 
polynomial approximation maintains a higher 𝑷𝒅  (~96%) at 
lower SNRs (−10 dB) than cyclisation features. 
 
Keywords—fractional bernstein approximation, fast fourier 
transform, convolutional neural networks, windowing 
segmentation, cyclisation features 

I. INTRODUCTION 

Cognitive Radio (CR) has emerged as a promising 
paradigm to address spectrum scarcity by enabling the 
dynamic utilization of unused spectral bands. It allows 
Secondary Users (SUs) to opportunistically access the 
licensed spectrum of Primary Users (PUs) without causing 
harmful interference [1, 2]. The effectiveness of CR 
systems critically depends on accurate spectrum sensing, 
which determines the presence or absence of PU activity. 
Among various sensing techniques, energy detection has 
gained popularity due to its simplicity, low 

implementation cost, and compatibility with diverse signal 
environments. However, its performance degrades 
significantly in low Signal-to-Noise Ratio (SNR) 
conditions, under fading channels, and in the presence of 
noise uncertainty [3]. To address these limitations, several 
alternative approaches have been proposed, including 
cyclisation feature detection [4], autocorrelation-based 
detection [5, 6], matched filtering [7, 8], and noise power-
based dynamic threshold estimation [9]. While these 
methods enhance the probability of detection (𝑃ௗ ) and 
reduce the probability of false alarm ( 𝑃௙ ), they often 
demand prior knowledge of PU signals or incur higher 
computational complexity. Fourier transform–based 
spectrum sensing has also been extensively explored, 
offering efficient frequency-domain analysis. 
Nevertheless, conventional FFT methods suffer from 
spectral leakage and resolution loss due to windowing 
effects, particularly when dealing with weak signals. 
Overlapping FFT structures have been investigated as a 
potential remedy [10]. Beyond Fourier methods, Time- 
Frequency Distributions (TFDs) such as the Short-Time 
Fourier Transform (STFT), Continuous Wavelet 
Transform (CWT), and S-Transform provide improved 
time–frequency localization. Despite their advantages, 
these methods face inherent challenges, including 
resolution trade-offs, cross-term interference, and high 
computational overhead [11, 12]. Signal segmentation 
plays a critical role as a pre-processing step in enhancing 
spectral estimation accuracy. Traditional segmentation 
techniques often lack robustness when handling 
nonstationary or noisy signals. Recently, polynomial-
based methods such as Fractional Bézier Bernstein 
Polynomial (FBBP) segmentation have shown promise in 
improving the representation of nonstationary data, 
offering smooth approximations and noise resilience. 

Motivated by these limitations, this study proposes a 
novel energy-based spectrum sensing framework that 
integrates three complementary components: (i) FBBP 
segmentation for improved time-frequency representation, 
(ii) FFT for efficient spectral analysis, and (iii) a 
Convolutional Neural Network (CNN) for robust feature 
extraction and classification. The proposed framework 
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aims to enhance detection probability and noise robustness 
under challenging CR scenarios. The remainder of this 
paper is organized as follows. Section II presents a detailed 
literature review on deep learning–based spectrum sensing, 
segmentation methods, and FFT-based sensing approaches. 
Section III provides a brief overview of the conventional 
energy detector. Section IV introduces the proposed 
method, which combines FBBP segmentation, CNN-based 
feature extraction, and FFT analysis. Section V discusses 
experimental results and performance comparisons with 
existing methods. Finally, Section VI concludes the work 
and outlines potential directions for future research. 

II.  LITERATURE SURVEY 

Energy detection has long been regarded as one of the 
most widely adopted spectrum sensing techniques in 
cognitive radio networks due to its low implementation 
complexity and adaptability to diverse signal 
environments. However, its primary limitation lies in the 
reliable detection of signals at low Signal-to-Noise Ratio 
(SNR) under conditions of unpredictable noise variance. 
Classical fast Fourier Transform (FFT)-based detectors 
improve detection performance when applied to high 
discrete frequency bins, but this enhancement comes at the 
cost of degraded frequency resolution [13]. To address 
these shortcomings, recent efforts have focused on 
augmenting FFT-based methods. For instance, a parallel 
FFT framework with dynamic sample weighting guided by 
machine learning has been proposed to enhance frequency 
resolution, detection probability ( 𝑃ௗ ), and adaptability 
under low SNR conditions. Nevertheless, the increased 
architectural and implementation complexity poses 
challenges for practical deployment [13]. Similarly, Yadav 
et al.[14] proposed a hardware-efficient design integrating 
windowing, averaging, and polyphase filters to reduce 
computational load without significantly compromising 
detection accuracy. 

In parallel, Deep Learning (DL) approaches have been 
increasingly applied to overcome the limitations of 
traditional energy detection. A notable example is the 
hybrid CNN–Transformer architecture proposed in Ref. 
[15], which leverages Convolutional Neural Networks 
(CNNs) for local feature extraction alongside transformer 
blocks for long-range dependency modeling, thereby 
improving spectrum utilization efficiency.  

Signal segmentation, an essential step in pre-processing 
and detection, plays a critical role in FFT-based sensing. 
Early methods relied on statistical hypothesis testing (e.g., 
t-test and F-test [16]) and clustering algorithms [17, 18]. 
While these techniques performed reasonably well for 
stationary or noise-free signals, they exhibited high 
sensitivity to noise and often required extensive parameter 
tuning. To address these limitations, wavelet-based 
segmentation methods, particularly the Wavelet 
Transform Modulus Maxima (WTMM) approach [19, 20], 
became popular due to their ability to capture abrupt signal 
variations across multiple scales. However, their 
performance depends heavily on the choice of wavelet 
basis and decomposition depth. 

Hybrid methods emerged as a means to combine the 
strengths of multiple techniques. For example, the 
integration of fuzzy C-means clustering with wavelet 
analysis demonstrated improved robustness in noisy 
environments [21], while discrete wavelet transforms with 
Principal Component Analysis (DWT-PCA) improved 
computational efficiency in biomedical applications [22]. 
More recently, adaptive segmentation methods such as 
sliding window approaches [23], Temporal Convolutional 
Networks (TCNs) [24], and CNN-based models [25–30] 
have achieved high segmentation accuracy in non-
stationary and complex signals. Despite these advances, 
most of these techniques have been validated primarily on 
speech, biomedical, or synthetic datasets, with limited 
evaluation in real-world radio environments. Across the 
literature, three major methodological trends can be 
observed: 
 FFT enhancement and hybridization through parallel 

processing, adaptive thresholds, and integration with 
machine learning techniques. 

 Deep learning-based segmentation and detection, 
particularly models that exploit time-frequency 
representations for improved performance. 

 Multiresolution and statistical fusion methods, such as 
wavelet–clustering hybrids, that enhance robustness 
under noisy conditions. 

Despite these advancements, three important research 
gaps remain. First, handling low SNR and noise 
uncertainty continues to be a fundamental challenge, with 
classical FFT detectors proving inadequate and ML/DL 
methods hindered by training and hardware complexity. 
Second, the generalizability of segmentation methods is 
limited, as most have not been validated in real cognitive 
radio environments. Finally, the use of polynomial-based 
approximations in spectrum sensing remains largely 
unexplored. Bernstein polynomials, in particular, offer 
smooth and flexible spectral approximations that can 
effectively handle noise and irregularities while reducing 
computational complexity [31]. Their application to FFT-
based energy detection presents a novel and underexplored 
research direction.  

III.  CONVENTIONAL ENERGY DETECTION METHOD 

In Cognitive Radio (CR) networks, energy detection 
continues to serve as a fundamental spectrum sensing 
approach for identifying the presence of primary (licensed) 
users within a specified frequency band. The primary goal 
of this technique is to detect unoccupied spectral regions, 
commonly referred to as spectrum holes, which can 
subsequently be exploited by secondary (unlicensed) users 
without introducing harmful interference to primary 
transmissions. The energy detection process typically 
involves four sequential stages: (i) signal acquisition, (ii) 
pre-processing, (iii) energy computation, and (iv) 
threshold comparison. As illustrated in Fig. 1, a digital 
energy detector consists of several core components, 
including a noise pre-filter (low-pass filter), an Analog-to-
Digital Converter (ADC), a square-law device, an 
averaging (integration) unit, and a decision-making 
module [32]. The pre-filter mitigates out-of-band noise 
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and adjacent-channel interference, while the ADC 
transforms the continuous-time signal into discrete 
samples, enabling further spectral analysis—often through 
a fast Fourier Transform (FFT). The square-law device 
then estimates the instantaneous signal energy, which is 
subsequently averaged over a defined observation interval. 
Finally, the mean energy is compared against a 
predetermined threshold to infer the presence or absence 
of a primary user. Although energy detection is 
computationally efficient and conceptually 
straightforward, its performance is significantly degraded 
under low Signal-to-Noise Ratio (SNR) conditions and in 
scenarios characterized by noise uncertainty. These 
limitations pose critical challenges for reliable spectrum 
sensing in practical CR implementations, motivating 
ongoing research into advanced detection strategies and 
robust statistical models. 

 

Fig. 1. Block diagram of conventional energy detection method. 
 

The signal detection at the secondary user can be 
described as a binary hypothesis testing problem with 
noise, depending on whether the original user is idle or 
busy is given by. 

Hypothesis 0 (ℎ଴): signal is not present. 
Hypothesis 1 (ℎଵ): signal is present. 
After sampling the received signal, y, the nth sample y(n) 

can be expressed as [33]: 

⇒ 𝑦ሺ𝑛ሻ ൌ ൜
𝑛଴ሺ𝑚ሻ                  ∶ ℎ଴

𝑥ሺ𝑚ሻ ൅ 𝑛଴ሺ𝑚ሻ   ∶ ℎଵ
                                 (1) 

𝑦ሺ𝑛ሻ: received sample at time 𝑛, 𝑥ሺ𝑚ሻ: PU signal sample, 
𝑛଴ሺ𝑚ሻ : additive white Gaussian noise (AWGN). The 
likelihood ratio for the binary hypothesis test in Eq. (1) can 
be obtained by applying the Neyman-Pearson criterion to 
the hypothesis issue. it is given by:  

⇒ ⋀௅ோ ൌ
௙೤|೓బሺೣሻ

௙೤|೓భሺೣሻ
                                  (2) 

Following appropriate filtering, sampling, squaring, and 
integration in digital implementation, the energy detector's 
test statistic is provided by:  

⇒ ⋀ ൌ ∑ |𝑦ሺ𝑚ሻ|ଶே
௠ୀଵ                                       (3) 

where N is number of samples. With a Large N, improved 
detection is achievable at low SNR. For 𝑃ௗ   and 𝑃௙ , the 
Central limit Theorem (CLT) provides better 
approximations. This means that SNR≤ -20dB can be 
roughly expressed as (e.g., −20 dB), 1+2 𝛾 = 1 or 1+ 𝛾 =1. 
The approximated test statistics at low SNR is expressed 
as [34]: 

⇒∧௅௢௪ൌ ൜
𝒩ሺ𝑁ሺ2σ௪

ଶ , ሻ, 𝑁ሺ2σ௪ 
ଶ ሻଶሻ                   𝑓𝑜𝑟 ℎ଴

𝒩ሺ𝑁ሺ2σ௪
ଶ , ሻሺ1 ൅ 𝛾ሻ, 𝑁ሺ2σ௪ 

ଶ ሻଶሻ    𝑓𝑜𝑟 ℎଵ
        (4) 

An established threshold ⅄ is needed to determine 
whether or not there is a primary user signal. This 
threshold ⅄ is used to calculate 𝑃ௗ  and 𝑃௙  performance. 
Because the threshold might range from 0 to ∞, choosing 

the right one is crucial for an appropriate operating 
threshold. Both 𝑃௙ and 𝑃ௗ  increase when λ   lowers, and 
both 𝑃௙  and 𝑃ௗ  decrease when λ  increases. The chosen 
threshold on for a given constant 𝑃௙  can be obtained by 
using [45]: 

⇒ λ௙ ൌ ൫𝑄ିଵ൫𝑃௙൯√Nሻ√𝑁2𝜎௪
ଶ൯                   (5)                          

Another crucial factor in achieving higher false alarm 
and detection probabilities (𝑃௙  and 𝑃ௗ) is the number of 
samples (N) according to the specified observation frame. 
The function of the SNR determines the lowest quantity of 
samples needed for a particular detection probability (𝑃ௗ) 
and false alarm probability (𝑃௙). The necessary quantity of 
samples (M) is provided by: 

⇒ M ൌ ሾ𝑄ିଵ൫𝑃௙൯ െ 𝑄ିଵ𝑃ௗඥ2𝛾 ൅ 1 ሿଶ 𝛾ିଶ           (6) 

The necessary number of samples can be roughly 
calculated using the oscillatory noise at low SNR, is 
provided by:  

⟹ 𝑀 ≃
ൣொషభ൫௉೑൯ିொషభሺ௉೏ሻ൧

మ

ቂఊିቀఘି
భ
ഐ

ቁቃ
మ                            (7) 

where ρ is a parameter that can represent the noise signal’s 
uncertainty. A detector’s practical energy test statistic, 
which makes use of Noise Power (NP), which is estimated 
as:  

⇒ ⋀ே௉ ൌ
ଵ

ଶఙ෥ೢ 
మ ே

∑ |𝑠ሺ𝑛ሻ|ଶே
௡ୀଵ                          (8) 

where, 2𝜎෤௪ 
ଶ  is the estimated noise variance. 

The SNR in the case above is obtained as: 

⇒ 𝛾௠௜௡ ൌ
ሾଵିொషభሺ௉ௗሻ√∅ሿ

ሾଵିொషభሺ௉௙ሻ√∅
െ 1                     (9) 

where, ∅ ൌ ቀ
ఙ෥ೢ 

మ

ఙೢ 
మ ቁ: 

As with hypothesis under H0, noise can be calculated in 
practice using noise-only samples. When K is the total 
samples that contain simply noise, then ∅ can be stated as: 

⇒ 𝑄 ൌ ටሺேା௄ሻ

ே௄
                                     (10) 

In Energy Detector (ED)-based spectrum sensing, the 
number of samples and the threshold value represent the 
two most critical design parameters. These factors directly 
influence the detector’s performance by affecting the noise 
variance estimation and the achievable Signal-to-Noise 
Ratio (SNR). In conventional ED implementations, 
particularly under low-SNR conditions, an infinite number 
of samples would theoretically be required to achieve the 
desired probability of detection (𝑃ௗ ) and probability of 
false alarm (𝑃௙,) for a fixed threshold value. Consequently, 
determining an optimal threshold necessitates highly 
precise noise variance estimation, which, if inaccurate, 
may lead to an increased false alarm rate. A major 
limitation of energy-based detection techniques lies in 
their reduced reliability under low-SNR regimes with 
uncertain noise variance. Specifically: 1). Spectral 
Resolution Trade-off: The use of Fast Fourier Transform 
(FFT)-based implementations demands a large number of 
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samples to achieve finer frequency resolution, which in 
turn reduces temporal resolution. 2). Stochastic Signal 
Characteristics: The inherently random nature of the 
received signal, coupled with uncertainties in threshold 
selection, degrades detection performance, particularly in 
low-SNR scenarios. 3). Complexity–Performance Balance: 
While probability-based ED schemes can achieve near-
optimal performance with relatively low computational 
complexity, they often require extensive training 
procedures, thereby limiting practical applicability. 

These limitations highlight the fundamental challenges 
associated with ED-based spectrum sensing, particularly 
in environments characterized by low SNR and 
unpredictable noise variance, and emphasize the need for 
more robust detection strategies in cognitive radio 
networks. 

IV.  METHODOLOGY 

Spectrum interpolation achieves optimal performance 
when the input signal is windowed prior to Fast Fourier 
Transform (FFT) computation. The application of 
windowing functions-such as Gaussian, Blackman, and 
Hanning-enhances the interpolation accuracy by reducing 
spectral leakage. In particular, combining a Gaussian 
interpolation scheme with a Gaussian window has been 
shown to yield significant improvements in spectral 
estimation accuracy. The standard procedure involves 
generating 𝑁 windowing coefficients and multiplying 
them with the FFT input samples. The application of a 
window function can also be interpreted as a form of signal 
segmentation, wherein a continuous signal is divided into 
smaller segments, each representing a localized portion of 
the original signal. Signal segmentation, however, poses a 
fundamental challenge: the accurate determination of 
segment boundaries. Inefficient segmentation often leads 
to distortion in the time-frequency representation, thereby 
limiting the resolution of evolved Time–Frequency 
Distributions (TFDs). A persistent drawback of most TFD 
approaches is the inherent trade-off between time and 
frequency resolution. Inadequate resolution may cause the 
loss of critical spectral components, which directly reduces 
the probability of detection (𝑃ௗ). This issue is particularly 
pronounced under low Signal-to-Noise Ratio (SNR) 
conditions, where missing spectral features further 
degrade detection reliability. 

A.  Specific Problems Addressed 

 Noise and Signal Irregularities: Conventional 
segmentation methods often exhibit limited robustness 
in the presence of noise and irregular signal 
characteristics. These limitations result in reduced 
accuracy and unreliable performance in practical 
scenarios. Therefore, a smooth and adaptable 
approximation framework is required to effectively 
mitigate noise effects and accommodate irregularities 
in the signal structure. 

 Inefficiencies in Frequency Domain Transformation: 
The direct application of the Fast Fourier Transform 
(FFT) to noisy signals frequently introduces spectral 
leakage, thereby obscuring relevant frequency 

components and degrading feature extraction quality. 
To address this, appropriate pre-processing techniques 
are essential to suppress noise, enhance the visibility of 
significant spectral features, and ensure a more reliable 
frequency-domain representation. 

 Challenges in Complex Pattern Recognition: Manual 
feature extraction from FFT spectra is often inadequate 
for capturing intricate or non-linear signal patterns. 
Such limitations hinder the classification performance 
in tasks requiring high sensitivity to subtle variations. 
Consequently, an automated and efficient feature 
extraction approach is necessary to improve pattern 
recognition capabilities and enhance overall 
classification accuracy. 

 Limitations of Traditional Energy Detection: Classical 
energy detection methods are highly susceptible to 
false alarms and missed detections due to noise 
fluctuations and signal irregularities. This reduces their 
reliability in accurately identifying the presence or 
absence of signals based on energy patterns. A more 
robust detection mechanism is therefore needed to 
provide consistent performance under adverse channel 
conditions. 

B. Proposed Solution 

This work addresses these problems through the 
following steps: 
 Signal Segmentation Using Bernstein Polynomials: 
 Employing Bernstein polynomials for signal 

segmentation provides smooth and flexible 
approximations, effectively handling noise and 
irregularities. 

 FFT and Pre-processing: Transforming the segmented 
signals to the frequency domain using FFT and 
applying pre-processing techniques (e.g., logarithmic 
scaling and smoothing) to enhance spectral features 
and reduce noise 

o CNN for Feature Extraction: Utilizing a CNN to 
automatically extract meaningful features from the pre-
processed FFT output, leveraging the CNN’s ability to 
learn complex patterns and improve classification 
accuracy. 

  Energy Detection: Performing energy detection on the 
classified segments to accurately identify the presence 
or absence of signals based on predefined energy 
thresholds, ensuring reliable spectrum sensing. 

This study proposes an integrated framework for signal 
segmentation and spectrum sensing, as illustrated in Fig. 2, 
which combines Bernstein polynomial approximation, 
Fast Fourier Transform (FFT), Convolutional Neural 
Networks (CNN), and energy detection techniques. The 
methodology begins with signal segmentation using 
Bernstein polynomials, which offer smooth and adaptable 
approximations, thereby reducing the adverse effects of 
noise and signal irregularities. Following segmentation, 
each signal segment is transformed into the frequency 
domain through the FFT. 

To ensure reliable spectral representation, the FFT 
output undergoes a pre-processing stage that employs 
logarithmic scaling and smoothing techniques. This step 

Journal of Communications, vol. 21, no. 1, 2026

38



enhances salient spectral features while suppressing noise, 
thus facilitating more effective feature extraction. The pre-
processed spectral data are then analyzed by a CNN, which 
automatically extracts discriminative features and 
identifies complex spectral patterns. The CNN’s ability to 
learn hierarchical representations significantly improves 
classification performance compared to manual feature 
engineering approaches. Subsequent to feature extraction, 
energy detection is applied to the classified segments. The 
energy of each segment is computed, and a threshold-
based decision rule is employed: if the calculated energy 
exceeds a predefined threshold, the presence of a signal is 
confirmed; otherwise, the segment is classified as signal-
absent. 

 

 

Fig. 2. Block diagram of proposed comprehensive approach. 

By integrating Bernstein polynomial-based 
segmentation, FFT transformation, CNN-driven feature 
extraction, and robust energy detection, the proposed 
framework enhances both the accuracy and reliability of 
spectrum sensing. This holistic approach effectively 
addresses challenges posed by noise, spectral leakage, and 
complex pattern recognition, thereby enabling precise 
segmentation and efficient detection of energy patterns. 
The results demonstrate that the methodology offers a 
practical and resilient solution for spectrum sensing in 
modern communication systems. 

Notations and variables used in text and equations are 
described below 
 x[n]: Discrete-time received baseband samples.  
 x(t): Continuous-time baseband signal. 
 Bm(t)= ∑ 𝐵௜.௠ ሺ𝑡ሻ ൈ 𝑐௜ 

ௗିଵ
௜ୀ଴ : Bernstein polynomial 

approximation of order m, 
 X[k]: kth FFT bin of the signal. 
 |∣X[k]∣: Magnitude spectrum. 
 ∣X[k]∣2: Power spectrum. 
 T: Energy detection statistic. 
 λ: Decision threshold, set from a desired false-alarm 

probability 𝑃௙. 
 H0: Hypothesis — channel is idle (no signal). 
 H1: Hypothesis — channel is occupied (signal present) 

signal segmentation. 
Signal segmentation refers to the process of dividing a 

continuous signal into smaller segments, each of which 
captures distinct characteristics of the original signal. A 
central challenge in this process lies in determining 

appropriate segment boundaries that accurately reflect the 
underlying structure and dynamics of the signal. 
Conventional segmentation approaches often struggle to 
detect abrupt changes or rapid transitions, thereby limiting 
their ability to represent local variations effectively. To 
address this limitation, the present work employs a 
modified Fractional Bézier-Bernstein Polynomial (FBBP) 
method for signal segmentation. In this approach, the 
signal is modeled as a piecewise polynomial function, 
where each segment is represented by a fractional Bézier 
curve. A Bézier curve, in general, is a parametric curve 
defined by a set of control points that govern its curvature 
and overall shape. Within the proposed segmentation 
framework, points of inflection in the signal are identified 
and utilized as control points. This enables the method to 
more precisely capture local structural variations and 
dynamic behaviors. A point of inflection corresponds to a 
location where the curvature of the curve changes direction. 
Identifying such points involves detecting critical points in 
the signal and evaluating whether the concavity changes at 
those locations. By incorporating inflection points as 
control parameters, the FBBP-based segmentation 
technique provides a more accurate and adaptive 
representation of signal dynamics, particularly in regions 
characterized by sharp transitions or irregular patterns. 

C. Approximating a Non-stationary Signal Using Bezier 
Curve 

The input consists of an oscillatory signal represented 
by the fractional Bezier Bernstein curve with degree d and 
data points p0, p1, ..., pn−1. A Fractional Bezier curve 
approximation of the signal that has segmentation and 
control points at points of inflection is the output. The 
traditional Bernstein-Bezier polynomial is extended to 
non-integer degree values by the fractional Bernstein-
Bezier polynomial. The fractional Bernstein Bezier 
polynomial of degree d and order α is defined as: 

⇒ 𝐵ௗ,௔,௜/ே ൌ ෍ ൬
𝑑
𝑘

൰
ɼሺ𝑎 ൅ 1ሻ

ɼሺ𝑎 െ 𝑘 ൅ 1ሻɼሺ𝑘 ൅ 𝑎 െ 𝑑ሻ

ௗ

௞ୀ଴

ሺ
𝑖
𝑁

ሻ௞ሺ1 െ
𝑖
𝑁

ሻௗି௞ 

 (11) 

d is polynomial degree, α is polynomial order, i is index 
ranging from 0 to N and N is number of discrete parameter 
value. The fractional parameter α of the Bezier polynomial 
in Eq. (1) is between 0 and 1. When α is an integer, the 
fractional Bernstein-Bezier polynomial simplifies to the 
classical Bernstein-Bezier polynomial. When working 
with data that is not consistently spaced or when more 
precise control over the curve’s shape is needed, it is very 
helpful. The polynomial for non-integer value of α is 
generalized using the gamma function; with the binomial 
coefficient ൫ௗ

௞൯ added. The contribution of a control point 
to the polynomial evaluation at the discrete parameter 

value 
௜

ே
 is represented by each term in the summation. The 

formula computes the index 
௜

ே
 fractional Bezier Bernstein 

basis function, which establishes the ith control point's 
influence on the overall curve. Ultimately, create a 
fractional Bezier curve that roughly represents the non-
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stationary signal by adding together these basis functions 
for each control point.  

In order to use the Fractional Bezier curve to 
approximate the non-stationary signal, first determine the 
Bernstein polynomial basis functions. For t in the interval 
[0, 1], the Bernstein polynomial basis function bi, d(t) is 
given as:  

⇒ 𝑏௜,ௗሺ𝑡ሻ ൌ ൫ௗ
௜ ൯𝑡௜ሺ1 െ 𝑡ሻௗି௜                               (12) 

where i and t are in the range [0, d] and [0, 1], respectively. 
By adding up the control points and adjusting for weight 
using the Bernstein polynomial basis functions, which are 
as follows: the first Bezier curve Bd(t) is created.  

⇒ 𝐵ௗሺ𝑡ሻ ൌ ∑ 𝑏௜,ௗ ሺ𝑡ሻ ൈ 𝑐௜ 
ௗିଵ
௜ୀ଴                                (13) 

Points of inflexion are regarded as control points, 
therefore determining the values of ‘t’ at which the 2nd 
derivative of Bd(t) changes sign will yield the points of 
inflexion x0, x1,..., xm−1. 

⇒
ௗమ஻೏ሺ௧ሻ

ௗ௧మ   ൌ ∑ ௗమௗ೔,್ሺ௧ሻ

ௗ௧మ
ௗିଶ
௜ୀ଴ ൈ 𝑐௜                         (14) 

Utilizing the acquired points of inflection, establish the 
control points. In a similar manner, by mapping ci = Bd(xi) 
for i in [0, m−1], the control points for the Bezier curve are 
determined as the locations of intersection. Following 
basis function calculation, Using the Fractional Bezier 
Bernstein polynomial as well as the control points ci = pi, 
for i ∈ [0, d−1], construct the Fractional Bezier curve Bd(t). 
the Bernstein polynomial with fractional Bezier is given as 

⇒ 𝐵ௗሺ𝑡ሻ ൌ ∑ 𝐵
ௗ,௔,

೔
ಿ

ሺ𝑡ሻ ൈ 𝑐௜                           
ௗିଵ
௜ୀ଴  (15) 

Lastly, the Fractional Bezier curve may be evaluated as 
follows to approximate the non-stationary signal at data 
point pi:  

⇒ 𝐵ௗ ቀ
௜

୒
ቁ ൌ ∑ ቂ∑ ൫ௗ

௞൯
ɼሺ௔ାଵሻ

ɼሺ௔ି௞ାଵሻɼሺ௞ା௔ିௗሻ
ௗ
௞ୀ଴ ሺ

௜

ே
ሻ௞ሺ1 െௗିଵ

௜ୀ଴

௜

ே
ሻௗି௞ቃ ൈ 𝑐௜                                          (16)    

Determine the error that exists between the points on the 

Fractional Bezier curve Bd ቀ
௜

୒
ቁand the original data points 

pi. One may quantify the error by use the squared 
Euclidean distance is given by. 

 ⇒ 𝑒 ൌ ∑ ቚ𝑝௜െ𝐵ௗ ቀ
௜

ே
ቁቚ

ଶ
௡ିଵ
௜ୀ଴                               (17)                                      

 𝑝௜: Original data point (sample of the non-stationary 
signal) at index i. 

 𝐵ௗ ቀ
௜

୒
ቁ : Value of the frctional Bézier curve 

approximation of the signal at normalized position ቀ
௜

୒
ቁ. 

 𝑑: Degree of the Bézier curve (order of approximation). 
 𝑖: Index of the data/sample point, where i=0, 1, …, n−1i 

= 0, 1, dots, n-1, i=0,1,…, n−1. 
 𝑁 : Normalization constant (usually equal to the 

number of points or maximum index), used to map 
discrete index iii into the unit interval [0, 1]. 

 𝑐௜ : Control point coefficients (weights) for the Bézier 
curve representation. These are estimated during curve 
fitting. 

 ൫ௗ
௜ ൯ ൌ

ௗ!

௞!ሺௗି௞ሻ!
: Binomial coefficient.  

 𝑎 : Fractional parameter (controls the "fractionality" or 
flexibility of the curve, extending standard Bézier 
formulation). 

 Γሺ⋅ሻ : Gamma function, generalizing factorial 
(i.e.,Γሺ𝑛ሻ ൌ ሺ𝑛 െ 1ሻ! ). 

 𝑛: Total number of original data points in the signal. 
 𝑒 : Total squared Euclidean error (quantifies 

approximation accuracy). 
Using a least square fitting method, modify the control 

points (ci) in the fractional Bezier curve Bd(t) to minimize 
the error ‘e’. Fig. 3 demonstrates how the fractional 
Bernstein approximation function is used to segment and 
approximate the synthetic signal x(t). Within certain time 
periods, the signal varies with three unique multiple 
components. Eq. (14) is utilized to identify the points of 
inflection linked to these numerous frequency contents. 
Shown graphically on the approximate polynomial Bd(t) 
in Fig. 3. These points of inflection are used as control 
points for each instance (i/N) in the approximation Bezier 
curve given by Eq. (16) to get the segmented signal. 

 

 
Fig. 3. Segmentation of signal using fractional Bernstein Bezier curve 

approximation. 

D.  Fast Fourier Transform (FFT)  

Following signal approximation, the Fast Fourier 
Transform (FFT) is applied to evaluate the frequency-
domain characteristics of the signal. Both the Bernstein 
polynomial framework and the FFT play distinct yet 
complementary roles in spectrum sensing, particularly in 
the context of energy detection. The FFT decomposes the 
time-domain signal into its constituent frequency 
components, thereby enabling the estimation of power 
levels across different frequency bands. This information 
is essential for determining whether a particular frequency 
band is occupied or vacant. Once the spectral components 
and their corresponding power levels are obtained through 
the FFT, Bernstein’s inequality can be employed to further 
enhance the decision-making process. Specifically, 
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Bernstein’s inequality provides probabilistic bounds that 
allow for the estimation of detection likelihood under 
noisy conditions. By quantifying the uncertainty 
associated with signal presence in the frequency spectrum, 
it contributes to more robust and reliable detection 
outcomes. Thus, while the FFT serves as a tool for 
transforming and analyzing the spectral content of signals, 
Bernstein’s inequality supports statistical evaluation by 
strengthening detection reliability in noise-prone 
environments. Together, these methods form a 
complementary framework that improves the accuracy of 
energy detection-based spectrum sensing. 
Let Bd (tn) be the discrete-time signal representation, where 
t n is the n-th sample point and 𝐵𝑑 (𝑡𝑛) is the discrete-time 
signal. The discrete signal has the following expression: 

⇒ 𝐵ௗሺ𝑡ሻ ൌ ∑ 𝐵
ௗ,௔,

೔
ಿ

ሺ𝑡௡ሻ ൈ 𝑐௜
ௗିଵ
௜ୀ଴                        (18)             

where 𝐵ௗ,௔,௜/ே ሺ𝑡௡ሻ  the Bernstein basis polynomial with 
fractional Bézier parameters.𝑐௜ are the coefficients. The 
FFT of the signal Bd (𝑡௡ሻ is denoted by X(k), where k is the 
frequency bin index. The X(k) represent the FFT of the 
signal 𝐵𝑑(𝑡𝑛) where k is the frequency bin index. 

⇒ 𝑋ሺ𝑘ሻ ൌ ∑ 𝐵ௗሺ𝑡௡ሻேିଵ
௡ୀ଴ 𝑒ି௝

మೖഏ೙
ಿ                        (19) 

for k=0, 1, 2, …, N-1. Substitute 𝐵ௗሺ𝑡௡ሻ   into above 
equation. 

⇒ 𝑋ሺ𝑘ሻ ൌ ∑ ൬∑ 𝐵
ௗ,௔,

೔
ಿ

ሺ𝑡௡ሻ ൈ 𝑐௜ 
ௗିଵ
௜ୀ଴ ൰ேିଵ

௡ୀ଴ 𝑒ି௝
మೖഏ೙

ಿ         (20) 

⇒ 𝑋ሺ𝑘ሻ ൌ ∑ ∗ 𝑐௜ ൬∑ 𝐵
ௗ,௔,

೔
ಿ

ሺ𝑡௡ሻேିଵ
௡ୀ଴ ൰ௗିଵ 

௜ୀ଴ 𝑒ି௝
మೖഏ೙

ಿ          (21) 

The inner sum can be defined as 𝑋𝑖(𝑘), signifying the 
input of the i-th Bernstein polynomial to the FFT: 

⇒ 𝑋௜ሺ𝑘ሻ ൌ ∑ 𝐵
ௗ,௔,

೔
ಿ

ሺ𝑡௡ሻேିଵ
௡ୀ଴ 𝑒ି௝

మೖഏ೙
ಿ                      (22) 

Thus, the X(k) can represent as:  

⇒ 𝑋ሺ𝑘ሻ ൌ ∑ ൈ 𝑐௜ 
ௗିଵ 
௜ୀ଴ ൈ 𝑋௜ሺ𝑘ሻ                      (23) 

The Bernstein Polynomial Approximation purpose is 
Smooth segmentation of the time-domain signal before 
FFT to reduce noise-induced fluctuations in energy 
detection. some of advantages of Bernstein Polynomial 
Approximation are: 1). Shape-preserving, 2). Low 
variance, 3). Numerical stability,4. Robust to low SNR. 
The Challenges in real-world systems are 1). 
Computational cost increases with polynomial order mmm 
if implemented naively, 2). Requires tuning mmm for 
trade-off between smoothing and detail retention, 3). 
Hardware implementation may need fixed-point 
approximations for speed. 

E. Convolution Neural Network 

In low-SNR scenarios, typically encountered in 
cognitive radio and dynamic spectrum access systems, two 
major challenges degrade the performance of traditional 
energy detection, 1). Noise Uncertainty, 2). Loss of 
Discriminative Features. To address these limitations, a 
Convolutional Neural Network (CNN) is incorporated in 
the proposed sensing framework. Convolutional Neural 

Network (CNN) addresses these limitations by: 1). Feature 
Learning Beyond Energy. 2). Pre-trained Knowledge for 
Noise-Invariant Detection. 3). Nonlinear Decision 
Boundaries. 

In energy detection-based spectrum sensing, a 
Convolutional Neural Network (CNN) may be utilized to 
accurately determine whether or not a frequency band is 
occupied after calculating the signal's FFT. This is a 
suggested CNN architecture designed specifically for this 
job. In order to minimize dimensionality, pooling layers 
are added after a few convolutional layers to aid in the 
extraction of significant features from the FFT output. 
More intricate patterns are captured with the aid of the 
deeper convolutional layers. The output layer and fully 
linked layers ultimately yield the final categorization 
determination. With the ability to be adjusted depending 
on the particulars of the dataset, this model is made to 
handle the frequency-domain representation of the signal 
for spectrum sensing applications in an effective manner. 
Using the frequency-domain representation of signals 
acquired by the Fast Fourier Transform (FFT), a 
Convolutional Neural Network (CNN) architecture suited 
for energy detection-based spectrum sensing is proposed 
in this paper. The size of the FFT result, which is usually 
shown as a one-dimensional array, serves as the CNN’s 
input. The first two 1D convolutional layers in the 
architecture include 32 and 64 filters, a kernel size of 3, 
and ReLU activation functions. A max-pooling layer with 
a pool size of 2 comes next. This is followed by another 
max-pooling layer for additional dimensionality reduction 
and deeper convolutional layers with 128 and 256 filters 
while keeping the same kernel size and activation function. 
After these layers' outputs are flattened, they are passed 
through fully linked layers that use ReLU activation and 
have 256 and 128 units, respectively. One neuron with a 
sigmoid activation function makes up the final output layer. 
Its purpose is to do binary classification, which tells us 
whether or not a certain frequency band is occupied. The 
model is assembled utilizing the Adam optimizer with 
binary cross-entropy as the loss function. Accuracy, 
precision, and recall metrics are used for assessment. This 
architecture offers a reliable solution for spectrum sensing 
in cognitive radio networks since it is especially designed 
to collect and analyze spectral data quickly. 

Approximation segmentation and CNN Method (see 
Algorithm 1). 

 
Algorithm 1: 

Inputs: 
 x(t): Received signal over time t 
 n: Degree of the Bernstein polynomial 
 T: Observation period 
 θ: Detection threshold 
 NFFT: Number of FFT points 
 CNN (⋅): Pre-trained Convolutional Neural 

Network model 
Output: 

 Decision D ∈{0,1}: 0 indicates the spectrum band 
is vacant, 1 indicates it is occupied. 

Step 1: Compute the energy signal E(t) over the 
observation period TTT. 

Step 2: Normalize the time variable t to the interval [0, 1]. 

𝑡ᇱ ൌ
௧ି௧೘೔೙

௧೘ೌೣି௧೘೔೙
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Fig. 4. Block diagram of proposed bernstein. 

 
where 𝑡௠௔௫  and  𝑡௠௜௡  are the maximum and minimum 
time values in the observation period. 

Step 3: Apply Bernstein polynomial approximation to 
the energy signal 𝐸ሺ𝑡ሻ obtain a smoothed version 𝐵௡ሺ𝐸, t′ሻ. 

Step 4: Apply FFT to the Smoothed Energy Signal. 
𝑋஻ሺ𝑓ሻ ൌ 𝐹𝐹𝑇൫𝐵௡൫𝐸, 𝑡′൯, 𝑁ிி்൯.  
Step 5: Calculate the Power Spectral Density (PSD): 
𝐸஻ሺ𝑓ሻ ൌ |𝑋஻ሺ𝑓ሻ|ଶ Compute the power spectral density 

𝐸஻ሺ𝑓ሻ from the magnitude squared of the FFT result. 
Step 6: Normalize the approximated power spectral 

density 𝐸஻ሺ𝑓ሻ as required for CNN input. 
Step 7: Reshape the normalized power spectral density 

EB(f) into the format required by the CNN (e.g., 1D array 
or 2D matrix). 

Step 8: Extract Features Using CNN: Feed the power 
spectral density 𝐸஻ሺ𝑓ሻ  into the CNN to extract relevant 
features and obtain a decision score or probability. 

Step 9: Make Classification 

Decision:D=ቊ
1     𝑖𝑓 𝐶𝑁𝑁൫𝐸஻ሺ𝑓ሻ൯   ൒ Ɵ

  0      𝑖𝑓 𝐶𝑁𝑁൫𝐸஻ሺ𝑓ሻ൯ ൏ Ɵ  
 

Compare the CNN output to the detection threshold θ to 
determine if the spectrum band is occupied (1) or vacant 
(0). 

Step 10: Return the Final Decision: Output D, indicating 
whether the spectrum band is occupied (1) or vacant (0). 

F.  Cyclostationary Feature Detection for Spectrum 
Sensing 

By taking use of the periodicity present in the modulated 
signals, cyclisation feature identification is a spectrum 
sensing approach used in cognitive radio networks to 
identify the presence of Main Users (PU). This technique 
is based on the observation that most communication 
signals, because of their coding, multiplexing, and 
modulation techniques, display periodic statistical features 
like mean and autocorrelation, which give rise to 
cyclisation traits. There is periodic autocorrelation in 
modulated signals. The expression for the autocorrelation 
function is: 

⇒ 𝑅௫ሺ𝑡, 𝜏ሻ ൌ 𝐸ሾ𝑥ሺ𝑡ሻ𝑥∗ ሺ𝑡 െ 𝜏ሻሿ                  (24) 

where 𝑥∗ ሺ𝑡ሻ is the complex conjugate of 𝑥ሺ𝑡ሻ and τ is the 
time lag. If 𝑅௫ሺ𝑡, 𝜏ሻ is periodic with period T0, the signal 
x(t) is considered to be second-order cyclostationary. This 
is to be expressed as  

⇒ 𝑅௫ሺ𝑡, 𝜏ሻ ൌ 𝑅௫ሺ𝑡 ൅ 𝑇଴, 𝜏ሻ                                (25) 

The Fourier transform of the cyclic autocorrelation 
function with respect to the time lag τ is known as the 
Spectral Correlation Density (SCD). It displays the 
correlation between a signal’s spectral components at 
various cyclic frequencies 𝛼.  The SCD 𝑆௫ሺ𝑓, αሻ is given 
by: 

⇒ 𝑆௫ሺ𝑓, αሻ ൌ ׬ 𝑅௫
∝ ሺ𝜏ሻஶ

ିஶ 𝑒ି௝ଶగ௙ఛ𝑑𝜏            (26) 

 
Fig. 5. Spectrum of cyclisation features for primary user signal without 

noise. 

where f is the frequency and α is the cyclic frequency. The 
signal is represented in two dimensions by the SCD in both 
the frequency (f) and cyclic frequency (α) domains. To 
separate a modulated signal from noise, which usually 
lacks cyclisation characteristics, the SCD shows peaks at 
particular cyclic frequencies. Fig. 5 and Fig. 6 displays the 
cyclisation property of the signal sample sequence 
example. 
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Fig. 6. Spectrum of cyclisation features for primary user signal with 

noise. 
 

The spectral correlation density is examined by 
concentrating on the feature values primarily along the line 
corresponding to 𝛼 = 0 and 𝑓 = 0 in order to effectively 
convey cyclisation characteristics for spectrum sensing. 
The spectral correlation is sampled 64 times by setting the 
spectral frequency (f) and cyclic frequency (α) to zero. 
This yields two 64 × 1 cyclisation feature vectors, 𝐶y. S𝛼 
and 𝐶y.𝑆𝑓. The unique cyclic characteristics of the 
received signal are represented by these vectors. These 
cyclisation data are merged with energy and power 
spectrum features to generate a 64 × 4 feature matrix, 
which is then used to create a full feature set for spectrum 
sensing. 

G. Segmentation of Signal Using Windowing 

 

Fig. 7. Hamming window function and its spectrum. 

 
Fig. 8. Triangular window function and its spectrum. 

 
However, because FFT processes the received signal 

arbitrarily, there are certain concerns with energy leakage 
surrounding the real signal due to the discontinuity in its 
extraction. Using windowing techniques is a widely 
recommended strategy to reduce energy leaks. How much 
of a suppressive impact it has depends on the particular 
window function that is used. This approach involves 
multiplying the received time-domain signal by the 

assigned window function. Concurrently, the signal that is 
ready for FFT is presented via the window processing 
technique. When a signal is segmented using windowing, 
a window function, such as a rectangular, Hamming, 
Hanning, or Blackman window, is applied to divide the 
signal into smaller, overlapping segments. Let the whole 
continuous-time signal be represented by x(t). By applying 
a window function w(t) of length N samples to this signal, 
a windowing approach of signal segmentation is 
performed. One definition for the segmented signal xw(t) is: 

  
xw(t)=x(t)×w(t)                                 (27) 

 
Some examples of windowing functions and associated 

spectra are shown in Figs. 7 and 8. 

H. Neural Network Architectures and Training Settings 

To promote transparency and reproducibility, the 
architectures of both the Convolutional Neural Network 
(CNN) and the Linear Neural Network (Linear Net) are 
explicitly documented. The structural specifications of 
each model are summarized in Table I and Table II, 
respectively, with accompanying explanatory notes 
provided to clarify their design choices and functional 
roles within the proposed framework. 

 
TABLE I. CNN ARCHITECTURE 

Layer Parameters Activation 
Input (1 × 64 × 2) − 

Convolution 1 4 filters, kernel=2×2, stride=1, pad=1 − 
Max Pooling 1 Kernel=2×2, stride=1 − 
Convolution 2 8 filters, kernel=2×2, stride=2, pad=1 − 
Max Pooling 2 Kernel=2×2, stride=1 − 

Fully Connected 1 128 neurons Sigmoid 
Fully Connected 2 84 neurons Sigmoid 
Fully Connected 3 48 neurons Sigmoid 

Output Layer 2 neurons (binary classification) SoftMax 

 
The Convolutional Neural Network (CNN), 

summarized in Table I, is designed to extract hierarchical 
spatial features from two-dimensional input signals. The 
convolutional layers are responsible for capturing 
localized patterns within the data, while the fully 
connected layers integrate these features into higher-level 
representations suitable for decision-making. Nonlinearity 
is introduced through the use of sigmoid activation 
functions, enabling the network to model complex 
relationships within the input. Finally, a SoftMax layer is 
employed at the output stage to provide probabilistic 
classification, allowing the input signals to be categorized 
into two distinct classes. 

The Linear Neural Network (LinearNet), summarized in 
Table II, adopts a conventional feed-forward architecture. 
In this design, the extracted signal features are first 
flattened into a one-dimensional vector, which is then 
processed through successive fully connected layers to 
learn class boundaries. Although computationally efficient 
and structurally simple, the absence of convolutional 
layers limits its capacity to capture complex local patterns 
within the data. Consequently, LinearNet exhibits reduced 
representational power compared to the CNN, particularly 
in tasks requiring hierarchical feature extraction. 
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TABLE II. LINEARNET ARCHITECTURE 

Layer Parameters Activation 
Input Flattened (64 × 2) = 128 − 

Fully Connected 1 64 neurons Sigmoid 

Fully Connected 2 32 neurons Sigmoid 

Fully Connected 3 16 neurons Sigmoid 

Output Layer 2 neurons SoftMax 

 

I. Training Configuration (Common to Both Models) 

To ensure fairness, both models were trained under 
similar conditions: 
 Optimizer: SGD with momentum (0.9). 
 Learning Rate: 0.01, decayed by StepLR (× 0.1 

every 20 epochs). 
 Batch Size: 16 (LinearNet), 32 (CNN). 
 Epochs: 15 for LinearNet, 50 for CNN. 
 Loss Function: CrossEntropyLoss (CNN), MSE 

with one-hot encoding (LinearNet). 
 Data Split: Train 60%, Validation 20%, Test 20%. 
 These standardized hyperparameters provide a 

reliable basis for comparing the two architectures. 

J. Dataset Split and Parameter Tuning 

The dataset was partitioned into three subsets: 60% for 
training, 20% for validation, and 20% for testing. This 
division ensured an adequate volume of data for model 
training while preserving independent validation and test 
sets for unbiased performance assessment. 
Hyperparameters, including the learning rate and batch 
size, were selected empirically based on validation 
outcomes to optimize model performance. While the CNN 
required a deeper configuration to achieve higher 
classification accuracy, the LinearNet demonstrated faster 
convergence but exhibited performance saturation at 
comparatively lower accuracy levels. 

K.  Convergence and Computational Complexity 

Table III indicates the comparison the training duration, 
parameter count, and inference latency of both models 
while the Convolutional Neural Network (CNN) incurs 
higher computational demands during the training phase, 
it demonstrates superior detection accuracy, rendering it 
more appropriate for applications where reliability is of 
paramount importance. In contrast, the LinearNet exhibits 
faster training times and reduced computational overhead, 
making it a more suitable choice for lightweight or 
resource-constrained environments. 

 
TABLE III. CONVERGENCE AND COMPLEXITY COMPARISON 

Model 
Training Time 

(50 epochs) 
Parameters 

Inference Latency 
(per sample) 

CNN 
−25 seconds 

(GPU) 
−32,000 

1.8 ms (GPU), 6.2 
ms (CPU) 

LinearNet 
−10 seconds 

(GPU) 
−10,000 

1.1 ms (GPU), 4.8 
ms (CPU) 

L.  Statistical Analysis 

To address variability, each experiment was repeated 
five times with different random seeds. The averaged 
performance across runs is summarized in Table IV. 

TABLE IV. STATISTICAL RESULTS (MEAN ± STANDARD DEVIATION) 

Model 
Validation 
Accuracy 

Test 
Accuracy 

𝑷𝒅 
(±SD) 

𝑷𝒇 
(±SD) 

CNN 91.3% ± 1.2% 
90.6% ± 

1.5% 
0.942 ± 

0.01 
0.084 ± 
0.008 

LinearNet 85.7% ± 1.6% 
84.9% ± 

1.8% 
0.902 ± 

0.02 
0.116 ± 
0.010 

 
As presented in Table IV, the Convolutional Neural 

Network (CNN) consistently outperforms the LinearNet 
across multiple trials, achieving a higher probability of 
detection (Pd) and a lower probability of false alarm (Pf). 
Moreover, the relatively smaller standard deviations 
highlight the stability and reliability of the CNN, thereby 
reinforcing its robustness in noisy environments. 

V.  RESULTS 

The dataset preparation for the network’s training is 
involved, two types of band-pass modulated signals—
QPSK and 8PSK—with a carrier frequency of 10 kHz are 
simulated in MATLAB. A raised cosine filter with a roll-
off factor of 0.5 is utilized as the pulse shaping filter. The 
signal travels across a Rayleigh fading channel with many 
paths. The delays vector is [0.001 s, 0 s]. It is assumed that 
the noise is Gaussian white noise. The signal is configured 
to while it travels across the AWGN channel, the SNR 
drops from -20 to 5. After running the received signal via 
the fraction Bernstein approximation, the spectral 
component FFT is found. Spectral components are where 
the features are taken from. After Bernstein approximation 
and before FFT, the received signal is sampled 1280 times 
after going through the AWGN and Rayleigh channels. 
The spectral components are then put into a feature 
extractor to create feature matrices. “Signal 0” and “signal 
1” are the two types included in the train dataset. Only the 
feature matrixes pertaining to noise samples are contained 
in “signal 0,” whereas the feature matrixes related to 
signals, comprising main signal and noise, are contained in 
“signal 1.” There are around 5000 data points in each sort 
of signal. The test dataset is used to evaluate the 
performance of the spectrum sensing model. The model’s 
performance may be assessed using two parameters: 
probability of detection (𝑃ௗ) and probability of false alarm 
( 𝑃௙ ). For QPSK and 8PSK signals, the probability of 
detection (𝑃ௗ) is computed for each test signal at different 
SNRs using simply CNN, CNN with windowing, and 
CNN with fraction Bernstein approximation. The various 
plots for the aforementioned are displayed in Fig. 9. The 
CNN+WD is represented as CNN with window 
segmentation and CNN+B as CNN with fraction Bernstein 
approximation segmentation. The probability of detection 
(𝑃ௗ) is found to be nearly constant across all techniques at 
high SNRs (−5 dB to 5 dB), with 100% of 𝑃ௗ   being 
attained. At Low SNR (−10 dB), the QPSK received signal 
with Bernstein approximation segmentation and CNN 
features gives better 𝑃ௗ  nearly about 96% of 𝑃ௗ  compared 
with QPSK with CNN.  Overall, it appears that the greatest 
notable gain in spectrum sensing performance for both 
QPSK and PSK signals comes from combining CNN with 
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Bernstein polynomial approximation. It is discovered that 
the model performs pretty poorly for both signal types 
when the SNR is low (<15 dB). As shown in Fig. 9  and 
Fig. 10 shows SNR increases cause 𝑃𝑑 to rise and 𝑃𝑓 to 
fall. 𝑃𝑑 will be greater than 80% and 𝑃𝑓 will be less than 
10% when the SNR is greater than −10. 

 

Fig. 9. Probability of detection (𝑃ௗ) performance comparison between 
QPSK and 8-PSK in terms of CNN, CNN+ window segment and CNN 
+Bernstein approximation segmentation. 

 

Fig. 10. Probability of False Alarm ( 𝑃௙ ) performance comparison 
between QPSK and 8-PSK in terms of CNN, CNN+ window segment and 
CNN +Bernstein approximation segmentation. 

The probability of detection (𝑃ௗ ) and probability of 
False Alarm (𝑃௙) when SNR rises is seen in Fig. 11 and 
Fig. 12. These provide an analysis of the detection 
performance of several signal types, including cyclisation 
features, across a range of SNR situations. In comparison 
to cyclisation features, the state-of-the-art methods—such 
as CNN in conjunction with the Bernstein polynomial 
approximation—perform noticeably better at low SNR 
levels. It shows that for all investigated strategies; the 
detection probability approaches 100% at SNRs (above  
−5 dB). The combination of CNN features and QPSK 
signals with the Bernstein polynomial approximation 
maintains a higher 𝑃ௗ   (~96%) at lower SNRs (−10 dB) 
than cyclisation features. 𝑃ௗ   generally, rises with 
improved SNR, and better sophisticated techniques such 
as QPSK signals. Fig. 9 and Fig. 10 illustrate the detection 

performance in-case of 8PSK signal. The cyclisation curve 
demonstrates the extremely poor performance in both 
8PSK and QPSK signal cases, where the 𝑃ௗ  is around 50% 
between −15 and −10 dB SNR. The curves shown by 
proposed method (CNN+B) illustrate the more detection 
performance difference between QPSK and 8PSK 
modulations. When the system using CNN with Bernstein 
Approximation segments, the QPSK modulation achieves 
more than 20 % of 𝑃ௗ  compared to the 8PSK modulation 
between −15 and −10 dB SNR. 

Tables V and VI illustrate that at Low SNR Performance 
(−15 dB) the conventional Cyclisation Feature Detection 
technique demonstrates a detection rate of 48% at an SNR 
of −15 dB. While the CNN + Bernstein Approximation 
further boosts detection performance to 70%, the CNN + 
Windowing approach improves detection performance to 
58%. This illustrates the value of utilizing CNN and the 
Bernstein approximation, which together capture more 
discriminative signal characteristics even at extremely low 
SNR. At SNR Performance (−10 dB) the Cyclisation 
feature detection rate stays low at 47% at −10 dB SNR. 
CNN + Windowing, on the other hand, considerably 
increases to 74%, while CNN + Bernstein Approximation 
reaches an even greater detection rate of 96%. This 
noteworthy increase demonstrates how reliable the CNN + 
Bernstein Approximation method is. At −5 dB the Both 
CNN-based techniques exhibit extremely high detection 
rates at an SNR of -5 dB, with CNN + Windowing 
achieving 98% and CNN + Bernstein Approximation 
100%, respectively. While it still trails behind the CNN-
based methods, the Cyclisation Features method also 
becomes better, highlighting the supremacy of deep 
learning-based approaches under high SNR settings.  

 
TABLE V. DETECTION PERFORMANCE COMPARISON OF VARIOUS 

METHODS FOR QPSK SIGNAL 

SNR in 
dB 

Cyclisation 
Features 

CNN+ 
windowing 

CNN+ 
Bernstein 

approximation 

−15 48% 58% 70% 

−10 47% 74% 96% 

−5 86% 98% 100% 

 
The detection performance of QPSK and 8PSK signals 

was evaluated under Rayleigh fading and AWGN channels 
using three approaches: a baseline CNN, CNN with 
window segmentation (CNN+WD), and CNN with 
Bernstein polynomial approximation–based segmentation 
(CNN+B). The performance was assessed in terms of 
probability of detection (𝑃ௗ) and probability of false alarm 
(𝑃௙ ). As shown in Figs. 9 and 10, all methods achieve 
nearly perfect detection (𝑃ௗ  ≈ 100%) for SNR ≥ –5 dB, 
indicating that CNN-based approaches can reliably 
discriminate between signal and noise under moderate-to-
high SNR conditions. However, significant performance 
differences emerge at low SNRs. At –10 dB, CNN+B 
attains approximately 96% 𝑃ௗ  for QPSK, outperforming 
CNN+WD (74%) and cyclisation detection (47%). Even at 
–15 dB, CNN+B maintains 70% 𝑃ௗ   for QPSK, while 
CNN+WD and cyclisation detection decline to 58% and 
48%, respectively. A consistent modulation-dependent 
trend is observed: QPSK outperforms 8PSK across all 
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methods under low-SNR conditions. For instance, at –10 
dB, CNN+B achieves 96% 𝑃ௗ  for QPSK but only 82% for 
8PSK, reflecting the reduced noise robustness of 8PSK due 
to its smaller Euclidean distance between constellation 
points. 

TABLE VI.  DETECTION PERFORMANCE COMPARISON OF VARIOUS 

METHODS FOR 8PSK SIGNAL 

SNR in dB 
Cyclisation 

Features 
CNN+ 

windowing 

CNN+ 
Bernstein 

approximation 

−15 48% 56% 64% 

−10 47% 73% 82% 

−5 86% 97% 99% 

 

 
Fig. 11. Probability of detection (𝑃ௗ) performance comparison between 
cyclisation feature and CNN, CNN+ window segment, CNN +Bernstein 
approximation segmentation for QPSK signal case. 
 

 
Fig. 12. Probability of False Alarm ( 𝑃௙ ) performance comparison 
between cyclisation feature & CNN, CNN+ window segment, CNN 
+Bernstein approximation segmentation for QPSK Signal case. 
 

False alarm probability results, presented in Figs. 10−14, 
show a monotonic decrease with increasing SNR for all 
methods. CNN+B consistently exhibits the lowest 𝑃௙ , 
demonstrating that Bernstein polynomial approximation 
not only enhances 𝑃ௗ  but also suppresses false detections 
by producing more discriminative spectral features. At 
SNR ≥ –10 dB, CNN-based methods maintain 𝑃௙  below 
10%, while cyclisation detection records significantly 
higher false alarms. Figs. 11−14 further illustrate the 

limitations of cyclisation detection: at –15 to –10 dB, 𝑃ௗ  
remains at only 47–50% with elevated 𝑃௙, as noise masks 
cyclostationary periodicities. In contrast, CNN+B nearly 
doubles 𝑃ௗ   under the same conditions, highlighting the 
effectiveness of combining deep learning with Bernstein-
based spectral smoothing. 
 

 
Fig. 13. Probability of detection (𝑃ௗ) performance comparison between 
cyclostationary feature & CNN, CNN+ window segment, CNN 
+Bernstein approximation segmentation for 8-PSK signal case. 

 
Fig. 14. Probability of False Alarm ( 𝑃௙ ) performance comparison 
between cyclostationary feature & CNN, CNN+ window segment, CNN 
+Bernstein approximation segmentation for 8PSK Signal case. 

 
Overall, two key performance regimes emerge. In the 

high-SNR regime (≥ –5 dB), all methods achieve near-
perfect detection, with CNN-based models offering lower 
false alarm rates than cyclisation detection. In the low-
SNR regime (≤ –10 dB), CNN+B significantly 
outperforms both CNN+WD and cyclisation methods, 
particularly for QPSK, due to its superior spectral 
approximation and feature discriminability. Furthermore, 
QPSK consistently demonstrates higher noise tolerance 
than 8PSK, owing to its wider constellation spacing. 
Collectively, these results establish CNN+B as a robust 
and reliable spectrum sensing approach under adverse low-
SNR conditions, offering substantial improvements over 
both conventional cyclisation techniques and baseline 
CNN models. 

VI.  CONCLUSION 

This work integrates deep learning methods, namely 
Convolutional Neural Networks (CNNs), with Bernstein 
polynomial approximation to propose an optimum strategy 
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for energy detection-based spectrum sensing. The 
suggested approach makes use of the approximation 
characteristics of Bernstein polynomials to increase CNN 
feature extraction, which significantly boosts spectrum 
sensing detection performance, particularly in low Signal-
to-Noise Ratio (SNR) situations. The experimental results 
show that for both QPSK and 8PSK signals, CNN-based 
approaches perform better than classic Cyclisation Feature 
Detection and CNN with windowing techniques at all SNR 
levels. This is especially true for CNN paired with 
Bernstein approximation. Better feature extraction and 
higher detection rates are made possible by the CNN 
architecture's integration of the Bernstein approximation, 
particularly in low SNR situations. The experimental 
findings, supported by the statistical evidence in Table IV, 
demonstrate that the CNN achieves superior accuracy, 
higher probability of detection (𝑃ௗ), and lower probability 
of false alarm ( 𝑃௙ ) compared to the LinearNet This 
demonstrates how sophisticated deep learning methods 
may be used to improve cognitive radio networks’ 
spectrum sensing capabilities. In future, investigate 
advanced CNN architectures, such as residual connections 
and attention-based mechanisms, to further improve 
classification performance. 
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