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Abstract—Flooding, blackhole, and forwarding are Wireless 
Sensor Networks (WSNs) attack types that have a severe 
impact on the reliability of the network and the integrity of 
data. This paper reports on a detailed benchmarking and 
hybridization analysis of seven deep learning models 
regarding multiclass intrusion detection on the WSNBFSF 
dataset. Comparison is made of the Artificial Neural Network 
(ANN), Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), Long Short-Term Memory (LSTM), 
and their mixtures, CNN-RNN, CNN-LSTM, and RNN-
LSTM. The same experimental conditions were used to train 
all the models and make the evaluation fair. The 
experimental findings are indicative of the fact that the ANN 
has the highest performance with accuracy, precision, recall, 
and F1−Score of 99.81% in split validation and 99.89% in 5-
fold cross-validation, offering close to perfect discrimination 
of all attack types. The LSTM (98.27%) and RNN-LSTM 
(97.78%) memory augmented models also demonstrate a 
high ability to capture traffic time dependencies in WSNs, 
whereas the CNN-based models are efficient in spatial 
pattern extraction but slightly worse on fine-grained attack 
detection. Conversely, a standalone RNN has problems of 
vanishing gradients and thus gives an accuracy of 84.77 
percent. In summary, the results provided serve as a pointer 
to architecture-specific strengths, and they provide 
important information in designing a scalable, real-time, and 
resource-efficient deep learning-based intrusion detection 
system with the peculiarities of WSN environments. 
 
Keywords—wireless sensor networks, deep learning, flooding 
attack, blackhole attack,  forwarding attack, WSNBFSF 
dataset 

I.  INTRODUCTION 

Wireless Sensor Networks (WSNs) are an inexpensive 
and simple way for sensing devices to communicate with 
their environment. They are extensively utilized in many 
domains, including surveillance, industry, security, health, 
and the military. Because they lack specific routing 
protocols, WSN devices that run on limited-life batteries 
must be actively operated to avoid rapid battery depletion 
when in sleep mode, which can result in vampire attacks. 
To transfer data packets, WSNs need to install sensor 
nodes at various depths and use a routing mechanism. 
These devices are exposed to huge populations since they 
are lightweight, portable, and low-power [1−4]. The 
importance of WSNs for essential applications is growing, 
yet network intrusions and sensor failures present 
increasing risks to WSN security and dependability. But 
their use in open environments exposes them to cyber 
threats, compromising data integrity, confidentiality, and 
availability [5−7]. However, Large-scale WSNs are 
especially susceptible to environmental damage, 
cyberattacks, and physical manipulation since they have 
hundreds or thousands of sensor nodes. Conventional 
anomaly detection techniques have trouble adjusting to 
large-scale sensor deployments and changing conditions in 
the environment [8−10]. With the widespread usage of 
CNN and RNN for processing different kinds of data, deep 
learning has made considerable strides. When it comes to 
translation invariance, CNN is a feedforward neural 
network, and RNN is a time recurrent neural network that 
works well with time series data. Time series dependencies 
can be processed and predicted more accurately with the 
LSTM (Long and Short-Term Memory) RNN structure  
[11] .With the use of algorithms and learning models, 
Machine Learning (ML) optimizes the process by 
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gradually identifying patterns in data collection. It has 
been applied to several domains, such as speech 
recognition, bioinformatics [12−14], and WSNs. For the 
interpretation of datasets that the human brain is unable to 
process, machine learning is crucial. On the other side, 
machine learning algorithms can assist in the 
administration of IoT nodes in smart cities for uses such as 
building automation, garbage management, and traffic 
monitoring. However, bandwidth, energy consumption, 
coverage, and connectivity provide design issues for these 
networks. The unpredictability of data streams and the 
mobility of sensor nodes, which might result in changes in 
network architecture owing to dynamic changes in WSN 
environments, make machine learning essential for WSN 
applications [15, 16].  

The application of machine learning, especially 
anomaly detection, for reducing costs in the security 
industry is growing. This method has demonstrated 
potential in fields such as packet analysis, eliminating 
Denial-of-Service (DoS) attacks [17−19], and improving 
network availability. Security is crucial in some Wireless 
Sensor Networks (WSNs) that handle private information 
in potentially dangerous settings. Confidentiality, 
authenticity, integrity, and novelty of data are important 
security issues that require strong security protocols [17, 
20−22]. In intelligent cities, IoT functions like trash 
management, traffic monitoring, and healthcare can be 
managed by AI and machine learning. However, issues 
including web range, connectivity, power consumption, 
bandwidth needs, and infrastructure development are 
problems for WSN-based IoT. Because the sensor nodes 
in WSNs are autonomous and constrained by their 
capabilities, research focuses on enhancing network 
lifetime and quality of service [23]. These problems may 
be solved with the aid of ML techniques [24, 25]. However, 
Artificial Neural Networks (ANNs) with several layers are 
used in Deep Learning (DL), a subset of machine learning. 
Unlike conventional algorithms, its performance becomes 
better with more data entered. As a result of technological 
improvements that enable small training and deployment 
in gadgets like smartphones, DL has grown in popularity. 
It is difficult for statistical and traditional machine learning 
time series forecasting algorithms to derive information 
from nonlinear patterns and data. LSTMs, GRUs, RNNs, 
and 1D-CNNs are a few architectures that work well for 
learning from sequential data [26]. Fig. 1 shows the major 
WSN components. 

The purpose of this research is to use deep learning 
techniques, specifically Long Short-Term Memory 
(LSTM), Artificial Neural Networks (ANN), 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and a hybrid of each of them, to create 
an advanced detection system for WSNs attacks. The 
novelty is in combining these disparate architectures to 
improve temporal pattern recognition and feature 
extraction, leading to it being possible to accurately detect 
and categorize different kinds of attacks. The study aims 
to increase the reactivity to new threats by concentrating 
on real-time data processing capabilities, which would 
greatly improve the safety and reliability of WSNs. 

 
Fig. 1. WSN component [26]. 

The rest of this paper will be organized as follows. In 
Section II, the background literature is reviewed, and 
major gaps fueling this research are indicated. In Section 
III, the section dealing with the methodology details the 
WSNBFSF dataset, preprocessing, and DL classification 
algorithms. Section IV is a discussion of the findings. 
Lastly, the paper ended with Section V, which indicated 
the future work and conclusion. 

II.  RELATED WORKS 

Prior research has extensively explored WSNs attack 
detection using ML and DL, establishing foundational 
insights into binary classification (e.g., normal vs. 
malicious), while leaving critical gaps in multiclass attack 
classification. The most relevant studies of WSN attack 
detection using ML and DL will be discussed in this 
section.   

Using different Deep Learning techniques, the study 
investigates common WSN attack detection. The WSN 
Dataset and WSN-BFSF datasets are used to evaluate both 
soft and hard ensemble methods. Overall accuracy is 
increased by mixing forecasts from many models, 
according to the results. The accuracy of the hard ensemble 
technique was 99.967% on the WSN-DS dataset, whereas 
the soft ensemble technique was 98.12% [27]. By 
combining a hybrid CNN-LSTM with an attention 
mechanism, the suggested model in Ref. [28] enhanced 
feature extraction and pattern recognition, hence boosting 
IoT intrusion detection. Real-time feature selection 
optimization by the dynamic PSO algorithm improves 
classification precision and flexibility in response to 
changing threats. High accuracy rates of 98.73% with 
CNN, 99.87% with LSTM, 99.12% with CNN-LSTM, and 
98.88% with enhanced CNN-LSTM with attention are 
demonstrated by experimental assessments. 

Tolba [29] introduced a novel Intrusion Detection 
System (IDS) model that combines machine learning and 
deep learning methods for wireless sensor networks. The 
suggested hybrid model successfully captures the temporal 
correlations in the data by extracting features using an 
LSTM network. Its structure consists of a layer of dropouts 
for regularization, a dense layer, and an LSTM layer. To 
detect and categorize four different kinds of Denial of 
Service (DoS) attacks, blackhole, Grayhole, flooding, and 
scheduling, the study additionally combines LSTM with 
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Random Forest. With accuracy, precision, recall, 
F1−Score, and AUC scores of 0.996, 0.98, 0.98, 0.98, and 
0.99, respectively. Using a multi-criteria approach,  
Quayed et al. [24] suggested a framework to improve 
cybersecurity in Industry 4.0 WSNs. It employs deep 
learning and machine learning methods to detect and stop 
intrusions. Three models  Decision Tree, MLP, and 
Autoencoder—are used by the framework. While the MLP 
model achieves 99.52% accuracy, the Decision Tree model 
achieves 99.48% accuracy. The accuracy of the binary 
classification Autoencoder model is 91%. When compared 
to benchmark models like Random Forest and Logistic 
Regression, the suggested framework performed better.  

Altameemi et al. [30] used machine learning and deep 
learning technologies to offer a model-based cyberattack 
detection system. To determine attack types, it employs 
Recurrent Neural Network (RNN) techniques and feature 
reduction. After dimensional reduction and optimization, 
the system reaches 97% accuracy, which aids with routing 
protocol design and lowers the probability of attacks in 
Underwater Wireless Sensor Networks (UWSN) 
communication. On the other hand, Reddy et al. [31] 
suggested a feed-forward ANN model with a Multi-Layer 
Perceptron (MLP) framework that has been preprocessed 
using WEKA. According to experiments, the MLP 
performs better than the RBMC-IDS and Hoeffding 
adaptive trees, with 98% accuracy compared to 96.33% 
and 97%, respectively. 

To identify and categorize DoS intrusion attacks as 
Flooding, Blackhole, Normal, TDMA, or Grayhole,  
Salmi et al. [32] employed a CNN-LSTM network. The 
dataset is a computer-generated wireless sensor network-
detection system. The wireless sensor network 
environment is simulated using the Network Simulator 
NS-2, which produces 23 features for categorizing sensor 
states and five types of DoS attacks. The accuracy, 
precision, and recall scores of the CNN-LSTM model are 
0.944, 0.959, and 0.922, respectively, after evaluation 
across 25 epochs. Using the NSL-KDD dataset, 
Ramkumar et al. [2] presented a modified Recurrent 
Neural Network with Long Short-Term Memory (RNN-
LSTM) for IDS in WSN classification. Thorough 
performance validation yields exceptional results, such as 
99.95% accuracy, 99.93% precision, and 95.69% robust 
recall, with an F1−Score of 99.80%, exceeding the 
standards set by present methods. 

Sivakumar et al. [33] presented a novel Recurrent 
Crossover-based Dynamic Differential (RC-DD) 
algorithm for effective attack detection and localization in 
Wireless Sensor Networks (WSN). For precise sensor 
node location, the model employs a weighted K-Nearest 
Neighbor (KNN) with Mahalanobis distance. Dynamic 
Differential Annealed Optimization (DDAO) adjusts the 
hyperparameter of the Recurrent Neural Network (RNN), 
which detects multiple intrusions. With an accuracy rating 
of 98.9%, the RC-DD framework minimizes energy usage 
and localization inaccuracy. Moundounga and Satori  [34] 
suggested system trains HMMs and GMMs using iterative 
machine learning Expectation-Maximization and reduces 
dimensionality in the WSN dataset using Principal 

Component Analysis. According to experiments, the setup 
consisting of three HMMs and four GMMs attains a 
remarkable accuracy of 94.55%. With accuracies between 
0.96 and 0.98, the system performs better in cross-
validation than popular machine learning classifiers.  
Table I summarizes the previous research studies. 

TABLE I. COMPARISON OF PREVIOUS RESEARCH  

Study Model 
Performance 

Metrics 

[2] RNN-LSTM 

Accuracy: 99.95%, 
Precision: 99.93%, 

Recall: 95.69%, 
F1−Score: 99.80% 

[34] HMMs and GMMs Accuracy: 94.55% 

[24] 
MLP, Decision 

Tree, Autoencoder 

MLP: Accuracy: 
99.52%, Decision 

Tree: 99.48%, 
Autoencoder: 91% 

[27] 
Hard Ensemble, 
Soft Ensemble 

Hard Ensemble: 
Accuracy: 99.967%, 

Soft Ensemble: 
98.12% 

[28] 
Hybrid CNN-LSTM 

with Attention 

Accuracy: 98.88% 
(Enhanced CNN-
LSTM), 99.12% 
(CNN-LSTM), 

99.87% (LSTM), 
98.73% (CNN) 

[29] 
LSTM + Random 

Forest 

Accuracy: 0.996, 
Precision: 0.98, 

Recall: 0.98, 
F1−Score: 0.98, 

AUC: 0.99 
[30] RNN Accuracy: 97% 

[31] 
MLP, RBMC-IDS, 
Hoeffding Adaptive 

Trees 

MLP: Accuracy: 
98%, RBMC-IDS: 

96.33%, Hoeffding: 
97% 

[35] CNN-LSTM 
Accuracy: 0.944, 
Precision: 0.959, 

Recall: 0.922 
[33] RC-DD with KNN Accuracy: 98.9% 

III.      METHODOLOGY 

This section provides an outline of the methodological 
framework adopted to conduct the study. Hence, the 
section focuses on the dataset, preprocessing of data, 
model building, and evaluation procedures. Fig. 2 shows 
the methodological framework. 

A. WSNBFSF Dataset 

The WSNBFSF dataset [36] provides a thorough 
analysis of WSN traffic and contains 312,106 attacks, 
which are categorized into four groups: normal traffic, 
floods, blackhole attack traffic, and selective forwarding 
attack traffic. Network congestion and energy resource 
strain are caused by black holes, which also act as portals 
for other attacks, such as sinkholes or selective forwarding. 
Researchers studying network security frequently 
encounter these attacks, which are a subset of DDoS 
attacks. Finding and differentiating between vectors of 
attack and regular network activity is its main goal. This 
information, which comes from accurate preprocessing, 
improves our knowledge of network vulnerabilities by 
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offering insightful information about the dynamics of 
cyber threats and vulnerabilities in WSNs [37, 38]. Fig. 3 

shows the WSNBFSF dataset target distribution. And 
Table II shows the features list of WSNBFSF dataset. 

 

 
Fig. 2. Methodological framework. 

 
Fig. 3. WSNBFSF dataset class distribution. 

TABLE II. FEATURES LIST OF WSNBFSF DATASET 

Number Features Features Description  

1 Event 

1 (sending),  
2  (receiving),  
3  (forwarding),  
4  (dropping), and  
5 (Energy information). 

2 Time 
The time of the event 
performed in the 
row 

3 S_Node Source node number 

4 Node_id 
The node number of the 
relevant node 

5 Rest_Energy 
The remaining energy of the 
relevant 
node 

6 Trace_Level represents the  level recorded 
by a sensor at a specific 

7 Mac_Type_Pckt MAC type of the packet 
8 Source_IP_Port Port number of the source node  

9 Des_IP_Port 
Port number of the Destination 
node  

10 Packet_Size Forwarded packet size 

11 TTL 
The lifetime of the forwarded 
traffic in 
the network 

12 Hop_Count Number of nodes passed 

13 Broadcast_ID 
The ID number of the broadcast 
packets 

14 Dest_Node_Num ID of the target node 

15 Dest_Seq_Num 
Sequence number of the traffic 
forwarded to the destination 

16 Src_Node_ID Source node ID number 

17 Src_Seq_Num 
Source sequence number of 
traffic 
forwarded to destination 

18 Class Blackhole, Flooding,  
Forwarding, and Normal 

 

B. Preprocessing  

The WSNBFSF dataset was employed to test the 
proposed classification framework. This dataset comprises 
multiple classes that display different networking 
behaviors, including normal traffic and different 
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10%4%2%

WSNBFSF Dataset Class 
Distribution

normal

floods

blackhole

forwarding

Journal of Communications, vol. 21, no. 1, 2026

23



categories of attacks (floods, blackhole, and forwarding). 
A high imbalance across classes was observed, with 
potential adverse consequences on the model's 
performance and predictive bias toward majority classes. 
To solve this problem, the following steps were used to 
enhance classification performance. 

1) Cleaning and transformation of the dataset 

First, the dataset was examined for missing and 
inconsistent values. Instances containing null or undefined 
values were either imputed with means of numerical 
features or removed if the number of cases with missing 
values was marginal. Label encoding for non-numeric 
features was done to make the data compatible with 
machine learning algorithms. 

2) Feature scaling 

To construct a feature space that is standard and stable 
for faster model convergence, all input features were 
scaled using StandardScaler to have a zero mean and unit 
variance. This normalization is paramount for distance-
based algorithms and for deep learning. 

3) Handling class imbalance 

The original sample possessed a highly imbalanced 
distribution, in which normal instances far exceeded the 
instances in attack classes. To maintain equal 
representation from all the classes and to avoid bias to the 
majority classes by the models, a hybrid resampling 
technique was applied. Utilizing the Random Under 
Sampler and Random Over Sampler classes in Python, the 
number of normal was under-sampled to 29,844, whereas 
all attack classes were over-sampled to 29,844. With this 
setting, all the classes will have an equal share of 
representation during model training, which will improve 
classification for all categories and enhance the 
generalization of the classes. Fig. 4 shows the WSNBFSF 
dataset target distribution after balancing. 
 

 
Fig. 4. Balanced WSNBFSF dataset class distribution. 

4) Train-test validation  

To ensure the evaluation rigor, the final processed 
dataset applied a train-test split of 70:30 and 5-fold cross-
validation. A stratified split was to ensure that class 
distributions in all subsets were not distorted by first 
splitting the dataset into training, validation, and test sets. 
To prevent data leakage, resampling methods were 
performed on the training set and validation, and test sets 
were left as they were. This guarantees that model analysis 

is carried out on unrewarded information, showing the 
actual class distribution. Also, a duplicate check was done 
on the splits to ensure that there were no duplicate 
instances in the training and evaluation sets. 

C. DL Classification Algorithms  

1)  Neural network (multi-layer Perceptron classifier) 

 MLP is a neural network-based machine learning 
technique that combines significant amounts of data and 
multi-layered Artificial Neural Networks (ANN) to 
simulate human brain neurons [39]. It is recognized for its 
dependability because of its approach of directional 
learning. However, an ANN is made up of one or more 
hidden layers, an input layer, and an output layer, as shown 
in Fig. 5. It has several basic unit neurons that conduct 
layer-by-layer conduction between neurons to represent 
data. If there is more than one hidden layer, the output of 
the hidden layer is added to the next one, and each layer 
after that is summed using a different weight. After 
determining the ideal weight for inputs and biases using a 
typical Sigmoid function, the method enters this 
information into the activation level via the transfer 
function to generate output  [40−42]. 

  

 
Fig. 5. Structure of ANN classifier [42]. 

2) Convolutional Neural Networks (CNNs) 

 Are deep learning models that are adaptable and 
multipurpose since they can learn hierarchical picture 
features. Their adaptive feature determination from raw 
input data makes them especially well-suited for 
recognition of features and data 
informativeness evaluation. CNNs can be trained on big 
datasets like ImageNet, and capture both low-level and 
high-level semantic information [43]. With its effective 
design that combines weight sharing, down-sampling, and 
local perceptual fields to detect complex spatial patterns, 
CNN is a potent tool in image recognition, computer vision, 
and fault detection. Convolutional layers are used for 
feature detection, pooling layers are used to reduce 
dimensionality, and fully connected layers are used for 
classification [44]. 

3) Recurrent Neural Networks (RNNs) 

 Are deep learning that handles time series data by 
identifying contextual correlations in sequential data. 
Time series modeling is made possible by RNNs' recurrent 
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mechanism, which affects their output in contrast to typical 
feedforward neural networks [45]. However, RNNs are 
suitable for time-series studies because of their capability 
to process sequential input and use feedback connections 
to learn previously computed sequences [46].  

4) Long Short-Term Memory (LSTM) 

To mitigate the vanishing gradient problem prevalent in 
Recurrent Neural Networks (RNNs), Hochreiter and 
Schmid Huber introduced Long Short-Term Memory 
(LSTM) networks [47, 48]. LSTMs employ sophisticated 
gating mechanisms to regulate the flow of information, 
thereby facilitating the retention of long-term 
dependencies. As an enhanced variant of RNNs, LSTMs 
incorporate a memory unit designed for the dynamic 
updating and storage of information. This architecture 
features three distinct gate units: input gates, forget gates, 
and output gates. These gates function to selectively 
manage the retention, discarding, and retrieval of 
information, thus empowering LSTMs to effectively learn 
from both short-term and long-term dependencies in 
sequential data [49, 50]. 

5)  Hybrid CNN-RNN 

The hybrid combination of CNNs and RNNs is, 
therefore, designed to realize extracting both spatial 
patterns and temporal dependencies in WSN data [51]. In 
essence, architecture emphasizes CNN layers to extract 
local features of the data, wherein the recurrent layer 
ingrains the sequential dependency for multiclass 
classification output. The network architecture begins with 
a stack of two 1-D convolution layers, 64 filters each, with 
the kernel size 3 and padding ‘same’. The `relu` activation 
introduces nonlinearity. BatchNormalization follows each 
convolution layer to stabilize and speed up the training 
process. These layers identify low-level local patterns in 
the input features space. This is followed by 
MaxPooling1D pooling with a pool size of 2, which down-
samples the input feature maps and reduces computational 
cost while retaining important features. Then comes the 
deeper convolution part: two more convolutional layers, 
each with 128 filters, kernel size of 3 again, and batch 
normalization-this set allows the model to learn more 
abstract, high-level representations. One more 
MaxPooling1D and Dropout with a dropout rate of 0.4 
were introduced to avert overfitting. After spatial feature 
extraction, the post-processed features are fed into a 
SimpleRNN with 128 units. This layer captures temporal 
dependencies and sequential behaviors occurring in WSN 
traffic data. Setting the parameter return_sequences to 
False passes only the last hidden state to the dense layers, 
which essentially summarizes the entire input sequence. A 
second Dropout layer, again with a dropout rate of 0.4, is 
applied for overfitting prevention. The last part of the 
architecture consists of two fully connected layers: a 128-
unit layer with ReLU activation followed by Dropout at a 
rate of 0.3, and the output layer with four units and softmax 
activation for the four classes of the classification task (say, 
Normal, Flooding, Blackhole, Forwarding). Adam 
optimizer with a learning rate of 0.001, compiles the model, 
which is then trained using the sparse categorical cross-

entropy loss function, which is appropriate for integer-
labeled multiclass targets. The performance of the network 
is evaluated using accuracy. 

6) Hybrid CNN-LSTM  

To enhance the spatial and temporal characteristics of 
features in WSN traffic data, CNN-LSTM incorporates a 
hybrid model [35]. Architecture learns discriminative local 
patterns through deep convolutional layers and LSTM 
layers to grasp sequential dependencies. This offers 
excellent capabilities for WSN anomaly or attack detection 
based on multiclass classification. Temporal features are 
obtained, which are finally passed down to an LSTM layer 
with 128 hidden units. The LSTM is configured with 
return_sequences=False, so that only the hidden state of 
the last time step is passed to the next layer. This hidden 
state is meant to summarize the temporal dynamics of the 
input sequence. To promote further regularization, a 
Dropout layer with a 40 percent dropout rate was added to 
the LSTM output. The LSTM output passes through a fully 
connected layer with 128 neurons and ReLU activation, 
followed by a Dropout layer with a 30 percent dropout rate. 
Finally, the output layer uses a dense layer with 4 neurons 
with softmax activation to represent the four classes for the 
classification task. The model is compiled using the Adam 
optimizer with a learning rate of 0.001. The sparse 
categorical cross-entropy loss function is used to handle 
integer-encoded target labels for multiclass classification. 
Model performance is evaluated using the accuracy metric. 

7) Hybrid RNN-LSTM 

A hybrid Recurrent Neural Network–Long Short-Term 
Memory (RNN-LSTM) model was built to model short-
term and long-term temporal patterns in WSN traffic 
sequence data [52]. The architecture is a better fit for 
gleaning sequential dependencies and behavioral 
signatures associated with normal and anomalous WSN 
behaviors. The first layer is a simple RNN that has 128 
units of recurrent; this layer receives the input sequence 
one by one through time, deriving potential short-term 
dependencies, and transferring this contextual information 
across time steps. The parameter return_sequences=True 
is set in order for the layer to output the whole sequence of 
hidden states to the ensuing LSTM layer. Then, the 
BatchNormalization layer that stabilizes training and 
normalizes the activations is followed. A Dropout layer 
process is next in the sequence, with the 0.3 dropout rate, 
preventing overfitting and aiding the model to generalize 
better. The second recurrent layer of the model is an LSTM 
layer, which has 128 units. LSTMs are built to model long 
dependencies in sequential data; therefore, they are useful 
when temporal relations span more than a couple of time 
steps. Return_sequences = False ensures that only the final 
hidden state is moved on to the dense layers, encapsulating 
a temporal representation of the entire input sequence. 
BatchNormalization and Dropout with a rate of 0.4 were 
applied to the LSTM layer to thwart overfitting. The output 
of the LSTM layer passes to the fully connected dense 
layer consisting of 128 neurons, activated by ReLU for 
nonlinear transformations and abstracting at a high level. 
Afterward, another Dropout layer that has a 0.4 dropout 
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rate is dropped in to minimize overfitting. Finally, the four-
neuron softmax-activated dense output layer of the final 
stage. It corresponds to classification into four output 
classes (Normal, Blackhole, Flooding, Forwarding). The 
compilation of the model is done with Adam as the 
optimizer, having a learning rate of 0.001, while the loss 
function being optimized is sparse categorical cross-
entropy, which fits multi-class classification problems 
with integer-encoded labels. The performance of the 

model is kept track of, using accuracy as the evaluation 
metric. 

IV. EXPERIMENTAL AND RESULTS     

A. Experiments Setting   

All experiments were tested using Python and run on an 
i7-1065G7 processor at 1.50 GHz and 16.0 GB of RAM. 
Table III.  shows the DL classifier parameter settings. 

Fig. 6. Learning curves of ANN. 
 

TABLE III. CLASSIFIER PARAMETERS SETTING 

Classifier Setting 

Neural Network 
(MLP) 

hidden_layer_sizes 
activation 

solver 

(256,128, 64) 
Relu 
adam 

Alpha 
learning_rate 

max_iter 
epochs 

1e-4 
adaptive 

2000 
100 

CNN 

hidden_layer_sizes (64,64,128) 

Activation 
ReLU (hidden), 

Softmax (output) 
Solver 

Learning rate 
epochs 

Adam 
0.001 
100  

RNN 

hidden_layer_sizes (64,128,128) 

Activation 
ReLU (hidden), 

Softmax (output) 
Solver                                        

Learning rate 
epochs 

Adam 
0.001 
100 

LSTM 

hidden_layer_sizes (128,64,64) 

Activation 
ReLU (hidden), 

Softmax (output) 
Solver                                        

Learning rate 
epochs 

Adam 
0.001 
100 

CNN+RNN 

hidden_layer_sizes 

CNN layers: (64, 
64, 128, 128) , 

Simple RNN layer: 
128 Dense(128) 

Activation 

CNN, Dense 
layer=relu 

Output layer 
=softmax 

    Solver                                        Adam  

 Learning rate 
epochs 

0.001 
100 
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Fig. 6 shows the learning curves of ANN model. The 

accuracy curves (left) indicate that both the training and 
the validation accuracy curve are growing steadily by 
epochs, and they are ultimately stabilized at 95 percent and 
96 percent respectively. Notably, the accuracy of 
validation is always higher than the accuracy of training, 
which indicates that the model is not overfitted but 
generalizes. In the same manner, the loss curves (right) 
show that the training and validation loss decrease 
continuously, and neither of the curves diverges. This 
consistency between training and validation performance 
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proves that ANN attains consistent learning behavior and 
strong generalization to unknown data. Thus, the fact that 
such learning curves are included helps us to state that the 
ANN model is not overfitted but instead well-regularized 
and can be practically deployed. In general, the findings 
confirm the stability of the training process and prove that 
the ANN is the best to be used in attaining high accuracy 
and minimizing the error rates. Such good results confirm 
the appropriateness of the model to be used in practice, 
where reliability and generalization are essential. 

B. Performance Evaluation Metrics  

The efficiency level of the DL model is assessed using 
the following metrics. These metrics include accuracy, 
recall, F-measure, and precision [39, 53]. Fig. 7 shows the 
confusion matrix of 4 classes classification. 

 
Fig. 7. Confusion matrix [54]. 

 
TP (True Positive): Represents instances accurately 

classified as positive, FP (False Positive): Represents 
instances incorrectly classified as positive, TN (True 
Negative): Represents instances correctly classified as 
negative, and FN (False Negative): Represents instances 
incorrectly classified as negative [41, 55, 56]. 

Accuracy: The proportion of correctly identified 
samples to all samples is known as accuracy. While 
accuracy is a valuable metric, it may disproportionately 
favor the dominant class, making it insufficient for 
imbalanced datasets [57, 58]. 

Accuracy = TP / total number of samples 
Recall:  is a machine learning statistic that assesses a 

model’s capacity to accurately detect every positive 
instance in a dataset [59, 60]. 

Recall = TP / (TP+FN) 

Precision: indicates the proportion of well-classified 
positive data that is actually predicted, which means fewer 
false positives result from high precision [39, 61]. 

Precision = TP / (TP+FP) 

F-measure: calculates the harmonic mean of the 
accuracy and sensitivity rates [62]. 

F1-measure = 2 × (Precision × Recall) / (Precision + 
Recall)) 

C. Classification Result (70/30 split Validation) 

The WSN attacks are assessed using Neural Network, 
CNN, RNN, LSTM, CNN+RNN, CNN+LSTM, and 
RNN+LSTMML classifiers I term of accuracy, precision, 
recall, and F1−Score. The results of the classification 
experiments are presented in Table IV. Fig. 8 shows the 
Confusion Matrix obtained for each DL classifier. 

The accuracy comparison, as shown in Fig. 9, proves 
that the Neural Network almost attained 100% accuracy, 
practically perfect accuracy, thus asserting that the model 
is very capable of grasping the data patterns prevailing in 
the dataset. LSTM and RNN+LSTM follow closely below 
with accuracies just under 98%, hence proving the fact that 
memory in temporal sequences produces better 
classification results. CNN, CNN+RNN, and 
CNN+LSTM attained accuracies in the 95% range, 
indicating good results, though a tad inferior to their 
LSTM-hybrid counterparts. RNN recorded a very low 
performance with an accuracy of nearly 85%, proving that 
though one can process sequential data through recurrent 
mechanisms, a mere RNN might not be very useful due to 
vanishing gradient, unlike LSTM or hybrid networks. 
Generally, the outcomes prove that the deep learning 
models with memory seem to dominate their simpler 
recurrent and convolutional rivals on this task. 

 

TABLE IV. OBTAINED RESULTS (70/30 SPLIT VALIDATION) 

DL Classification Model Accuracy Precision Recall F1−Score 
Neural Network 99.81 99.81 99.81 99.81 

CNN 94.38 94.72 94.38 94.33 
RNN 84.77 84.76 84.77 84.46 

LSTM 98.27 98.33 98.27 98.27 
CNN+RNN 95.17 95.46 95.17 95.16 

CNN+LSTM 94.93 95.22 94.93 94.93 
RNN+LSTM 97.78 97.89 97.78 97.78 
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Fig. 8. Obtained confusion matrix: (a) Neural network, (b) CNN, (c) RNN, (d) LSTM, (e) CNN+RNN, (f) CNN+LSTM, (g) RNN+LSTM. 
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Fig. 9. Accuracy.  

 
The precision performance implies the Neural Network 

model still commands the top precision as shown in  
Fig.  10, almost 100%, which means it positively predicted 
with great accuracy most of the time and was accompanied 
by almost no false positives. LSTM and RNN+LSTM 
came next at 97–98% precision level, thus carving out 
competent performer stature in correctly recognizing 
important instances. CNN+RNN, CNN+LSTM, and CNN 
are at the 95–96% precision level, thus quite precise but 
just a step below. On the lowest end of precision was the 
RNN model, with almost 85%, implying quite a few false 
positives compared to other architectures. Thus, while 
deep learning models are all good in terms of precision, 
those having memory components, especially LSTM-
based models, seem to do better in reducing wrong 
classifications. 
 

 
Fig. 10. Precision. 

 
The F1−Score results shown in Fig. 11, balancing 

precision and recall, demonstrate that the Neural Network 
stands out as the most powerful one with its near-100% 
score, recording a superb performance both in detecting 
positive cases and reducing false positives. Close behind 
are the LSTM and RNN+LSTM models, scoring in the 97–
98% range, affirming their strength in working with 
sequential data. The CNN+RNN, CNN+LSTM, and CNN 
models hold up well, scoring 95–96%, indicating 
consistent performance but slightly less harmony between 
precision and recall compared to the top performers. RNN 
stands behind with its F1−Score near 85%, hinting on its 

incapability of grasping long-term dependencies that 
reduce its effectiveness. Powerfully highlighting memory-
enhanced architectures, particularly LSTM-based ones, 
which maintain a healthy balance between precision and 
recall, the results thus far set the yardstick for simpler 
recurrent or convolutional structures to follow. 
 

 
Fig. 11. F1−Score. 

  
The recall metric shown in Fig. 12  is based on the 

output of various models of deep learning. Neural 
Networks recorded the highest recall of nearly 100%, 
suggesting it was able to correctly identify relevant 
instances. LSTM and RNN+LSTM came next with their 
recall at almost 98%, thus suitable for tasks requiring 
memory of sequential patterns. CNN classifier, alone or 
coupled with LSTM or RNN, clocked slightly lower recall 
rates of roughly 95%, which still denotes good 
performance but may be less effective than recurrent 
techniques to capture all patterns. A stand-alone RNN had 
the lowest recall at about 85%, suggesting it could not 
compete with the other architectures on this complexity 
level of the task. In general, LSTM-enhanced systems 
showed better performance than others, except for the fully 
connected Neural Network that defeated each 
implementation. 

 
Fig. 12. recall. 

The fully connected Neural Network performed nearly 
perfectly on all metrics, and this showed outstanding 
performance in learning the patterns of the datasets. LSTM 
and RNN+LSTM followed closely behind due to the 
memory mechanisms provided, which help in long-term 
dependencies, and CNN-based architecture did well, but 
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not among the top. The plain RNN performed poorly due 
to the shortcomings of dealing with long-range sequential 
relationships. In general, memory augmented architectural 
structures were found to be the most effective when higher 
precision and recall were needed in the classification stage. 

D.  Classification Result (5-Fold Cross-Validation) 

To overcome the risk of biases introduced by one 
train/test split and to offer more statistically rigorous 

evaluation of the proposed deep learning models, we 
performed stratified 5-fold cross-validation. The method 
makes every fold maintain the original class distribution of 
the dataset, which gives more trustworthy performance 
estimates. Each of the models was trained and tested five 
times, each fold acting as a test set once. The findings 
shown are the average values of these runs and its 95% 
Confidence Intervals (CI). Table V displays the results 
obtained of 5-fold cross-validation. 

TABLE V. OBTAINED RESULTS (5-FOLD CROSS-VALIDATION) 

Model Accuracy Precision Recall F1−Score Time (s) 
Neural Network 99.89 ± 0.04 99.89 ± 0.03 99.89 ± 0.04 99.89 ± 0.04 989.64 

CNN 92.67 ± 5.38 92.92 ± 5.55 92.67 ± 5.38 92.62 ± 5.44 465.56 
RNN 84.66 ± 2.15 84.72 ± 2.19 84.66 ± 2.15 84.34 ± 2.34 1201.12 

LSTM 97.98 ± 2.07 98.07 ± 1.89 97.98 ± 2.07 97.98 ± 2.07 2266.99 
CNN+RNN 93.86 ± 3.01 94.26 ± 2.57 93.86 ± 3.01 93.80 ± 3.12 1169.47 

CNN+LSTM 95.49 ± 2.29 95.62 ± 2.29 95.49 ± 2.29 95.48 ± 2.31 1303.05 
RNN+LSTM 96.92 ± 2.36 97.05 ± 2.18 96.92 ± 2.36 96.92 ± 2.37 1959.14 

Table IV includes the comparison in the performance 
metrics (Accuracy, Precision, Recall, F1−Score) of the 
various DL architectures. Out of the tested architectures, 
the generic Neural Network (baseline) showed the best 
performance in all the evaluation measures, closely 
followed by the hybrid models, which include 
RNN+LSTM and CNN+LSTM. This indicates that 
temporal and spatial feature extraction (e.g., RNN and 
LSTM or CNN and LSTM) would be more suited to 
maximize the capability of the model to represent 
sequential dependencies and high-level representations, 
and, thus, achieve higher detection performance. 

Comparing accuracy, precision, recall, and F1−Score 
with computational time collectively, the outcomes show 
that there is an evident trade-off among models under test. 
CNN is the fastest to calculate but only has average 
performance, whereas LSTM and hybrid architecture 
(RNN+LSTM, CNN+LSTM) have higher predictive 
accuracy but require much longer training. However, the 
neural network proves to be the most balanced of all 

models: it scores highest in all performance indicators but 
at a comparatively lower computation time than LSTM 
and hybrid networks. This means that the neural network 
is not only more efficient in reducing classification errors 
but is also more computationally efficient and hence is the 
most efficient and viable option to be used in a real-world 
system where classification and performance in terms of 
resource usage both play important factors. 

E.  DL Model Detail Performance Analysis 

The Neural Network model proved to have the best 
performance in all the evaluation parameters, we have 
presented in detail analysis of the results of the cross-
validation evaluation of the Neural Network model.  
Table VI shows the precision, recall and F1−Score of each 
attack type and the macro and micro averages. Also, we 
give the Area Under the Receiver Operating Characteristic 
Curve (ROC AUC) and Area Under the Precision-Recall 
Curve (PR AUC), which is a threshold-free measurement 
of model performance. 

 
TABLE VI. NEURAL NETWORK PERFORMANCE METRICS FOR EACH CLASS 

 Precision Recall F1−Score ROC AUC PR AUC 
Blackhole 99.73 99.97 99.85 99.99 99.97 
Flooding 100 100 100 100 100 

Forwarding 99.86 99.99 99.92 100 99.97 
normal 99.96 99.58 99.77 99.98 99.97 

Macro Average 99.89 99.89 99.89 99.99 99.98 
Micro Average 99.89 99.89 99.89 99.99 99.99 

Table VI shows the performance of the Neural Network 
according to the classes of Blackhole, Flooding, 
Forwarding and Normal. The findings indicate that the 
model has almost perfect detection with all classes. In the 
Flooding category, the Neural Network obtained an ideal 
score of 100% in Precision, Recall, and F1−Score, with 
ROC AUC and PR AUC equal to 100, which means that 
the Neural Network did not make a single misclassification. 
Equally, Forwarding and Blackhole attacks were classified 
with very high precision and recall (all above 99.7%), 
leading to F1−Scores of 99.92% and 99.85 respectively. 
Normal class had slightly lower recall (99.58) than the 

other attack classes, implying that a low percentage of 
normal traffic was incorrectly labeled as malicious. 
However, its F1−Score was still high and equal to 99.77, 
which shows general reliable detection. 

The macro- and micro-averages of the Precision, Recall, 
and F1−Score were all equal to 99.89, which indicates the 
balanced ability of the Neural Network to classify all 
categories without a clear bias to a specific category. 
Moreover, ROC AUC and PR AUC values were to 100 in 
most instances, which indicates that the model is very good 
at the discriminatory ability between positive and negative 
cases. 
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Fig. 13 indicates the normalized confusion matrix of the 
neural network for 5 folds. The findings support the 
excellent classification capability of the model with almost 
all samples being placed in corresponding categories 
correctly. All the classes are close to 1.0 indicating very 
high true positive values. 

In particular, the classification of Blackhole, Flooding 
and Forwarding attacks was done perfectly with each 
having a 100% correct classification rate and no case of 

being mislabeled. This is an indication of the fact that the 
model is capable of accurately identifying volumetric and 
routing-based attacks. In the case of the Normal class, the 
neural network successfully predicted the correct 
classification of 99.6% and the misclassification rate of 
very low to Blackhole (0.3) and Forwarding (0.2) was very 
low. These small misclassifications can be seen as the 
reason behind the slightly lower recall in the previous 
section of the Normal category. 

 
 

(a)  (b) 

 
 

(c) (d) 
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(e) 

Fig. 13. Normalized confusion matrix of the neural network: (a) fold 1, (b) fold 2, (c) fold 3, (d) fold 4, (e) fold 5. 
 

Overall, the Neural Network showed excellent results 
on all the evaluation measures, and it had a low 
misclassification error. It can be used in real-world 
intrusion detection systems as its capacity to maximize 
per-class accuracy and recall whilst demonstrating high 
generalization implies that it is a strong and sound 
candidate.  

V.    CONCLUSION AND FUTURE WORK 

This paper has detailed the work by performing a 
rigorous comparison of deep learning methods to attack 
detection within Wireless Sensor Networks (WSNs). As 
the results of the experiments, the architecture involving 
memory blocks, i.e., LSTM and hybrid RNN-LSTM, 
considered the temporal correlations of the WSN traffic 
with high accuracy, precision, recall, and F1−Scores. 
There were also good performances in fully connected 
neural networks, implying that they can learn complex 
relationships within the dataset, and CNN-based methods 
have delivered competitive results due to the ability to 
extract spatial features effectively. Standalone RNNs, in 
their turn, were rather ineffective, which could probably be 
explained by the difficulties in modeling long-term 
dependencies. The results reveal the possibility of deep 
learning in promoting WSN security through accurate and 
automated intrusion detection of various forms of attacks. 
Through models that could learn sequential and spatial 
patterns, WSN-based systems can attain robust and real-
time threat detection, where little dependence is made on 
manual rule-based identification of the threats. This paper 
was only able to utilize a single data set, and it cannot 
represent the complete variation in the traffic and attack 
patterns of a real-life WSN, which might limit the 

generalizability. The experiments offline, and the 
expensive 3D computation requirement of certain deep 
learning models, could also pose challenges to applying 
them to resource-limited sensor nodes. Also, 
hyperparameter optimization was performed over a small 
search area, and the succession of evolving strategies of 
attacks can shorten long-term model performance. The 
further steps in the research will involve testing bigger and 
more varied datasets, namely on the adaptation of 
architectures to real-time and energy-efficiency limitation 
within Wireless Sensor Networks (WSNs). As the nodes 
of WSNs are usually constrained with energy, memory, 
and processing, the calculation capacity of various models, 
such as inference time, model size, and deployment 
capability, will be assessed in the future. The analysis will 
be used to differentiate between models that can be directly 
deployed onto sensor nodes and those that can be deployed 
to gateways or central servers. Moreover, we are going to 
discuss more modern methods, including parallelization, 
attention mechanisms, Transformer architectures, and 
Explainable AI to make it more efficient and interpretable. 
Constant learning plans will also be added in order to 
manage the changing attack patterns in order to ensure 
continued performance of detection in dynamic WSN 
environment. 
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