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Abstract—Flooding, blackhole, and forwarding are Wireless
Sensor Networks (WSNs) attack types that have a severe
impact on the reliability of the network and the integrity of
data. This paper reports on a detailed benchmarking and
hybridization analysis of seven deep learning models
regarding multiclass intrusion detection on the WSNBFSF
dataset. Comparison is made of the Artificial Neural Network
(ANN), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM),
and their mixtures, CNN-RNN, CNN-LSTM, and RNN-
LSTM. The same experimental conditions were used to train
all the models and make the evaluation fair. The
experimental findings are indicative of the fact that the ANN
has the highest performance with accuracy, precision, recall,
and F1-Score of 99.81% in split validation and 99.89% in 5-
fold cross-validation, offering close to perfect discrimination
of all attack types. The LSTM (98.27%) and RNN-LSTM
(97.78%) memory augmented models also demonstrate a
high ability to capture traffic time dependencies in WSNs,
whereas the CNN-based models are efficient in spatial
pattern extraction but slightly worse on fine-grained attack
detection. Conversely, a standalone RNN has problems of
vanishing gradients and thus gives an accuracy of 84.77
percent. In summary, the results provided serve as a pointer
to architecture-specific strengths, and they provide
important information in designing a scalable, real-time, and
resource-efficient deep learning-based intrusion detection
system with the peculiarities of WSN environments.
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I. INTRODUCTION

Wireless Sensor Networks (WSNs) are an inexpensive
and simple way for sensing devices to communicate with
their environment. They are extensively utilized in many
domains, including surveillance, industry, security, health,
and the military. Because they lack specific routing
protocols, WSN devices that run on limited-life batteries
must be actively operated to avoid rapid battery depletion
when in sleep mode, which can result in vampire attacks.
To transfer data packets, WSNs need to install sensor
nodes at various depths and use a routing mechanism.
These devices are exposed to huge populations since they
are lightweight, portable, and low-power [1—4]. The
importance of WSNs for essential applications is growing,
yet network intrusions and sensor failures present
increasing risks to WSN security and dependability. But
their use in open environments exposes them to cyber
threats, compromising data integrity, confidentiality, and
availability [5—7]. However, Large-scale WSNs are
especially susceptible to environmental damage,
cyberattacks, and physical manipulation since they have
hundreds or thousands of sensor nodes. Conventional
anomaly detection techniques have trouble adjusting to
large-scale sensor deployments and changing conditions in
the environment [8—10]. With the widespread usage of
CNN and RNN for processing different kinds of data, deep
learning has made considerable strides. When it comes to
translation invariance, CNN is a feedforward neural
network, and RNN is a time recurrent neural network that
works well with time series data. Time series dependencies
can be processed and predicted more accurately with the
LSTM (Long and Short-Term Memory) RNN structure
[11] .With the use of algorithms and learning models,
Machine Learning (ML) optimizes the process by
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gradually identifying patterns in data collection. It has
been applied to several domains, such as speech
recognition, bioinformatics [12—14], and WSNs. For the
interpretation of datasets that the human brain is unable to
process, machine learning is crucial. On the other side,
machine learning algorithms can assist in the
administration of [oT nodes in smart cities for uses such as
building automation, garbage management, and traffic
monitoring. However, bandwidth, energy consumption,
coverage, and connectivity provide design issues for these
networks. The unpredictability of data streams and the
mobility of sensor nodes, which might result in changes in
network architecture owing to dynamic changes in WSN
environments, make machine learning essential for WSN
applications [15, 16].

The application of machine learning, especially
anomaly detection, for reducing costs in the security
industry is growing. This method has demonstrated
potential in fields such as packet analysis, eliminating
Denial-of-Service (DoS) attacks [17—19], and improving
network availability. Security is crucial in some Wireless
Sensor Networks (WSNs) that handle private information
in potentially dangerous settings. Confidentiality,
authenticity, integrity, and novelty of data are important
security issues that require strong security protocols [17,
20-22]. In intelligent cities, IoT functions like trash
management, traffic monitoring, and healthcare can be
managed by Al and machine learning. However, issues
including web range, connectivity, power consumption,
bandwidth needs, and infrastructure development are
problems for WSN-based IoT. Because the sensor nodes
in WSNs are autonomous and constrained by their
capabilities, research focuses on enhancing network
lifetime and quality of service [23]. These problems may
be solved with the aid of ML techniques [24, 25]. However,
Artificial Neural Networks (ANNs) with several layers are
used in Deep Learning (DL), a subset of machine learning.
Unlike conventional algorithms, its performance becomes
better with more data entered. As a result of technological
improvements that enable small training and deployment
in gadgets like smartphones, DL has grown in popularity.
It is difficult for statistical and traditional machine learning
time series forecasting algorithms to derive information
from nonlinear patterns and data. LSTMs, GRUs, RNNS,
and 1D-CNNs are a few architectures that work well for
learning from sequential data [26]. Fig. 1 shows the major
WSN components.

The purpose of this research is to use deep learning
techniques, specifically Long Short-Term Memory
(LSTM),  Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and a hybrid of each of them, to create
an advanced detection system for WSNs attacks. The
novelty is in combining these disparate architectures to
improve temporal pattern recognition and feature
extraction, leading to it being possible to accurately detect
and categorize different kinds of attacks. The study aims
to increase the reactivity to new threats by concentrating
on real-time data processing capabilities, which would
greatly improve the safety and reliability of WSNs.
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Fig. 1. WSN component [26].

The rest of this paper will be organized as follows. In
Section II, the background literature is reviewed, and
major gaps fueling this research are indicated. In Section
III, the section dealing with the methodology details the
WSNBFSF dataset, preprocessing, and DL classification
algorithms. Section IV is a discussion of the findings.
Lastly, the paper ended with Section V, which indicated
the future work and conclusion.

II. RELATED WORKS

Prior research has extensively explored WSNs attack
detection using ML and DL, establishing foundational
insights into binary classification (e.g., normal vs.
malicious), while leaving critical gaps in multiclass attack
classification. The most relevant studies of WSN attack
detection using ML and DL will be discussed in this
section.

Using different Deep Learning techniques, the study
investigates common WSN attack detection. The WSN
Dataset and WSN-BFSF datasets are used to evaluate both
soft and hard ensemble methods. Overall accuracy is
increased by mixing forecasts from many models,
according to the results. The accuracy of the hard ensemble
technique was 99.967% on the WSN-DS dataset, whereas
the soft ensemble technique was 98.12% [27]. By
combining a hybrid CNN-LSTM with an attention
mechanism, the suggested model in Ref. [28] enhanced
feature extraction and pattern recognition, hence boosting
IoT intrusion detection. Real-time feature selection
optimization by the dynamic PSO algorithm improves
classification precision and flexibility in response to
changing threats. High accuracy rates of 98.73% with
CNN, 99.87% with LSTM, 99.12% with CNN-LSTM, and
98.88% with enhanced CNN-LSTM with attention are
demonstrated by experimental assessments.

Tolba [29] introduced a novel Intrusion Detection
System (IDS) model that combines machine learning and
deep learning methods for wireless sensor networks. The
suggested hybrid model successfully captures the temporal
correlations in the data by extracting features using an
LSTM network. Its structure consists of a layer of dropouts
for regularization, a dense layer, and an LSTM layer. To
detect and categorize four different kinds of Denial of
Service (DoS) attacks, blackhole, Grayhole, flooding, and
scheduling, the study additionally combines LSTM with
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Random Forest. With accuracy, precision, recall,
F1-Score, and AUC scores of 0.996, 0.98, 0.98, 0.98, and
0.99, respectively. Using a multi-criteria approach,
Quayed et al. [24] suggested a framework to improve
cybersecurity in Industry 4.0 WSNs. It employs deep
learning and machine learning methods to detect and stop
intrusions. Three models Decision Tree, MLP, and
Autoencoder—are used by the framework. While the MLP
model achieves 99.52% accuracy, the Decision Tree model
achieves 99.48% accuracy. The accuracy of the binary
classification Autoencoder model is 91%. When compared
to benchmark models like Random Forest and Logistic
Regression, the suggested framework performed better.

Altameemi et al. [30] used machine learning and deep
learning technologies to offer a model-based cyberattack
detection system. To determine attack types, it employs
Recurrent Neural Network (RNN) techniques and feature
reduction. After dimensional reduction and optimization,
the system reaches 97% accuracy, which aids with routing
protocol design and lowers the probability of attacks in
Underwater Wireless Sensor Networks (UWSN)
communication. On the other hand, Reddy et al. [31]
suggested a feed-forward ANN model with a Multi-Layer
Perceptron (MLP) framework that has been preprocessed
using WEKA. According to experiments, the MLP
performs better than the RBMC-IDS and Hoeffding
adaptive trees, with 98% accuracy compared to 96.33%
and 97%, respectively.

To identify and categorize DoS intrusion attacks as
Flooding, Blackhole, Normal, TDMA, or Grayhole,
Salmi et al. [32] employed a CNN-LSTM network. The
dataset is a computer-generated wireless sensor network-
detection system. The wireless sensor network
environment is simulated using the Network Simulator
NS-2, which produces 23 features for categorizing sensor
states and five types of DoS attacks. The accuracy,
precision, and recall scores of the CNN-LSTM model are
0.944, 0.959, and 0.922, respectively, after evaluation
across 25 epochs. Using the NSL-KDD dataset,
Ramkumar et al. [2] presented a modified Recurrent
Neural Network with Long Short-Term Memory (RNN-
LSTM) for IDS in WSN classification. Thorough
performance validation yields exceptional results, such as
99.95% accuracy, 99.93% precision, and 95.69% robust
recall, with an F1—Score of 99.80%, exceeding the
standards set by present methods.

Sivakumar et al. [33] presented a novel Recurrent
Crossover-based  Dynamic  Differential (RC-DD)
algorithm for effective attack detection and localization in
Wireless Sensor Networks (WSN). For precise sensor
node location, the model employs a weighted K-Nearest
Neighbor (KNN) with Mahalanobis distance. Dynamic
Differential Annealed Optimization (DDAO) adjusts the
hyperparameter of the Recurrent Neural Network (RNN),
which detects multiple intrusions. With an accuracy rating
0f 98.9%, the RC-DD framework minimizes energy usage
and localization inaccuracy. Moundounga and Satori [34]
suggested system trains HMMs and GMMs using iterative
machine learning Expectation-Maximization and reduces
dimensionality in the WSN dataset using Principal
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Component Analysis. According to experiments, the setup
consisting of three HMMs and four GMMs attains a
remarkable accuracy of 94.55%. With accuracies between
0.96 and 0.98, the system performs better in cross-
validation than popular machine learning classifiers.
Table I summarizes the previous research studies.

TABLE I. COMPARISON OF PREVIOUS RESEARCH

Performance
Study Model Metrics
Accuracy: 99.95%,
Precision: 99.93%,
21 RNN-LSTM Recall: 95.69%,
F1—Score: 99.80%
[34] HMMs and GMMs Accuracy: 94.55%
MLP: Accuracy:
[24] MLP, Decision 99.52%, Decision
Tree, Autoencoder Tree: 99.48%,
Autoencoder: 91%
Hard Ensemble:
[27] Hard Ensemble, Accuracy: 99.967%,
Soft Ensemble Soft Ensemble:
98.12%
Accuracy: 98.88%
(Enhanced CNN-
28] Hybrid CNN-LSTM LSTM), 99.12%
with Attention (CNN-LSTM),
99.87% (LSTM),
98.73% (CNN)
Accuracy: 0.996,
Precision: 0.98,
[29] LSTl\gr?S‘:“d"m Recall: 0.98,
F1-Score: 0.98,
AUC: 0.99
[30] RNN Accuracy: 97%
MLP: Accuracy:
[31] Iiigf’di?gagt)iié 98%, REMC-IDS:
Trees 96.33%, Hoeffding:
97%
Accuracy: 0.944,
[35] CNN-LSTM Precision: 0.959,
Recall: 0.922
[33] RC-DD with KNN Accuracy: 98.9%

III. METHODOLOGY

This section provides an outline of the methodological
framework adopted to conduct the study. Hence, the
section focuses on the dataset, preprocessing of data,
model building, and evaluation procedures. Fig. 2 shows
the methodological framework.

A. WSNBFSF Dataset

The WSNBFSF dataset [36] provides a thorough
analysis of WSN traffic and contains 312,106 attacks,
which are categorized into four groups: normal traffic,
floods, blackhole attack traffic, and selective forwarding
attack traffic. Network congestion and energy resource
strain are caused by black holes, which also act as portals
for other attacks, such as sinkholes or selective forwarding.
Researchers studying network security frequently
encounter these attacks, which are a subset of DDoS
attacks. Finding and differentiating between vectors of
attack and regular network activity is its main goal. This
information, which comes from accurate preprocessing,
improves our knowledge of network vulnerabilities by
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offering insightful information about the dynamics of
cyber threats and vulnerabilities in WSNs [37, 38]. Fig. 3

shows the WSNBFSF dataset target distribution. And
Table II shows the features list of WSNBFSF dataset.

'WSNBFSF Dataset
Blackhole,Flooding,
Forwarding,Normal

5-Fold Cross-Validation

‘Processed dataset

essed training and
testing dataset

DL Classifiers

NeuralNetwork ‘ ‘ CNN ‘ ‘ RNN ‘ ‘ LSTM ‘ ‘CNN-I-RNN‘ ‘CNN-I-LSTM‘ ‘RNN+LSTM‘

Results

Fig. 2. Methodological framework.

WSNBFSF Dataset Class :

Rest_Energy

The remaining energy of the
relevant
node

R R Q 6 Trace Level represents the level recorded
DIStrIbUtlon - by a sensor at a specific
7 Mac _Type Pckt  MAC type of the packet
- 8 Source IP Port  Port number of the source node
9 Des IP Port Port number of the Destination
es o
m floods - node .
10 Packet Size Forwarded packet size
blackhole The lifetime of the forwarded
11 TTL traffic in
forwarding the network
12 Hop_Count Number of nodes passed
The ID number of the broadcast
Fig. 3. WSNBFSF dataset class distribution. 13 Broadcast D packets
14 Dest Node Num  ID of the target node
TABLE II. FEATURES LIST OF WSNBFSF DATASET s Dest Seq N Sequence number of the traffic
est_Seq Num o
Number Features Features Description forwarded to the destination
1 (sending) 16 Src Node ID Source node ID number
2 (receiving), 17 Sre_Seq Num Sotflf{ce sequence number of
1 Event 3 (forwarding), - traffic L
4 (dropping), and forwarded to dest}natlon
5 (Energy information). 18 Class Blackhol_e, Flooding, |
. The time of the event Forwarding, and Norma
2 Time performed in the
row .
B. Preprocessing
3 S Node Source node number
- The node number of the The WSNBFSF dataset was employed to test the
4 Node_id relevant node proposed classification framework. This dataset comprises

multiple classes
including normal

behaviors,
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categories of attacks (floods, blackhole, and forwarding).
A high imbalance across classes was observed, with
potential adverse consequences on the model's
performance and predictive bias toward majority classes.
To solve this problem, the following steps were used to
enhance classification performance.

1) Cleaning and transformation of the dataset

First, the dataset was examined for missing and
inconsistent values. Instances containing null or undefined
values were either imputed with means of numerical
features or removed if the number of cases with missing
values was marginal. Label encoding for non-numeric
features was done to make the data compatible with
machine learning algorithms.

2) Feature scaling

To construct a feature space that is standard and stable
for faster model convergence, all input features were
scaled using StandardScaler to have a zero mean and unit
variance. This normalization is paramount for distance-
based algorithms and for deep learning.

3) Handling class imbalance

The original sample possessed a highly imbalanced
distribution, in which normal instances far exceeded the
instances in attack classes. To maintain equal
representation from all the classes and to avoid bias to the
majority classes by the models, a hybrid resampling
technique was applied. Utilizing the Random Under
Sampler and Random Over Sampler classes in Python, the
number of normal was under-sampled to 29,844, whereas
all attack classes were over-sampled to 29,844. With this
setting, all the classes will have an equal share of
representation during model training, which will improve
classification for all categories and enhance the
generalization of the classes. Fig. 4 shows the WSNBFSF
dataset target distribution after balancing.

Balanced WSNBFSF
Dataset Class Distribution
H normal
25% 25% floods
25% 25% | blackhole
forwarding

Fig. 4. Balanced WSNBESF dataset class distribution.

4) Train-test validation

To ensure the evaluation rigor, the final processed
dataset applied a train-test split of 70:30 and 5-fold cross-
validation. A stratified split was to ensure that class
distributions in all subsets were not distorted by first
splitting the dataset into training, validation, and test sets.
To prevent data leakage, resampling methods were
performed on the training set and validation, and test sets
were left as they were. This guarantees that model analysis
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is carried out on unrewarded information, showing the
actual class distribution. Also, a duplicate check was done
on the splits to ensure that there were no duplicate
instances in the training and evaluation sets.

C. DL Classification Algorithms

1) Neural network (multi-layer Perceptron classifier)

MLP is a neural network-based machine learning
technique that combines significant amounts of data and
multi-layered Artificial Neural Networks (ANN) to
simulate human brain neurons [39]. It is recognized for its
dependability because of its approach of directional
learning. However, an ANN is made up of one or more
hidden layers, an input layer, and an output layer, as shown
in Fig. 5. It has several basic unit neurons that conduct
layer-by-layer conduction between neurons to represent
data. If there is more than one hidden layer, the output of
the hidden layer is added to the next one, and each layer
after that is summed using a different weight. After
determining the ideal weight for inputs and biases using a
typical Sigmoid function, the method enters this
information into the activation level via the transfer
function to generate output [40—42].

Fig. 5. Structure of ANN classifier [42].

2) Convolutional Neural Networks (CNNs)

Are deep learning models that are adaptable and
multipurpose since they can learn hierarchical picture
features. Their adaptive feature determination from raw
input data makes them especially well-suited for
recognition of features and data
informativeness evaluation. CNNs can be trained on big
datasets like ImageNet, and capture both low-level and
high-level semantic information [43]. With its effective
design that combines weight sharing, down-sampling, and
local perceptual fields to detect complex spatial patterns,
CNN is a potent tool in image recognition, computer vision,
and fault detection. Convolutional layers are used for
feature detection, pooling layers are used to reduce
dimensionality, and fully connected layers are used for
classification [44].

3) Recurrent Neural Networks (RNNs)
Are deep learning that handles time series data by

identifying contextual correlations in sequential data.
Time series modeling is made possible by RNNs' recurrent
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mechanism, which affects their output in contrast to typical
feedforward neural networks [45]. However, RNNs are
suitable for time-series studies because of their capability
to process sequential input and use feedback connections
to learn previously computed sequences [46].

4) Long Short-Term Memory (LSTM)

To mitigate the vanishing gradient problem prevalent in
Recurrent Neural Networks (RNNs), Hochreiter and
Schmid Huber introduced Long Short-Term Memory
(LSTM) networks [47, 48]. LSTMs employ sophisticated
gating mechanisms to regulate the flow of information,
thereby facilitating the retention of long-term
dependencies. As an enhanced variant of RNNs, LSTMs
incorporate a memory unit designed for the dynamic
updating and storage of information. This architecture
features three distinct gate units: input gates, forget gates,
and output gates. These gates function to selectively
manage the retention, discarding, and retrieval of
information, thus empowering LSTMs to effectively learn
from both short-term and long-term dependencies in
sequential data [49, 50].

5) Hybrid CNN-RNN

The hybrid combination of CNNs and RNNs is,
therefore, designed to realize extracting both spatial
patterns and temporal dependencies in WSN data [51]. In
essence, architecture emphasizes CNN layers to extract
local features of the data, wherein the recurrent layer
ingrains the sequential dependency for multiclass
classification output. The network architecture begins with
a stack of two 1-D convolution layers, 64 filters each, with
the kernel size 3 and padding ‘same’. The ‘relu’ activation
introduces nonlinearity. BatchNormalization follows each
convolution layer to stabilize and speed up the training
process. These layers identify low-level local patterns in
the input features space. This 1is followed by
MaxPooling1D pooling with a pool size of 2, which down-
samples the input feature maps and reduces computational
cost while retaining important features. Then comes the
deeper convolution part: two more convolutional layers,
each with 128 filters, kernel size of 3 again, and batch
normalization-this set allows the model to learn more
abstract,  high-level  representations. One more
MaxPoolingl D and Dropout with a dropout rate of 0.4
were introduced to avert overfitting. After spatial feature
extraction, the post-processed features are fed into a
SimpleRNN with 128 units. This layer captures temporal
dependencies and sequential behaviors occurring in WSN
traffic data. Setting the parameter return_sequences to
False passes only the last hidden state to the dense layers,
which essentially summarizes the entire input sequence. A
second Dropout layer, again with a dropout rate of 0.4, is
applied for overfitting prevention. The last part of the
architecture consists of two fully connected layers: a 128-
unit layer with ReLU activation followed by Dropout at a
rate of 0.3, and the output layer with four units and softmax
activation for the four classes of the classification task (say,
Normal, Flooding, Blackhole, Forwarding). Adam
optimizer with a learning rate of 0.001, compiles the model,
which is then trained using the sparse categorical cross-
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entropy loss function, which is appropriate for integer-
labeled multiclass targets. The performance of the network
is evaluated using accuracy.
6) Hybrid CNN-LSTM

To enhance the spatial and temporal characteristics of
features in WSN traffic data, CNN-LSTM incorporates a
hybrid model [35]. Architecture learns discriminative local
patterns through deep convolutional layers and LSTM
layers to grasp sequential dependencies. This offers
excellent capabilities for WSN anomaly or attack detection
based on multiclass classification. Temporal features are
obtained, which are finally passed down to an LSTM layer
with 128 hidden units. The LSTM is configured with
return_sequences=False, so that only the hidden state of
the last time step is passed to the next layer. This hidden
state is meant to summarize the temporal dynamics of the
input sequence. To promote further regularization, a
Dropout layer with a 40 percent dropout rate was added to
the LSTM output. The LSTM output passes through a fully
connected layer with 128 neurons and ReLU activation,
followed by a Dropout layer with a 30 percent dropout rate.
Finally, the output layer uses a dense layer with 4 neurons
with softmax activation to represent the four classes for the
classification task. The model is compiled using the Adam
optimizer with a learning rate of 0.001. The sparse
categorical cross-entropy loss function is used to handle
integer-encoded target labels for multiclass classification.
Model performance is evaluated using the accuracy metric.
7) Hybrid RNN-LSTM

A hybrid Recurrent Neural Network—Long Short-Term
Memory (RNN-LSTM) model was built to model short-
term and long-term temporal patterns in WSN traffic
sequence data [52]. The architecture is a better fit for
gleaning sequential dependencies and behavioral
signatures associated with normal and anomalous WSN
behaviors. The first layer is a simple RNN that has 128
units of recurrent; this layer receives the input sequence
one by one through time, deriving potential short-term
dependencies, and transferring this contextual information
across time steps. The parameter return_sequences=True
is set in order for the layer to output the whole sequence of
hidden states to the ensuing LSTM layer. Then, the
BatchNormalization layer that stabilizes training and
normalizes the activations is followed. A Dropout layer
process is next in the sequence, with the 0.3 dropout rate,
preventing overfitting and aiding the model to generalize
better. The second recurrent layer of the model is an LSTM
layer, which has 128 units. LSTMs are built to model long
dependencies in sequential data; therefore, they are useful
when temporal relations span more than a couple of time
steps. Return_sequences = False ensures that only the final
hidden state is moved on to the dense layers, encapsulating
a temporal representation of the entire input sequence.
BatchNormalization and Dropout with a rate of 0.4 were
applied to the LSTM layer to thwart overfitting. The output
of the LSTM layer passes to the fully connected dense
layer consisting of 128 neurons, activated by ReLU for
nonlinear transformations and abstracting at a high level.
Afterward, another Dropout layer that has a 0.4 dropout
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rate is dropped in to minimize overfitting. Finally, the four-
neuron softmax-activated dense output layer of the final
stage. It corresponds to classification into four output
classes (Normal, Blackhole, Flooding, Forwarding). The
compilation of the model is done with Adam as the
optimizer, having a learning rate of 0.001, while the loss
function being optimized is sparse categorical cross-
entropy, which fits multi-class classification problems
with integer-encoded labels. The performance of the

Neural Network Accuracy

model is kept track of, using accuracy as the evaluation
metric.

IV. EXPERIMENTAL AND RESULTS

A. Experiments Setting

All experiments were tested using Python and run on an
17-1065G7 processor at 1.50 GHz and 16.0 GB of RAM.
Table III. shows the DL classifier parameter settings.

Neural Network Loss

—— Training accuracy [ —Training Loss
Fg ] Validation accuracy — Validation Loss
051
0925
a 0900 uo: {
: 3
) 5
3 087 |
031
( 0830
0825
02
0400
0775 L |
L] 0 40 L] L Q 0 4Q w0 B0 100
Epoch Epoch
Fig. 6. Learning curves of ANN.
TABLE III. CLASSIFIER PARAMETERS SETTING Leaming rate 0.001
epochs 100
Classifier Setting CglNllsgeTZZS()M’
hidden_layer sizes (256,128, 64) hidden_layer_sizes > 140, >
activation Relu N - LSTM layer: 128,
solver adam Dense(128)
Neural Network Alpha led CNN layers, Dense
(MLP) learning_rate adaptive CNN+LSTM Activation layer=relu
max_iter 2000 Output layer —
epochs 100 =softmax
hidden_layer_sizes (64,64,128) ~ Solver Adam
o ReLU (hidden), Learning rate 0.001
CNN Activation Softmax (output) epochs 100
Solver Adam RNN layers: 128 ,
Learning rate 0.001 RNN+LSTM hidden_layer sizes LSTM layer: 128,
epochs 100 Dense (128)
hidden_layer sizes (64,128,128) o Dense layer=relu
o ReLU (hidden), Activation Output layer —
Activation Softmax (output) =softmax
RNN Solver Adam Solver Adam
Learning rate 0.001 Learning rate 0.001
epochs 100 epochs 100
hidden layer sizes (128,64,64)
Activation ReLU (hidden), Fig. 6 shows the learning curves of ANN model. The
LSTM Solver SOftm:éa(;utput) accuracy curves (left) indicate that both the training and
Learning rate 0.001 the validation accuracy curve are growing steadily by
epochs 100 epochs, and they are ultimately stabilized at 95 percent and
CNN layers: (64, 96 percent respectively. Notably, the accuracy of
hidden_layer_sizes 64, 128, 128) validation is always higher than the accuracy of training,
- = Simple RNN layer: . c . .
128 Dense(128) which indicates that the model is not overfitted but
CNN+RNN CNN, Dense generalizes. In the same manner, the loss curves (right)
Activation layer=relu show that the training and validation loss decrease
O:;%téger continuously, and neither of the curves diverges. This
Solver Adam consistency between training and validation performance
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proves that ANN attains consistent learning behavior and
strong generalization to unknown data. Thus, the fact that
such learning curves are included helps us to state that the
ANN model is not overfitted but instead well-regularized
and can be practically deployed. In general, the findings
confirm the stability of the training process and prove that
the ANN is the best to be used in attaining high accuracy
and minimizing the error rates. Such good results confirm
the appropriateness of the model to be used in practice,
where reliability and generalization are essential.

B. Performance Evaluation Metrics

The efficiency level of the DL model is assessed using
the following metrics. These metrics include accuracy,
recall, F-measure, and precision [39, 53]. Fig. 7 shows the
confusion matrix of 4 classes classification.

Confusion Matrix of 4 classes

Normal

20

Blackhole
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Forwarding

Fig. 7. Confusion matrix [54].

TP (True Positive): Represents instances accurately
classified as positive, FP (False Positive): Represents
instances incorrectly classified as positive, TN (True
Negative): Represents instances correctly classified as
negative, and FN (False Negative): Represents instances
incorrectly classified as negative [41, 55, 56].

Accuracy: The proportion of correctly identified
samples to all samples is known as accuracy. While
accuracy is a valuable metric, it may disproportionately
favor the dominant class, making it insufficient for
imbalanced datasets [57, 58].

Accuracy = TP / total number of samples

Recall: is a machine learning statistic that assesses a
model’s capacity to accurately detect every positive
instance in a dataset [59, 60].

Recall = TP / (TP+FN)

Precision: indicates the proportion of well-classified
positive data that is actually predicted, which means fewer
false positives result from high precision [39, 61].

Precision = TP / (TP+FP)

F-measure: calculates the harmonic mean of the
accuracy and sensitivity rates [62].

Fl-measure = 2 x (Precision X Recall) / (Precision +
Recall))

C. Classification Result (70/30 split Validation)

The WSN attacks are assessed using Neural Network,
CNN, RNN, LSTM, CNN+RNN, CNN+LSTM, and
RNN+LSTMML classifiers I term of accuracy, precision,
recall, and F1—Score. The results of the classification
experiments are presented in Table IV. Fig. 8 shows the
Confusion Matrix obtained for each DL classifier.

The accuracy comparison, as shown in Fig. 9, proves
that the Neural Network almost attained 100% accuracy,
practically perfect accuracy, thus asserting that the model
is very capable of grasping the data patterns prevailing in
the dataset. LSTM and RNN+LSTM follow closely below
with accuracies just under 98%, hence proving the fact that

memory in temporal sequences produces better
classification  results. CNN, CNN+RNN, and
CNN+LSTM attained accuracies in the 95% range,

indicating good results, though a tad inferior to their
LSTM-hybrid counterparts. RNN recorded a very low
performance with an accuracy of nearly 85%, proving that
though one can process sequential data through recurrent
mechanisms, a mere RNN might not be very useful due to
vanishing gradient, unlike LSTM or hybrid networks.
Generally, the outcomes prove that the deep learning
models with memory seem to dominate their simpler
recurrent and convolutional rivals on this task.

TABLEIV. OBTAINED RESULTS (70/30 SPLIT VALIDATION)

DL Classification Model Accuracy Precision Recall F1—Score

Neural Network 99.81 99.81 99.81 99.81
CNN 94.38 94.72 94.38 94.33

RNN 84.77 84.76 84.77 84.46

LSTM 98.27 98.33 98.27 98.27
CNN+RNN 95.17 95.46 95.17 95.16
CNN+LSTM 94.93 95.22 94.93 94.93
RNN+LSTM 97.78 97.89 97.78 97.78
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The precision performance implies the Neural Network
model still commands the top precision as shown in
Fig. 10, almost 100%, which means it positively predicted
with great accuracy most of the time and was accompanied
by almost no false positives. LSTM and RNN+LSTM
came next at 97-98% precision level, thus carving out
competent performer stature in correctly recognizing
important instances. CNN+RNN, CNN+LSTM, and CNN
are at the 95-96% precision level, thus quite precise but
just a step below. On the lowest end of precision was the
RNN model, with almost 85%, implying quite a few false
positives compared to other architectures. Thus, while
deep learning models are all good in terms of precision,
those having memory components, especially LSTM-
based models, seem to do better in reducing wrong
classifications.

PRECISION

D
SR
s S

Fig. 10. Precision.

The F1—Score results shown in Fig. 11, balancing
precision and recall, demonstrate that the Neural Network
stands out as the most powerful one with its near-100%
score, recording a superb performance both in detecting
positive cases and reducing false positives. Close behind
are the LSTM and RNN+LSTM models, scoring in the 97—
98% range, affirming their strength in working with
sequential data. The CNN+RNN, CNN+LSTM, and CNN
models hold up well, scoring 95-96%, indicating
consistent performance but slightly less harmony between
precision and recall compared to the top performers. RNN
stands behind with its F1—Score near 85%, hinting on its
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incapability of grasping long-term dependencies that
reduce its effectiveness. Powerfully highlighting memory-
enhanced architectures, particularly LSTM-based ones,
which maintain a healthy balance between precision and
recall, the results thus far set the yardstick for simpler
recurrent or convolutional structures to follow.

F1-SCORE

100

Fig. 11. F1-Score.

The recall metric shown in Fig. 12 is based on the
output of various models of deep learning. Neural
Networks recorded the highest recall of nearly 100%,
suggesting it was able to correctly identify relevant
instances. LSTM and RNN+LSTM came next with their
recall at almost 98%, thus suitable for tasks requiring
memory of sequential patterns. CNN classifier, alone or
coupled with LSTM or RNN, clocked slightly lower recall
rates of roughly 95%, which still denotes good
performance but may be less effective than recurrent
techniques to capture all patterns. A stand-alone RNN had
the lowest recall at about 85%, suggesting it could not
compete with the other architectures on this complexity
level of the task. In general, LSTM-enhanced systems
showed better performance than others, except for the fully
connected Neural Network that defeated each
implementation.

RECALL

Fig. 12. recall.

The fully connected Neural Network performed nearly
perfectly on all metrics, and this showed outstanding
performance in learning the patterns of the datasets. LSTM
and RNN+LSTM followed closely behind due to the
memory mechanisms provided, which help in long-term
dependencies, and CNN-based architecture did well, but
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not among the top. The plain RNN performed poorly due
to the shortcomings of dealing with long-range sequential
relationships. In general, memory augmented architectural
structures were found to be the most effective when higher
precision and recall were needed in the classification stage.

D. Classification Result (5-Fold Cross-Validation)

To overcome the risk of biases introduced by one
train/test split and to offer more statistically rigorous

evaluation of the proposed deep learning models, we
performed stratified 5-fold cross-validation. The method
makes every fold maintain the original class distribution of
the dataset, which gives more trustworthy performance
estimates. Each of the models was trained and tested five
times, each fold acting as a test set once. The findings
shown are the average values of these runs and its 95%
Confidence Intervals (CI). Table V displays the results
obtained of 5-fold cross-validation.

TABLE V. OBTAINED RESULTS (5-FOLD CROSS-VALIDATION)

Model Accuracy Precision Recall F1-Score Time (s)
Neural Network 99.89 +0.04 99.89 +£0.03 99.89 £ 0.04 99.89 +0.04 989.64
CNN 92.67 +5.38 92,92 £5.55 92.67 +5.38 92.62 +5.44 465.56
RNN 84.66+2.15 84.72+2.19 84.66£2.15 84.34+2.34 1201.12
LSTM 97.98 +£2.07 98.07 +1.89 97.98 £2.07 97.98 £2.07 2266.99
CNN-+RNN 93.86 +3.01 94.26 £2.57 93.86 +3.01 93.80+£3.12 1169.47
CNN+LSTM 95.49+£2.29 95.62+2.29 95.49 £2.29 9548 £2.31 1303.05
RNN-+LSTM 96.92 +£2.36 97.05+2.18 96.92 +2.36 96.92 +2.37 1959.14

Table IV includes the comparison in the performance
metrics (Accuracy, Precision, Recall, F1-Score) of the
various DL architectures. Out of the tested architectures,
the generic Neural Network (baseline) showed the best
performance in all the evaluation measures, closely
followed by the hybrid models, which include
RNN+LSTM and CNN+LSTM. This indicates that
temporal and spatial feature extraction (e.g., RNN and
LSTM or CNN and LSTM) would be more suited to
maximize the capability of the model to represent
sequential dependencies and high-level representations,
and, thus, achieve higher detection performance.

Comparing accuracy, precision, recall, and F1—Score
with computational time collectively, the outcomes show
that there is an evident trade-off among models under test.
CNN is the fastest to calculate but only has average
performance, whereas LSTM and hybrid architecture
(RNN+LSTM, CNN+LSTM) have higher predictive
accuracy but require much longer training. However, the
neural network proves to be the most balanced of all

models: it scores highest in all performance indicators but
at a comparatively lower computation time than LSTM
and hybrid networks. This means that the neural network
is not only more efficient in reducing classification errors
but is also more computationally efficient and hence is the
most efficient and viable option to be used in a real-world
system where classification and performance in terms of
resource usage both play important factors.

E. DL Model Detail Performance Analysis

The Neural Network model proved to have the best
performance in all the evaluation parameters, we have
presented in detail analysis of the results of the cross-
validation evaluation of the Neural Network model.
Table VI shows the precision, recall and F1—Score of each
attack type and the macro and micro averages. Also, we
give the Area Under the Receiver Operating Characteristic
Curve (ROC AUC) and Area Under the Precision-Recall
Curve (PR AUC), which is a threshold-free measurement
of model performance.

TABLE VI. NEURAL NETWORK PERFORMANCE METRICS FOR EACH CLASS

Precision Recall F1—Score ROC AUC PR AUC
Blackhole 99.73 99.97 99.85 99.99 99.97
Flooding 100 100 100 100 100
Forwarding 99.86 99.99 99.92 100 99.97
normal 99.96 99.58 99.77 99.98 99.97
Macro Average 99.89 99.89 99.89 99.99 99.98
Micro Average 99.89 99.89 99.89 99.99 99.99

Table VI shows the performance of the Neural Network
according to the classes of Blackhole, Flooding,
Forwarding and Normal. The findings indicate that the
model has almost perfect detection with all classes. In the
Flooding category, the Neural Network obtained an ideal
score of 100% in Precision, Recall, and F1—Score, with
ROC AUC and PR AUC equal to 100, which means that

the Neural Network did not make a single misclassification.

Equally, Forwarding and Blackhole attacks were classified
with very high precision and recall (all above 99.7%),
leading to F1—Scores of 99.92% and 99.85 respectively.
Normal class had slightly lower recall (99.58) than the
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other attack classes, implying that a low percentage of
normal traffic was incorrectly labeled as malicious.
However, its F1—Score was still high and equal to 99.77,
which shows general reliable detection.

The macro- and micro-averages of the Precision, Recall,
and F1—Score were all equal to 99.89, which indicates the
balanced ability of the Neural Network to classify all
categories without a clear bias to a specific category.
Moreover, ROC AUC and PR AUC values were to 100 in
most instances, which indicates that the model is very good
at the discriminatory ability between positive and negative
cases.
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Fig. 13 indicates the normalized confusion matrix of the
neural network for 5 folds. The findings support the
excellent classification capability of the model with almost
all samples being placed in corresponding categories
correctly. All the classes are close to 1.0 indicating very
high true positive values.

In particular, the classification of Blackhole, Flooding
and Forwarding attacks was done perfectly with each
having a 100% correct classification rate and no case of

Normalized Confusion Matrix - NeuralNetwork (WSNBFSFdataset)
Fold 1

0.000

P
°
£
<
]
e.|
@

True Label
Flooding

Forwarding

0.000

0.006

normal

Floo'ding Forwa‘rdinq
Predicted Label

Blackhole

@

Normalized Confusion Matrix - NeuralNetwork (WSNBFSFdataset)

Fold 3

0.000 0.000

0.000 0.000 0.000

0.000

0.003

Flooding Forwarding
Predicted Label

Blackhole

normal

©

0.000

normal

1.0

-0.4

-0.2

-0.0

-0.4

-0.2

-0.0

31

being mislabeled. This is an indication of the fact that the
model is capable of accurately identifying volumetric and
routing-based attacks. In the case of the Normal class, the

neural

network successfully predicted the correct

classification of 99.6% and the misclassification rate of
very low to Blackhole (0.3) and Forwarding (0.2) was very
low. These small misclassifications can be seen as the
reason behind the slightly lower recall in the previous
section of the Normal category.
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Fig. 13. Normalized confusion matrix of the neural network: (a) fold 1, (b) fold 2, (c) fold 3, (d) fold 4, (e) fold 5.

Overall, the Neural Network showed excellent results
on all the evaluation measures, and it had a low
misclassification error. It can be used in real-world
intrusion detection systems as its capacity to maximize
per-class accuracy and recall whilst demonstrating high
generalization implies that it is a strong and sound
candidate.

V. CONCLUSION AND FUTURE WORK

This paper has detailed the work by performing a
rigorous comparison of deep learning methods to attack
detection within Wireless Sensor Networks (WSNs). As
the results of the experiments, the architecture involving
memory blocks, i.e., LSTM and hybrid RNN-LSTM,
considered the temporal correlations of the WSN traffic
with high accuracy, precision, recall, and F1—Scores.
There were also good performances in fully connected
neural networks, implying that they can learn complex
relationships within the dataset, and CNN-based methods
have delivered competitive results due to the ability to
extract spatial features effectively. Standalone RNNs, in
their turn, were rather ineffective, which could probably be
explained by the difficulties in modeling long-term
dependencies. The results reveal the possibility of deep
learning in promoting WSN security through accurate and
automated intrusion detection of various forms of attacks.
Through models that could learn sequential and spatial
patterns, WSN-based systems can attain robust and real-
time threat detection, where little dependence is made on
manual rule-based identification of the threats. This paper
was only able to utilize a single data set, and it cannot
represent the complete variation in the traffic and attack
patterns of a real-life WSN, which might limit the
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generalizability. The experiments offline, and the
expensive 3D computation requirement of certain deep
learning models, could also pose challenges to applying
them to resource-limited sensor nodes. Also,
hyperparameter optimization was performed over a small
search area, and the succession of evolving strategies of
attacks can shorten long-term model performance. The
further steps in the research will involve testing bigger and
more varied datasets, namely on the adaptation of
architectures to real-time and energy-efficiency limitation
within Wireless Sensor Networks (WSNs). As the nodes
of WSNs are usually constrained with energy, memory,
and processing, the calculation capacity of various models,
such as inference time, model size, and deployment
capability, will be assessed in the future. The analysis will
be used to differentiate between models that can be directly
deployed onto sensor nodes and those that can be deployed
to gateways or central servers. Moreover, we are going to
discuss more modern methods, including parallelization,
attention mechanisms, Transformer architectures, and
Explainable Al to make it more efficient and interpretable.
Constant learning plans will also be added in order to
manage the changing attack patterns in order to ensure
continued performance of detection in dynamic WSN
environment.
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