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Abstract—The rise of quantum computing is putting 

tremendous pressure on existing cryptographic systems, 

particularly digital signature schemes based on Rivest-

Shamir-Adleman (RSA) and Elliptic Curve Cryptography. 

Quantum algorithms such as Shor and Grover have 

demonstrated the ability to severely weaken traditional 

security assumptions, highlighting the urgent need to develop 

new quantum-resistant digital signature schemes. Rather 

than relying on standard approaches such as lattice-based or 

multivariate-based cryptography, this paper explores an 

alternative direction: leveraging a new nonlinear 

exponentiation problem defined over finite fields, whose 

mathematical structure is designed to render Shor's 

algorithm inapplicable and to reduce the effectiveness of 

Grover’s algorithm. Based on this newly proposed hard 

problem, we introduce multiple digital signature schemes, 

each with a distinct structure in its signing and verification 

algorithms. Although these schemes differ in operational 

mechanisms, they all maintain correctness, remain secure 

against classical attacks, offer strong quantum resistance, 

and are fully compatible with existing Public Key 

Infrastructure system. Through both theoretical analysis and 

performance evaluation, we demonstrate that diversifying 

digital signature constructions from a single underlying hard 

problem is not only feasible but also offers practical 

advantages: it allows selecting a design best suited for specific 

application environments while maintaining post-quantum 

security. This result opens a promising new path toward the 

development of flexible, efficient, and long-term secure 

digital signature schemes for the post-quantum era. 
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I.  INTRODUCTION 

The continuous advancement of quantum computing is 

creating a major turning point for modern cryptography. 

Security assumptions that once served as the solid 

foundation for traditional digital signature schemes such 

as Rivest-Shamir-Adleman (RSA)  [1], Elliptic Curve 

Digital Signature Algorithm (ECDSA) [2], Elgamal [3], 

etc., are becoming increasingly obsolete under the 

influence of quantum algorithms. Specifically, Shor’s 

algorithm enables solving the Integer Factorization 

Problem (IFP) and the Discrete Logarithm Problem (DLP) 

in polynomial time, rendering most group-based 

cryptosystems ineffective; meanwhile, Grover’s algorithm 

significantly reduces the complexity of brute-force attacks 

on hash functions and symmetric ciphers. As large-scale 

quantum computers become a reality, many existing 

security systems will no longer be safe, including the 

widely deployed Public Key Infrastructure (PKI) [4]. 

In response to this threat, the cryptographic community 

has heavily invested in the development of Post-Quantum 

Digital Signature schemes [5]. Among them, lattice-based 

schemes (e.g., Dilithium [6], Falcon [7]) and hash-based 

schemes (e.g., SPHINCS+ [8]) are being standardized by 

NIST due to their strong quantum resistance. However, 

these schemes still face several practical challenges, 

including large key and signature sizes, computational 

complexity [9, 10], and difficulties integrating with 

existing infrastructures due to incompatibility with 

traditional PKI structures. These limitations have created 

a gap between post-quantum security theory and real-

world deployment, especially in resource-constrained 

environments such as IoT, embedded systems, and high-

speed digital services. 

Instead of following the well-established directions 

mentioned above [11], this paper approaches the problem 

from a different perspective: it proposes a new hard 

problem [12], defined over a Finite Field (FF) or on an 

Elliptic Curve (EC), in which the generator element is kept 

secret to neutralize exploitation by Shor’s algorithm and 

reduce the effectiveness of Grover’s algorithm. Unlike 

existing PQC schemes [13, 14], which typically rely on a 

fixed mathematical problem to construct a single scheme, 
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we demonstrate that the proposed hard problem can serve 

as the foundation for multiple digital signature schemes, 

each with independent signing and verification algorithms 

tailored for different requirements in terms of performance, 

size, or compatibility. 

The results of this research not only clarify the practical 

applicability of the new hard problem but also open up a 

flexible design path for post-quantum digital signatures, 

where a single mathematical foundation can give rise to 

diverse schemes tailored to varied deployment 

requirements. The following sections present the 

relationship between the proposed hard problem and the 

limitations of Shor and Grover, as well as how to prevent 

quantum attacks through careful group structure design. 

II.  THE THREATS POSED BY SHOR AND GROVER 

The emergence of quantum computers not only 

transforms the landscape of modern computation but also 

places the entire current cryptographic infrastructure at 

risk of collapse. In this section, we examine two 

representative quantum algorithms, Shor’s algorithm and 

Grover’s algorithm, which lie at the heart of this threat. 

However, unlike many current studies that attempt to 

build new schemes based on quantum-resistant structures 

such as lattice-based or code-based cryptography, our 

approach takes a different path: we design a new class of 

mathematical hard problems that cannot be reduced to the 

attack models used by Shor, while also minimizing the 

impact of Grover. 

A. Shor’s Algorithm and Its Implications for Classical 

Prolems 

Shor’s algorithm [15], introduced in 1994, marked a 

turning point in cryptography by being the first to solve 

two problems that were once considered the “backbone” 

of classical cryptography, IFP and DLP, in polynomial 

time on a quantum computer. This shattered the long-

standing belief in the “hardness” assumptions that 

underpin the security of signature schemes such as RSA, 

DSA, and ECDSA. 

Specifically, Shor’s algorithm uses the Quantum 

Fourier Transform (QFT) to find the period of a number-

theoretic function, a key step in breaking both IFP and 

DLP. While classical algorithms like GNFS or Pollard’s 

rho solve IFP or DLP in sub-exponential or quasi-

polynomial time, Shor’s algorithm achieves a solution in 

𝑂((𝑙𝑜𝑔𝑁)3) time, rendering cryptographic systems based 

on large integers or cyclic groups highly vulnerable once 

scalable quantum computers become a reality. 

Therefore, new digital signature schemes must ensure 

that there is no reduction from their underlying problem to 

a period-finding problem, in order to prevent Shor-style 

attacks. In this research, we propose a new class of hard 

problems defined over prime finite fields, where the 

generator element, typically exposed in traditional systems, 

is kept secret. This approach breaks a necessary condition 

for applying the quantum Fourier transform, thereby 

allowing the proposed scheme to remain resilient against 

Shor’s algorithm. 

B. Grover’s Algorithm and the Limits of Brute-Force 

Search 

Grover’s algorithm [16], introduced in 1996, does not 

solve structured mathematical problems like Shor’s 

algorithm, but it proves to be extremely effective in 

reducing the time required for brute-force attacks. With 

Grover, a search space of size 𝑁 requires only √𝑁 queries 

to locate the desired element, significantly lowering the 

cost of attacks on components such as hash functions, 

symmetric ciphers, and even private keys if their length is 

insufficient. 

In this context, the use of popular hash functions such 

as SHA-256 or SHA-3 in digital signature schemes is also 

affected: the effective security of an 𝑛 bit hash function is 

reduced to approximately 2𝑛/2 . This makes preimage 

attacks and collision finding easier than originally 

expected. For example, with SHA-256, an attacker needs 

only 2128 trials instead of 2256, compelling us to be more 

careful in choosing the output length and compression 

functions when designing signature schemes. 

The distinctive feature of our approach is this: rather 

than replacing the entire cryptographic structure with 

bulky post-quantum systems, we make lightweight 

adjustments to key parameters, such as increasing the 

output length or iteration rounds of the hash function. This 

balances the impact of Grover’s algorithm while keeping 

the overall design simple and fully compatible with 

existing PKI infrastructure. 

In summary, the rapid advancement of quantum 

computing poses a serious threat to existing cryptographic 

systems, particularly those based on DLP and IFP. 

Although many post-quanta signature schemes have been 

proposed, they still exhibit significant limitations. 

Therefore, it is both urgent and promising to explore new 

approaches, especially those that construct quantum-

resistant digital signature schemes without relying on 

traditional post-quantum algorithms, while remaining 

fully compatible with existing PKI systems. 

III.   RELATED WORKS 

In the current trend of constructing quantum-resistant 

digital signature schemes, most existing research focuses 

on applying well-established post-quantum hard problem 

families such as Lattice-based problems (e.g., SVP, LWE 

[17]), Multivariate Quadratic (MQ) [18], Code-based (e.g., 

McEliece) [19], Hash-based [20], and Isogeny-based 

approaches. However, these directions often come with 

challenges such as large key sizes, low computational 

efficiency, or limited compatibility with traditional PKI. 

An alternative research direction that has attracted 

growing attention is to leverage variants of DLP or, with 

the goal of constructing quantum-resistant signature 

schemes that retain compatibility with existing systems. 

Although these approaches may not fall within the scope 

of standard post-quantum cryptography, they introduce 

new types of hard problems that are sufficiently complex 

to serve as the foundation for efficient and quantum-

resistant signature schemes. Notable works in this line of 

research include: 
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• Dobraunig et al. [21] proposed SPHINCS-256, a post-

quantum secure digital signature scheme based on hash 

trees, while maintaining compatibility with traditional 

PKI infrastructures. Although it does not rely on 

lattice- or code-based assumptions, SPHINCS still 

achieves high quantum security. 

• Hülsing et al. [22] introduced qTesla-F, a signature 

scheme that exploits special properties from a DLP 

variant defined over sparse matrix structures. Although 

not part of standardized post-quantum cryptography, 

this scheme demonstrates good performance and 

integration capabilities with existing PKI systems. 

• Koblitz and Menezes [23] proposed using elliptic 

curve DLP variants combined with structure-oriented 

hash functions to build a new security layer that resists 

Shor’s algorithm. They particularly emphasized 

selecting group structures that preserve compatibility 

with traditional deployment environments. 

• Tuan [24] and his collaborators proposed a novel 

digital signature scheme based on the Inverse 

Nonlinear Multiplicative Problem, an extended form 

of classical DLP. This scheme showed promising 

performance on embedded systems and quantum 

resistance thanks to its nonlinear and hard-to-invert 

structure. 

These studies have opened a new direction in the design 

of post-quantum digital signatures that avoid reliance on 

standardized post-quantum algorithms, thereby laying the 

groundwork for further research, such as the present paper, 

which explores newly proposed non-standard hard 

problems to construct digital signature schemes that are 

not only quantum-resistant but also fully compatible with 

existing PKI infrastructures. 

IV.  PROPOSED NEW DIFFICULT PROBLEM 

In this section, we introduce a new class of 

computationally hard problems designed to serve as the 

foundation for constructing quantum-resistant digital 

signature schemes. This problem is formulated as an 

enhanced variant of the traditional DLP [25] and the 

Elliptic Curve (ECDLP) [26], with a crucial distinction: a 

key parameter (such as 𝑔 in DLP or 𝐺 in ECDLP) is kept 

secret. 

Hiding this parameter not only breaks the conventional 

analytical structure but also neutralizes classical solution 

techniques based on discrete logarithms. As a result, the 

proposed problem becomes significantly harder than the 

standard DLP or ECDLP. We present the formal definition 

of the problem, analyze its mathematical hardness, and 

demonstrate that it cannot be efficiently solved by either 

classical or quantum algorithms, including Shor’s and 

Grover’s algorithms. 

A. Proposed Hard Problem over a Prime Finite Field 

Based on the traditional DLP over a prime finite field 

𝐹𝑝, we propose two new variants of hard problems that 

offer a higher level of security. The core idea is to conceal 

the generator parameter 𝑔 (which is the generator of the 

multiplicative group 𝐹𝑝
∗ and is publicly known in classical 

DLP). 

When this parameter is hidden or replaced by a secret 

value, such as the private key 𝑥 , the problem loses its 

familiar algebraic structure, thereby becoming 

significantly harder to solve. In the simplest case, if the 

generator 𝑔 is replaced by a secret value 𝑥, then the new 

problem defined over the prime finite field can be stated 

as follows: 

 Type 1: Nonlinear Monotonic Exponentiation 

Problem: Given a prime number 𝑝 , for every positive 

integer 𝑦 in 𝔽𝑝, find an integer 𝑥 that satisfies the equation: 

𝑎𝑥 ≡ 𝑥𝑏 𝑚𝑜𝑑 𝑝                              (1) 

 Type 2: Nonlinear Polynomial Exponentiation 

Problem: Given a prime number 𝑝 , for every pair of 

integers (𝑎, 𝑏) in 𝔽𝑝 × 𝔽𝑝, find an integer 𝑥 such that:  

𝑎𝑥 ≡ 𝑥𝑏 𝑚𝑜𝑑 𝑝.                               (2) 

 Type 3: Two-Dimensional Cross Exponentiation 

Problem (Nonlinear): Given a prime number p, for every 

pair (𝑦1, 𝑦2) ∈ 𝔽𝑝 × 𝔽𝑝, find two integers (𝑥1, 𝑥2) ∈ 𝔽𝑝 ×

𝔽𝑝 such that: 

 {
𝑦1 ≡ 𝑥1

𝑥2  𝑚𝑜𝑑 𝑝

𝑦2 ≡ 𝑥2
𝑥1  𝑚𝑜𝑑 𝑝

.                       (3) 

All three newly proposed hard problem variants exhibit 

strong non-linearity, which makes them resistant to 

linearization through conventional techniques and 

unsuitable for classical DLP-solving methods. This 

indicates their high potential for cryptographic 

applications, particularly in constructing digital signature 

schemes with enhanced security levels. 

None of the three variants can be efficiently solved 

using traditional algorithms designed for DLP over finite 

fields, such as the Baby-Step Giant-Step algorithm, 

Pollard’s Rho for DLP, or the Index Calculus method. 

Specifically: 

• For Type 1: The function 𝑥𝑥 is nonlinear with respect 

to 𝑥, and it is not a fixed-base exponentiation function. 

Therefore: Pollard’s Rho algorithm cannot be applied, 

as it relies on the linearity of modular exponentiation; 

Baby-Step Giant-Step is not applicable, because the 

algorithm has no way to precompute a table for the 𝑥𝑥 

function; Index Calculus cannot be used, since the 

function cannot be decomposed into base elements as 

required by the method. Moreover, computing the 

inverse of the function 𝑥𝑥 𝑚𝑜𝑑 𝑝  is mathematically 

extremely difficult, as it lacks an exploitable group 

structure. 

• For Type 2: This is an equation involving the 

interference of two exponential functions: On the left-

hand side, 𝑎𝑥 follows the form of traditional discrete 

logarithm; On the right-hand side, 𝑥𝑏 is a polynomial 

form. In this equation, 𝑥 appears both in the exponent 

and the base, so it cannot be isolated on one side as in 

the traditional DLP. Therefore, known DLP-solving 

algorithms cannot be applied. Furthermore, since both 

sides of the equation depend on 𝑥  in fundamentally 

different and nonlinear ways, there is no method to 

transform it into simple additive or multiplicative 
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groups. In other words, the group structure is unclear, 

making it impossible to reduce the problem to a cyclic 

group DLP, a fundamental requirement for many DLP-

based algorithms. 

• For Type 3: Although this type appears superficially 

similar to the traditional DLP due to its use of modular 

exponentiation, the cross-dependent and nonlinear 

relationship between the two variables 𝑥1 and 𝑥1 

makes it impossible to transform it into a classical DLP 

form. Specifically, traditional algorithms exploit the 

one-dimensional structure of the DLP, that is, solving 

for the exponent 𝑥  in the equation 𝑦 = 𝑔𝑥 𝑚𝑜𝑑 𝑝 , 

given 𝑦 and 𝑔. However, Type 3 is a system of two 

nonlinear equations, creating intertwined and 

asymmetric dependencies between the two unknowns, 

which prevents any straightforward transformation 

into a linear or basic logarithmic form where classical 

algorithms could be applied. 

The absence of a fixed generator, as well as the lack of 

a linear relationship between the exponent and the 

remaining components, renders operations like 

“conversion to discrete logarithm” or “variable separation” 

meaningless. Moreover, no standard technique exists to 

reduce this system of equations to a single variable without 

losing critical information. As a result, Form 3 constitutes 

a fundamentally different hard problem compared to the 

standard DLP, and it cannot be solved using any existing 

classical algorithms for DLP over finite fields. 

In summary, both forms of the proposed new hard 

problem exhibit strong non-linearity, lack familiar 

algebraic structures, and cannot be reduced to traditional 

DLPs. This exceptional complexity opens new 

possibilities for use as the cryptographic foundation of 

post-quantum digital signature schemes, where both 

Shor’s and Grover’s algorithms become ineffective. 

B. Post-Quantum Resistance of the Proposed Hard 

Problems 

We evaluate the post-quantum resistance of the newly 

proposed hard problems based on their immunity to two 

representative quantum algorithms: Shor’s and Grover’s. 

• Shor resistance of Type 1 ( 𝑦 = 𝑥𝑥 𝑚𝑜𝑑 𝑝 ): Shor's 

algorithm can only solve hidden-variable problems of 

the form 𝑔𝑥 ≡ 𝑦, where the base ggg is fixed. In this 

case, both the base and the exponent are 𝑥, and the 

function 𝑓(𝑥) = 𝑥𝑥 lacks a group structure or a usable 

period for QFT (Quantum Fourier Transform), 

rendering Shor ineffective. 

• Shor resistance of Type 2 ( 𝑎𝑥 ≡ 𝑥𝑏 𝑚𝑜𝑑 𝑝 ): This 

nonlinear “exponential-polynomial” equation cannot 

be reduced to the standard form 𝑔𝑥. Since there exists 

no quantum transformation capable of exploiting a 

hidden period in this type, Shor’s algorithm is 

inapplicable to this problem. 

• Shor resistance of Type 3 (
𝑦1 ≡ 𝑥1

𝑥2  𝑚𝑜𝑑 𝑝

𝑦2 ≡ 𝑥2
𝑥1  𝑚𝑜𝑑 𝑝

): This is 

a nonlinear, two-dimensional cross-exponentiation 

problem, lacking a pure group structure. It does not fall 

within the class of Abelian problems like the standard 

DLP or other homomorphic group problems. Shor’s 

algorithm, which leverages periodicity in finite 

Abelian groups (especially for classical DLP), cannot 

be directly applied to Type 3. Specifically, solving the 

system in Type 3 would require a quantum algorithm 

to search over the entire space of pairs (𝑥1, 𝑥2), which 

forms a nonlinear, two-dimensional search space with 

no standard group structure. Currently, there is no 

known effective quantum method to transform Type 3 

into a periodic group structure suitable for Shor’s 

algorithm. These highlights Type 3’s potential 

resistance to Shor-based quantum attacks, indicating 

structural-level post-quantum security. 

• In theory, Grover’s algorithm reduces the time 

complexity of brute-force search from 𝑂(𝑁)  to 

𝑂(√𝑁), applicable to so-called “black-box” problems, 

where no specialized quantum algorithm exists to 

solve the problem faster. The hard problems proposed 

in this paper, including: Type 1 (Nonlinear Monotonic 

Exponentiation); Type 2 (Nonlinear Exponential-

Polynomial), and Type 3 (Two-Dimensional Cross 

Exponentiation); all exhibit high nonlinearity, lack 

group structure, and do not possess clear mathematical 

forms that would enable exploitation by quantum 

algorithms more efficient than Grover. 

Therefore, in the worst-case scenario where no specific 

quantum algorithm exists, these problems would only be 

affected by Grover’s algorithm, meaning the security level 

would degrade by half the size of the search space. 

Specifically, Grover can reduce the complexity of brute-

force search over the set 𝑥 ∈ [1, 𝑝 − 1]  from 𝑂(𝑝)  to 

𝑂(√𝑁) , which is still exponential complexity. This 

implies that if the original key space provides 128 bit 

security, under Grover’s impact, the effective security 

would drop to approximately 64 bits. To compensate, one 

can increase the key size accordingly (e.g., from 128 to 

256 bits) to maintain the desired security level. Therefore, 

if ppp is chosen sufficiently large (e.g., ≥ 256 bits), the 

proposed hard problems remain secure against Grover’s 

algorithm. For instance, if 𝑝 ≈ 2256, Grover would require 

2128 steps, which remains infeasible for practical attacks. 

In summary, all three proposed problem types can 

effectively resist Grover’s algorithm through parameter 

size scaling, while still maintaining acceptable runtime 

performance. 

From the three proposed hard problem variants, it can 

be observed that they all represent nonlinear, monotonic, 

and multidimensional extensions of the classical DLP. 

These problems not only preserve strong one-wayness but 

also naturally increase computational complexity through 

nonlinear exponents and symmetric, interleaved structures 

among the variables. Preliminary evaluations of resistance 

against classical algorithms, such as Baby-Step Giant-Step, 

Pollard’s Rho, and Index Calculus, as well as quantum 

algorithms like Shor and Grover, indicate that these 

problems have strong potential as the foundation for both 

traditionally secure and post-quantum secure 

cryptographic schemes. In the following chapters, these 

problems will be applied to construct new digital signature 

schemes that aim to ensure correctness, security, and 

performance, with a vision to eventually replace 
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traditional DLP-based schemes in modern computing 

environments. 

V.   CONSTRUCTION OF POST-QUANTUM DIGITAL 

SIGNATURE SCHEMES BASED ON THE PROPOSED NON 

STANDARD DLP PROBLEM 

In this section, we present the construction of two new 

digital signature schemes based on the proposed non-

standard exponentiation problems over a prime finite field. 

Specifically, the first scheme is built upon Problem Type 

1, the Nonlinear Monotonic Exponentiation Problem, 

while the second is based on Problem Type 3, the 

Nonlinear Polynomial Exponentiation Problem, which 

involves two private keys and two public keys. Both 

schemes follow the standard three-phase model of a digital 

signature scheme (key and parameter initialization, 

signature generation, and signature verification) and are 

designed with the goal of achieving strong security against 

both classical and quantum attacks. Furthermore, the post-

quantum resistance, including robustness against Shor’s 

and Grover’s algorithms, is thoroughly analyzed for each 

scheme in this section. 

A. First Scheme (DSS-5.1) 

1)  Key and parameter generation algorithm for DSS-5.1 

The public/private key pair of the end-user is generated 

by the Key Generation algorithm, based on a set of domain 

parameters, which includes a pair of prime numbers 𝑝 and 

𝑞 satisfying 𝑞|(𝑝 − 1). These domain parameters can be 

generated according to standards such as ISO/IEC 14888-

3, FIPS 186-4, or GOST R34.10-94. 

The proposed scheme is constructed based on Problem 

Type 1 of the newly introduced hard problems, and unlike 

traditional DLP-based systems where the private key is 

chosen directly, here the private key 𝑥 is computed from 

an element 𝛼 ∈ 𝑍𝑝
∗ . 

The Key Generation Algorithm of DSS-5.1 is described 

as follows: 

Algorithm DSS-5.1a: 

Input: 𝐿𝑝, 𝐿𝑞. 

Output: 𝑝, 𝑞, 𝑥, 𝑦. 

[1]. generate  𝑝, 𝑞: 𝑙𝑒𝑛(𝑝) = 𝐿𝑝, 𝑙𝑒𝑛(𝑞) = 𝐿𝑞 , 𝑞|(𝑝 − 1) 

[2]. select 𝛼: 1 < 𝛼 < 𝑝 

[3]. 𝑥 ← 𝛼
𝑝−1

𝑞 𝑚𝑜𝑑 𝑝: If (𝑥 = 1) then goto [2]
          

[4]. 𝑦 ← 𝑥−(𝑥)−1
𝑚𝑜𝑑 𝑝: If (𝑦 = 1) then goto [2] 

[5]. return (𝑝, 𝑞, 𝑥, 𝑦)   

 

where 𝑙𝑒𝑛(. ) denotes function that calculates the length 

(in bits) of an integer, 𝐿𝑝 and 𝐿𝑞  denote the lengths (in bits) 

of prime numbers 𝑝 and 𝑞, 𝑝 and 𝑞 are system parameters 

or domain parameters, and 𝑥 and 𝑦 denote the private and 

public keys of the signer. 

Note that: 

• Not choosing the secret key 𝑥  directly, but instead 

computing 𝑥 through 𝛼, where 𝛼 ∈  𝑍𝑝
∗ , offers several 

advantages in both security and the mathematical 

structure of the scheme: (i) This construction ensures 

that the secret key 𝑥 lies within the subgroup generated 

by 𝛼, meaning the secret key space is constrained by a 

controllable structure with high randomness, rather 

than being chosen arbitrarily. This reduces the risk of 

generating weak or degenerate keys; (ii) The use of the 

exponentiation function 𝛼
𝑝−1

𝑞  leverages the structure 

of the order-𝑞 subgroup in 𝑍𝑞
∗ , a common technique in 

DLP-based schemes. This enhances resistance against 

structural analysis attacks or weak-key exploitation 

techniques; and (iii) Theoretically, deriving 𝑥 from the 

element 𝛼 rather than selecting it directly makes the 

key generation process less dependent on the quality of 

the random number generator. It is well known that 

low-quality randomness sources are frequently 

exploited in real-world attacks. 

• In the Type 1 hard problem, the expression 𝑥𝑥 𝑚𝑜𝑑 𝑝 

is used to construct a nonlinear one-way function with 

high computational complexity, thereby forming the 

foundation for the problem’s security. However, when 

designing a digital signature scheme, directly using the 

formula 𝑦 = 𝑥𝑥 𝑚𝑜𝑑 𝑝 to compute the public key can 

lead to relationships that are easily traceable in reverse, 

especially if information such as the value of 𝑥 or parts 

of the signature are leaked. Moreover, the expression 

𝑥𝑥  𝑚𝑜𝑑 𝑝  may result in repetitions or collisions for 

certain values of 𝑥 , potentially compromising the 

uniqueness and unpredictability of the public key. 

• Instead, the formula 𝑦 ← 𝑥−(𝑥)−1
𝑚𝑜𝑑 𝑝 is chosen to 

enhance nonlinearity and further complicate the 

attacker’s ability to infer the private key. This 

expression introduces two layers of nonlinearity: one 

involving an inverse, and another involving an 

exponentiation of that inverse, significantly increasing 

the difficulty of decryption or reverse-engineering. 

This is a key distinction that allows the scheme to 

achieve a higher level of security, while effectively 

leveraging the structure of the Type 1 hard problem 

without directly copying its full expression into the 

public key formula. 

Moreover, this approach introduces a level of 

independence between the hard problem and the public 

key: Although the scheme is constructed based on the 

Type 1 hard problem, modifying the public key generation 

formula helps decouple the direct dependency between the 

problem and the key entity. This enhances the overall 

security because the attacker cannot easily exploit the 

solution of the hard problem to attack the signature scheme. 

2) Signature generation algorithm for message M 

Assume (𝑟, 𝑠) is the digital signature for the message 

𝑀. The first component of the signature, 𝑟, is computed 

using the following formula: 

𝑟 = (𝑥)(𝑥×ℎ)−1×(1+𝑘−(𝑥−1)×𝑥−(𝑘−1)) (𝑘)𝑘−𝑥×𝑥−(𝑘−1)
𝑚𝑜𝑑 𝑝

 (4) 

where 𝑘 is a random integer selected in the range (1, 𝑞), ℎ 

is the representative value (hash value) of the message 𝑀, 

generated by the hash function 𝐻(. ) as ℎ = 𝐻(𝑀). 

The second component of the signature, s is calculated 

as follows (where 𝑛 = 𝑝 × 𝑞): 
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 𝑠 = 𝑟 × 𝑘ℎ × 𝑥𝑘 𝑚𝑜𝑑 𝑛 (5) 

The signature generation algorithm of the DSS-5.1 

scheme is described as follows: 

Algorithm DSS-5.1b: 

Input: 𝑝, 𝑞, 𝑥, 𝑀. 

Output:(𝑟, 𝑠). 

[1]. select 𝛽: 1 < 𝛽 <  𝑝  

[2]. 𝑘 ← 𝛽
𝑝−1

𝑞 𝑚𝑜𝑑 𝑝:
 
If (𝑘 =  1) then goto [1] 

[3]. ℎ ← 𝐻(𝑀) 

[4]. 𝑟 ← (𝑥)(𝑥×ℎ)−1×(1+𝑘−(𝑥−1)×𝑥−(𝑘−1)) ×

                (𝑘)𝑘−𝑥×𝑥−(𝑘−1)
𝑚𝑜𝑑 𝑝        

[5]. 𝑛 ← 𝑝 × 𝑞  

[6]. 𝑠 ← 𝑟 × 𝑘ℎ × 𝑥𝑘 𝑚𝑜𝑑   𝑛   

[7]. return (𝑟, 𝑠) 

where 𝑀  denotes the message to be signed, with 𝑀 ∈
{0,1}∞; 𝐻(. ) is hash function defined as 𝐻 :{ 0,1}∗ ↦ 𝑍ℎ, 

and the message value satisfies 𝑞 < 𝑀 <  𝑝 . 

3) Signature verification algorithm for message M 

The signature verification algorithm of the scheme is 

based on the following assumption: 

(𝑦)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝 = (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ+𝑟 𝑚𝑜𝑑 𝑝 

(6) 

That is, if the message M and the signature (𝑟, 𝑠) satisfy 

Eq. (6), then the signature is considered valid, and the 

message is verified as authentic and intact. Conversely, if 

Eq. (6) is not satisfied, the signature is considered forged, 

and the message is rejected in terms of authenticity and 

integrity. 

The signature verification algorithm of the DSS-5.1 

scheme is described as follows: 

Algorithm DSS-5.1c: 

Input: 𝑝, 𝑞, 𝑦, 𝑀, (𝑟, 𝑠). 

Output: TRUE/FALSE. 

[1]. ℎ ← 𝐻(𝑀) 

[2]. 𝑎 ← (𝑦)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝                                                                                  

[3]. 𝑏 ← (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ+𝑟 𝑚𝑜𝑑 𝑝               
                                                     

  

[4]. if (𝑎 =  𝑏) then return (True) 

       else return (False) 
     

                                                                             

where 𝑀  denotes the message and (𝑟, 𝑠)  denotes the 

signature to be verified. If the result is True, the integrity 

and origin of 𝑀 are confirmed; otherwise, if the result is 

False, the origin and integrity of M are rejected. 

4) Proof of correctness of the DSS-5.1 scheme 

What needs to be proved here is:  

If 𝑎 = (𝑦)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝  (7) and 𝑏 =
(𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ+𝑟 𝑚𝑜𝑑 𝑝 (8) then:  𝑎 =  𝑏.  

Indeed, if the signature and message to be verified are 

not forged, from Eqs. (4)−(7) we will have: 

𝑎 = (𝑦1)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥)−𝑥−1×𝑟×𝑘ℎ×𝑥𝑘
× (𝑟 × 𝑘ℎ × 𝑥𝑘)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥)−𝑟×𝑘ℎ×𝑥𝑘−1
× (𝑘)ℎ×𝑟 × (𝑥)𝑘×𝑟 × (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 (9)    

From Eqs. (5−8) we get: 

𝑏 = (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ+𝑟 𝑚𝑜𝑑 𝑝

= (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ × (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

= (𝑟)𝑟×ℎ×𝑘ℎ×𝑥𝑘
× (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 = ((𝑥)−𝑥−1×ℎ−1
× (𝑥)𝑘−(𝑥−1)×𝑥−𝑘×ℎ−1

×

       (𝑘)𝑘−ℎ×𝑥−𝑘
)

𝑟×ℎ×𝑘ℎ×𝑥𝑘

× (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥)−𝑟×𝑘ℎ×𝑥𝑘−1
× (𝑥)𝑟×𝑘 × (𝑘)𝑟×ℎ × (𝑟)𝑟 𝑚𝑜𝑑 𝑝   

(10) 

From Eqs. (9)−(10) we have: 𝑎 = 𝑏. 

Thus, the correctness of the scheme has been proved.  

B. Second Scheme (DSS-5.2) 

1) Key and parameter generation algorithm for DSS-5.2 

In the second scheme, which is constructed based on 

Problem Type 3 of the proposed hard problem, the signer 

must generate a pair of private keys consisting of two 

components (𝑥1, 𝑥2), along with the corresponding public 

key pair (𝑦1 , 𝑦2) , and standard domain parameters 

including a large prime 𝑝 and a smaller prime 𝑞 such that 

𝑞|(𝑝 − 1). The selection and generation of these domain 

parameters are performed according to current 

recommendations from international standards such as 

ISO/IEC 14888-3, FIPS 186-4, or GOST R34.10-94, to 

ensure compatibility and security in real-world application 

environments. 

The DSS-5.2a key generation algorithm below 

describes the detailed initialization procedure. Here, 𝐿𝑞  

and 𝐿𝑝 denote the bit lengths of 𝑞 and 𝑝, respectively. The 

algorithm ensures that the generator elements are chosen 

randomly, without repetition, and that the resulting public 

key values have strong cryptographic strength, while 

avoiding degenerate values that may lead to private key 

information leakage. 

Algorithm DSS-5.2a: 

Input: 𝐿𝑞 , 𝐿𝑝. 

Output: 𝑝, 𝑞, 𝑥1, 𝑥2, 𝑦1, 𝑦2. 

[1]. generate 𝑝, 𝑞, 𝑙𝑒𝑛(𝑝) = 𝐿𝑝; 𝑙𝑒𝑛(𝑞) = 𝐿𝑞; 𝑞|(𝑞 − 1) 

[2]. select 𝑎1:1 < 𝑎1 < 𝑝 

[3].
 
𝑥1 ← (𝑎1)

𝑝−1

𝑞  𝑚𝑜𝑑 𝑝 if (𝑥1 = 1) then goto [2]
 

[4]. select 𝑎2: 1 < 𝑎2  < 𝑝 

[5].
 
𝑥2 ← (𝑎2)

𝑝−1

𝑞  𝑚𝑜𝑑 𝑝: If (𝑥2 = 1) then goto [4]
            

[6]. 𝑦1 ← (𝑥1)𝑥2  mod𝑝: If (𝑦1 = 1) then goto [2] 

[7]. 𝑦2 ← (𝑥2)−𝑥1  mod𝑝: If (𝑦2 = 1) then goto [2]
                                          

 

[8]. return (𝑝, 𝑞, 𝑥1, 𝑥2, 𝑦1, 𝑦2) 

where 𝑙𝑒𝑛(. )  denotes the function that calculates the 

length (in bits) of an integer; 𝐿𝑞 and 𝐿𝑝 denote the lengths 

(in bits) of prime numbers p and q; 𝑝 and 𝑞 are domain 

parameters; and 𝑥1, 𝑥2, 𝑦1, 𝑦2 denote the private and public 

keys of the signer. 

Re-selecting values when the result is 1 is intended to 

avoid degenerate cases in which some intermediate values 

during the signing process become overly simple (e.g., 

equal to 1), potentially allowing an attacker to exploit this 

to establish a direct relationship with the private key, 

thereby leaking key information or enabling key recovery. 

 

Journal of Communications, vol. 21, no. 1, 2026

6



2) Signature generation algorithm for message M 

Assume we need to generate a digital signature (𝑟, 𝑠) 

for the message 𝑀. The first component of the signature, 

𝑟, is calculated using the following formula: 

𝑟 = ((𝑥1)𝑥2+ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘
×

        (𝑥2)(𝑥1×ℎ+𝑘)×(𝑥1)−ℎ×(𝑥2)−𝑘
) 𝑚𝑜𝑑 𝑝 (11) 

where 𝑘 is a random integer selected in the range (1, 𝑞) 

and ℎ  is the hash value representing the message 𝑀 , 

computes as ℎ = 𝐻(𝑀). 

The second component of the signature, 𝑠, is calculated 

as follows (𝑛 = 𝑝 × 𝑞): 

 𝑠 = 𝑟 × (𝑥1)ℎ × (𝑥2)𝑘  𝑚𝑜𝑑 𝑛 (12) 

The signature generation algorithm of the proposed 

scheme is described in detail as follows (see DSS-5.2b). 

where 𝑀  denotes the message to be signed, with  𝑀 ∈
{0,1}∞ ; 𝐻(. )  is a hash function defined as 𝐻: {0,1}∗ ↦
𝑍ℎ, where 𝑞 < ℎ < 𝑝; ℎ is the representative value (hash 

value) of 𝑀, computed as ℎ =  𝐻(𝑀) and 𝑘 is a randomly 

chosen value in the range (1, 𝑞). 

Algorithm DSS-5.2b: 

Input: 𝑝, 𝑞, 𝑥1, 𝑥2, 𝑀2 

Output: (𝑟, 𝑠)  

[1]. generate k: 1 < 𝑘 < 𝑞
                                                              

 

[2]. ℎ ← 𝐻(𝑀) 

[3]. 𝑟 ← ((𝑥1)𝑥2+ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘
×

                 (𝑥2)(𝑥1×ℎ+𝑘)×(𝑥1)−ℎ×(𝑥2)−𝑘
) 𝑚𝑜𝑑 𝑝       

[4]. 𝑛 ← 𝑝 × 𝑞 

[5]. 𝑠 ← 𝑟 × (𝑥1)ℎ × (𝑥2)𝑘  𝑚𝑜𝑑 𝑛 

[6]. return (𝑟, 𝑠) 

3) Signature verification algorithm for message M 

The signature verification algorithm of the proposed 

scheme is based on the following assumption: 

    (𝑦1)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝 

= (𝑦2)𝑟×ℎ × (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)+𝑟 𝑚𝑜𝑑 𝑝 (13) 

In other words, if the message 𝑀  and the signature 

(𝑟, 𝑠) satisfy Eq. (13), the signature is considered valid, 

and the message is verified as authentic and intact. 

Conversely, if the equation is not satisfied, the signature is 

deemed forged, and the message is rejected in terms of 

authenticity and integrity. 

The signature verification algorithm of the proposed 

scheme is described as follows: 

Algorithm DSS-5.2c: 

Input: 𝑝, 𝑞, 𝑦1, 𝑦2, 𝑀, (𝑟, 𝑠) 

Output: True/False. 

[1]. ℎ ← 𝐻(𝑀) 

[2]. 𝑎 ← (𝑦1)(𝑠 mod q) × (𝑠 mod 𝑝)𝑟mod 𝑝                                                                                  

[3]. 𝑏 ← (𝑦2)𝑟×ℎ × (𝑟)(s mod 𝑞)+𝑟mod𝑝               
                                                     

  

[4]. if (𝑎 = 𝑏) then return (True) 

       else return (False) 
     

                                                                             

where 𝑀  denotes the message and (𝑟, 𝑠)  denotes the 

signature to be verified. If the result is True, the integrity 

and origin of 𝑀 are confirmed; otherwise, if the result is 

False, the origin and integrity of M are rejected. 

4) Proof of correctness of the DSS-5.2 scheme 

What needs to be proved here is: 

If 𝑎 = (𝑦1)(𝑠 mod 𝑞) × (𝑠 mod 𝑝)𝑟mod 𝑝 (14) and 𝑏 =
(𝑦2)𝑟×ℎ × (𝑟)(s mod 𝑞)+𝑟mod 𝑝 (15) then: 𝑎 =  𝑏.  

Indeed, if the signature and message to be verified are 

not forged, from (12) and (14) we will have:   

                                      𝑎 = (𝑦1)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝 

= (𝑥1)𝑥2×𝑟×(𝑥1)ℎ×(𝑥2)𝑘
× (𝑟 × (𝑥1)ℎ × (𝑥2)𝑘)𝑟 𝑚𝑜𝑑 𝑝 

= (𝑥1)𝑟×(𝑥1)ℎ×(𝑥2)𝑘+1
× (𝑥1)ℎ×𝑟 × (𝑥2)𝑘×𝑟 × (𝑟)𝑟 𝑚𝑜𝑑 𝑝   (16) 

and from Eqs. (11, 12, 15) we get: 

   𝑏 = (𝑦2)𝑟×ℎ × (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)+𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑦2)𝑟×ℎ × (𝑟)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥2)−𝑥1×𝑟×ℎ × ((𝑥1)𝑥2+ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘
× (𝑥2)(𝑥1×ℎ+𝑘)×(𝑥1)−ℎ×(𝑥2)−𝑘

)
(𝑠 𝑚𝑜𝑑 𝑞)

× (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥2)−𝑥1×𝑟×ℎ × (𝑥2)𝑥1×ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘×(𝑠 𝑚𝑜𝑑 𝑞) × (𝑥1)𝑥2×(𝑠 𝑚𝑜𝑑 𝑞) 

                  × (𝑥1)ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘×(𝑠 𝑚𝑜𝑑 𝑞) × (𝑥2)𝑘×(𝑥1)−ℎ×(𝑥2)−𝑘×(𝑠 𝑚𝑜𝑑 𝑞) × (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

 = (𝑥2)−𝑥1×𝑟×ℎ × (𝑥2)𝑥1×ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘×𝑟×(𝑥1)ℎ×(𝑥2)𝑘
× (𝑥1)𝑥2×𝑟×(𝑥1)ℎ×(𝑥2)𝑘

 

                   × (𝑥1)ℎ×(𝑥1)−ℎ×(𝑥2)−𝑘×𝑟×(𝑥1)ℎ×(𝑥2)𝑘
× (𝑥2)𝑘×(𝑥1)−ℎ×(𝑥2)−𝑘×𝑟×(𝑥1)ℎ×(𝑥2)𝑘

× (𝑟)𝑟 𝑚𝑜𝑑 𝑝 

             = (𝑥2)−𝑥1×𝑟×ℎ × (𝑥2)𝑥1×𝑟×ℎ × (𝑥1)𝑟×(𝑘)ℎ×(𝑥2)𝑘+1
× (𝑥1)ℎ×𝑟 × (𝑥2)𝑘×𝑟 × (𝑟)𝑟 𝑚𝑜𝑑 𝑝     

   = (𝑥1)𝑟×(𝑥1)ℎ×(𝑥2)𝑘+1
× (𝑥1)ℎ×𝑟 × (𝑥2)𝑘×𝑟 × (𝑟)𝑟 𝑚𝑜𝑑 𝑝  (17) 

From Eqs. (16−17) we have: 𝑎 = 𝑏. 

Thus, the correctness of the scheme has been proved. 

C. Security Level of the Constructed DS Schemes 

1) Resistance to classical attacks of DSS-5.1 and DSS-5.2 

Both DSS-5.1 and DSS-5.2 are designed based on 

nonlinear variants of the newly proposed hard problem 

over a prime finite field, with the goal of eliminating the 

applicability of traditional discrete logarithm solving 

algorithms. As a result, they offer strong resistance against 

two common types of attacks in current PKI environments: 

attacks aimed at recovering the private key, and signature 

forgery attacks. 
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a) For the DSS-5.1 scheme 

Attacks on the private key: Attacks targeting the 

private key typically occur at the key generation algorithm 

(DSS-5.1a) and the signature generation algorithm (DSS-

5.1b). The attacker’s goal is to recover the private key 𝑥 

from the public key 𝑦, or from a generated signature on a 

message 𝑀. 

• Key Generation Algorithm: In this phase, the public 

key is computed as 𝑦 = 𝑥−𝑥−1
 𝑚𝑜𝑑 𝑝. To recover 𝑥 

from 𝑦, an attacker would have to solve the nonlinear 

equation 𝑥𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑝, which is exactly Type 1 of 

the proposed hard problems. Currently, no known 

mathematical method can solve this problem in 

polynomial time, except by brute-forcing all possible 

values. Hence, the only feasible attack is exhaustive 

search with complexity about 2𝑛, where 𝑛 = |𝑝|. 
• Signature Generation Algorithm: In steps such as [2] 

and [4], variables 𝑘  and 𝑥  are used, but 𝑘  is 

randomly generated and not disclosed. Step [6] 

involves a complex expression combining 𝑘, 𝑥, and 

the hash value ℎ , which is highly resistant to 

inversion. Therefore, attacking to recover 𝑥 from the 

output of the signature generation algorithm also 

reduces to solving the equation 𝑥𝑥  ≡ 𝑦 𝑚𝑜𝑑 𝑝 , 

which remains infeasible except through brute-force 

methods. 

Forgery attacks: A forgery attack occurs when an 

attacker can generate a valid signature for a message 

without knowing the private key. 

The signature verification algorithm (Algorithm DSS-

5.1c) for this scheme specifies that a pair of values (𝑟, 𝑠) 

is accepted as a valid signature for the message 𝑀 if the 

following condition is satisfied: 

(𝑦)(𝑠 𝑚𝑜𝑑 𝑞) × (𝑠 𝑚𝑜𝑑 𝑝)𝑟 𝑚𝑜𝑑 𝑝 

        =  (𝑟)(𝑠 𝑚𝑜𝑑 𝑞)×ℎ+𝑟 𝑚𝑜𝑑 𝑝 (*) 

It can be seen that condition (*) essentially corresponds 

to Type 2 of the proposed hard problems, as discussed in 

Section IV. This is a nonlinear exponential-polynomial 

problem, with no clear group structure, making it 

impossible to apply the traditional DLP techniques. That 

means the attacker cannot solve this equation, and 

therefore cannot forge a valid signature. 

b) For the DSS-5.2 scheme 

Attack on the Private Key: Attacks on the private key 

typically target the key generation algorithm (DSS-5.2a) 

and the signature generation algorithm (DSS-5.2b). The 

attacker’s goal is to recover the private key pair 𝑥1, 𝑥2 

from the public key 𝑦1, 𝑦2  or from an existing signature 

generated for message 𝑀. 

• However, the attacker cannot recover the private key 

from the public key, because in algorithm DSS-5.2a: 

Lines 2 and 4: Two random numbers 𝛼1, 𝛼2 ∈ 𝐹𝑝 are 

selected. Lines 3 and 5: Ensure that 𝑥1 and 𝑥2 are not 

equal to 1; Lines 6 and 7: The public keys are 

generated using nonlinear functions: 𝑦1 =
𝑓(𝑥1) 𝑚𝑜𝑑 𝑝 and 𝑦2 = 𝑔(𝑥2) 𝑚𝑜𝑑 𝑝 , where 𝑓  and 

𝑔 are nonlinear functions that cannot be reduced to 

forms solvable via discrete logarithms. Therefore, 

since no discrete logarithm computation can be 

applied, the attacker cannot recover the private key 

from the public key. 

• The attacker also cannot derive the private key from 

the signature on message M, because in algorithm 

DSS-5.2b: Line 1: A random 𝑘 is selected from the 

range (1, 𝑞); Lines 3 and 4: The signature (𝑟, 𝑠) is 

generated based on the newly proposed hard problem, 

not on standard multiplication. Thus, since the 

signature formula is based on the newly proposed 

hard problem, the attacker cannot solve the equations 

to recover the private key without also solving this 

hard problem, which is currently intractable. 

Forgery Attack on Signatures: A forgery attack occurs 

when an attacker is able to generate a valid signature for a 

message without knowing the private key. However, in 

this scheme, an attacker cannot forge a signature because 

a forged signature must satisfy the condition: 

(𝑦1)(s mod 𝑞) × (𝑠 mod 𝑝)𝑟mod 𝑝

= (𝑦2)𝑟×ℎ × (𝑟)(s mod 𝑞)+𝑟mod 𝑝 

It can be observed that this condition essentially 

corresponds to the second type of the newly proposed hard 

problems. Therefore, in order to generate a valid signature, 

the attacker would have to solve this new hard problem. 

However, as of now, no algorithm other than brute-force 

can achieve this. 

Thus, both schemes demonstrate strong resistance 

against classical attacks due to their novel nonlinear 

structures that cannot be reduced to the traditional DLP. 

DSS-5.1 employs a complex single-variable nonlinear 

function, while DSS-5.2 extends this to a nested two-

variable system, thereby offering a higher level of security. 

Although both schemes are built on the same mathematical 

foundation, a prime finite field, they represent two distinct 

implementation approaches, similar in principle yet 

different in structure and cryptographic complexity. 

2) Post-quantum resistance of the proposed digital 

signature schemes 

As analyzed in Section IV.B, the newly proposed hard 

problems demonstrate resistance to the quantum 

algorithms Shor and Grover, thanks to their nonlinear 

structure and the fact that they cannot be reduced to the 

standard discrete logarithm form. However, the post-

quantum security level of a digital signature scheme does 

not rely solely on the underlying hard problem, but also on 

how this problem is integrated into each step of the signing 

and verification process. 

In this paper, both proposed schemes, DSS-5.1 and 

DSS-5.2, leverage different variants of the new hard 

problem, with a design that ensures the generator element 

is never publicly disclosed and the cyclic structure is not 

exposed, conditions required for Shor’s algorithm to be 

applicable. At the same time, all parameters potentially 

affected by Grover’s algorithm (e.g., symmetric keys, hash 

values) are chosen with sufficient bit-lengths to ensure 

post-quantum security. 

a) Resistance to shor and grover of the dss-5.1 scheme 

The DSS-5.1 scheme is constructed based on Type 1 of 
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the newly proposed hard problem, a special nonlinear 

problem in which the unknown appears both as the base 

and the exponent. This form cannot be reduced to the 

traditional DLP, which is the primary target of Shor’s 

quantum algorithm. 

• On resistance to Shor’s algorithm: 

In the DSS-5.1a key generation algorithm, the private 

key 𝑥  is not selected directly; instead, it is generated 

indirectly from a secret generator element 𝛼. This element 

𝛼 is never publicly disclosed, meaning that an attacker has 

no knowledge of the generator needed to apply Shor’s 

algorithm, which relies on finding periodicity based on a 

known base. 

Moreover, the public key y is computed through a 

nonlinear function, deliberately avoiding direct use of the 

expression 𝑥𝑥 𝑚𝑜𝑑 𝑝, as that could expose the structure of 

the underlying hard problem. However, the nonlinear 

nature of the key generation function is still preserved, and 

there exists no clear periodic mapping that Shor’s 

algorithm could exploit. 

• On resistance to Grover’s algorithm: 

During the signature generation process (algorithm 

DSS-5.1b), a random number 𝑘 ∈ (1, 𝑞)  is selected for 

each signing session. Additionally, the message is hashed 

using a cryptographic hash function 𝐻(𝑀), with the hash 

value hhh typically residing in a large space (e.g., 256 bits 

or more). 

Grover’s algorithm only reduces the number of brute-

force steps over a key space from 2𝑛 to 2𝑛/2. Therefore, to 

maintain a security level equivalent to NIST standards 

(e.g., NIST Level 1, which corresponds to 128 bit 

security), the scheme must use parameters such as 𝑝, 𝑝, 𝑘, 

and ℎ  with a minimum length of 256  bits. The current 

design of DSS-5.1 satisfies this requirement. 

In conclusion, the DSS-5.1 scheme resists Shor’s 

algorithm by keeping the generator element secret and 

using a nonlinear key generation function. It also resists 

Grover’s algorithm through sufficiently large parameter 

sizes and per-signature randomness. This ensures a high 

level of security in both classical and quantum 

environments. 

b) Resistance to shor and grover of the dss-5.2 scheme 

The DSS-5.2 scheme is constructed based on Type 3 of 

the newly proposed hard problems, a two-dimensional 

cross exponentiation system, in which the two 

unknowns𝑥1, 𝑥2 appear simultaneously in both the base 

and the exponent. Therefore, Type 3 is considered a 

strongly nonlinear system of equations, lacking a clear 

group structure as in DLP, and also lacking the periodicity 

required by Shor’s quantum algorithm. 

• Regarding resistance to Shor’s algorithm: 

To solve the DLP or ECDLP, Shor’s algorithm 

fundamentally requires the ability to construct a quantum 

oracle that performs a transformation such as:  ∣ 𝑟⟩  ↦ ∣
𝑔𝑟  𝑚𝑜𝑑 𝑝⟩ in a finite field, or ∣ 𝑟⟩ ↦∣ 𝑟 × 𝐺⟩ on an elliptic 

curve. 

However, in the proposed scheme over a finite field, the 

generator g is randomly generated and kept secret within 

the private key; the only public value is 𝑦 = 𝑥𝑥 𝑚𝑜𝑑  𝑝. 

This prevents the attacker from constructing the oracle 

𝑓(𝑟) = 𝑔𝑟 , since 𝑔 is unknown. 

As a result, the scheme completely nullifies the 

applicability of Shor’s algorithm, not only in theory, but 

also at the level of each concrete step in the quantum 

procedure. 

• Regarding resistance to Grover’s algorithm: 

Grover’s algorithm accelerates brute-force attacks by 

reducing the complexity from 𝑂(2𝑛)  to 𝑂(2𝑛/2) . 

However, the proposed scheme requires a minimum 

private key length of 𝑛 ≥  256, which means the attack 

cost remains 𝑂(2128), still infeasible even for powerful 

quantum computers. 

Moreover, in the signature generation process 

(algorithm DSS-5.2b), a valid signature depends not only 

on a single pair (𝑟, 𝑠), but must simultaneously satisfy two 

independent verification equations, each involving distinct 

keys and generators. This forces an attacker to solve two 

separate hard problems concurrently, significantly 

expanding the search space and thus drastically reducing 

Grover’s effectiveness. 

The resistance of the scheme against Shor and Grover 

attacks stems not only from the hardness of the underlying 

problem but also from the algorithmic design itself. 

The public key conceals the generator element; The 

signing and verification processes are decentralized;  

No quantum oracle can be constructed for Shor’s 

algorithm; 

The complex search space significantly reduces the 

effectiveness of Grover’s algorithm. As a result, the 

scheme offers strong post-quantum security while 

maintaining high performance and ease of integration into 

existing PKI infrastructures without major modifications. 

VI.  DISCUSSION 

 The proposed scheme introduces a novel approach that 

does not rely on lattice-based, hash-based, or code-based 

constructions like Dilithium, Falcon, or SPHINCS+. By 

leveraging a non-standard hard problem, it provides 

resistance against both Shor’s and Grover’s algorithms 

while maintaining compatibility with existing PKI 

infrastructures. With key and signature sizes of reasonable 

magnitude, the scheme is easy to implement and facilitates 

a smoother transition to the post-quantum cryptographic 

environment. However, a more comprehensive evaluation 

is still required to fully assess its practical feasibility and 

security. 

• Computational Cost Comparison between Proposed 

Schemes, DSA, and SPHINCS+: Table I provides a 

detailed comparison of computational costs among the 

traditional signature scheme (DSA), the proposed 

schemes (DSS-5.1 and DSS-5.2), and a representative 

post-quantum scheme from the hash-based family 

(SPHINCS+). The evaluated operations include: the 

number of large modular exponentiations (N.exp), 

modular multiplications (N.mul), modular inversions 

(N.inv), and hash function calls (N.h). This analysis 

offers a theoretical performance assessment of each 

scheme during the signing and signature verification 

phases. 
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TABLE I. COMPARISON OF COMPUTATIONAL COSTS BETWEEN THE PROPOSED SCHEMES, DSA, AND SPHINCS+

Operation 
DSA 

Sign 

DSA  

Verify 

DSS-5.1 

Sign 

DSS-5.1 

Verify 

DSS-5.2 

Sign 

DSS-5.2 

Verify 

SPHINCS+ 

Sign [27] 

SPHINCS+ 

Verify [27] 

N.exp 2 3 3 4 4 3 − − 

N.mul 3 2 5 3 6 4 − − 
N.inv 1 1 1 2 0 1 − − 

N.h 1 1 1 2 1 1 
~65,000 − 

200,000 

~25,000 – 

60,000 

 It can be seen that the two proposed schemes, DSS-5.1 

and DSS-5.2, incur slightly higher computational costs 

than DSA/DCDSA, but remain feasible for practical 

deployment owing to the use of simple modular operations 

and the absence of complex structures such as those in 

hash-based or lattice-based schemes. In contrast, 

SPHINCS+ [27] achieves strong quantum-resistant 

security but incurs extremely high computational costs 

because it requires tens of thousands of hash operations per 

signature, rendering it less suitable for resource-

constrained environments, including IoT and high-speed 

blockchain applications. Therefore, the proposed schemes 

strike a balanced trade-off between efficiency, security, 

and compatibility with current PKI infrastructures. 

• Performance and Scalability: The proposed schemes 

achieve high performance by relying solely on modular 

multiplication and exponentiation, which are easily 

optimized in both software and hardware 

implementations. The public key is compatible with 

current PKI infrastructures, and the compact signature 

size is well-suited for blockchain, IoT, and smart cards. 

However, further experimental evaluation and 

comparison with other PQC schemes, especially on 

FPGA/ASIC platforms, are necessary. 

• Resistance to Attacks: Both schemes are resistant to 

Shor’s and Grover’s algorithms as well as classical 

attacks, thanks to the use of a newly designed problem 

where the generator is kept secret, disrupting the 

underlying group structure crucial for solving discrete 

logarithms. Furthermore, brute-force attacks would 

require testing up to 22𝑛  cases (with 𝑛 ≥ 256 ), 

rendering them practically infeasible. These schemes 

are also immune to structure-specific attacks common 

in lattice-based cryptography (e.g., Dilithium). 

Nevertheless, further evaluation is needed regarding 

side-channel resistance, especially against timing and 

power analysis, and countermeasures such as masking 

or blinding should be considered to better protect the 

private key. 

• Limitations and Future Work: Despite showing 

quantum resistance and PKI compatibility, the 

proposed schemes have yet to be experimentally 

verified across various platforms and remain 

unstandardized, unlike current PQC candidates such as 

Dilithium and Falcon. Future directions include 

algorithmic optimization, real-world implementation 

on PKI, blockchain, and IoT systems, and expansion to 

group signatures. Once fully validated, these schemes 

could offer a practical and flexible post-quantum 

signature solution. 

VII.  CONCLUSION 

In this paper, we propose two post-quantum digital 

signature schemes, denoted as DSS-5.1 and DSS-5.2, 

based on two different forms of the same newly proposed 

hard problem over a prime finite field. Although they share 

the same mathematical foundation, these schemes adopt 

signature generation and verification algorithms which 

differ from those of previous schemes. This demonstrates 

that the newly proposed hard problem can serve as a 

foundation for various types of digital signature schemes 

with different structures, all aimed at the same goals: being 

secure against both classical and quantum attacks, and 

remaining compatible with current PKI infrastructures. 

Theoretical analysis shows that both schemes are 

resistant to Shor’s algorithm owing to their nonlinear 

structure and the concealment of the generator parameter. 

At the same time, the impact of Grover’s algorithm is 

mitigated by appropriately choosing sufficiently large 

parameters. Compared to DSA and DCDSA, although the 

proposed schemes entail slightly higher computational 

costs, they avoid certain computationally expensive 

operations, such as the modular inverse in the signing 

phase (as in DSS-5.2), while achieving higher levels of 

security that are well suited for the quantum era. 

These results pave the way for developing digital 

signature schemes that do not rely on existing post-

quantum primitives but instead leverage newly proposed 

mathematical structures to achieve both efficiency and 

long-term security at the same time. In the future, practical 

implementations should be explored on specific platforms, 

such as blockchain and IoT devices, as well as further 

investigations into side-channel resistance, in order to 

provide a more comprehensive solution. 
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