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Abstract—The rise of quantum computing is putting
tremendous pressure on existing cryptographic systems,
particularly digital signature schemes based on Rivest-
Shamir-Adleman (RSA) and Elliptic Curve Cryptography.
Quantum algorithms such as Shor and Grover have
demonstrated the ability to severely weaken traditional
security assumptions, highlighting the urgent need to develop
new quantum-resistant digital signature schemes. Rather
than relying on standard approaches such as lattice-based or
multivariate-based cryptography, this paper explores an
alternative direction: leveraging a new nonlinear
exponentiation problem defined over finite fields, whose
mathematical structure is designed to render Shor's
algorithm inapplicable and to reduce the effectiveness of
Grover’s algorithm. Based on this newly proposed hard
problem, we introduce multiple digital signature schemes,
each with a distinct structure in its signing and verification
algorithms. Although these schemes differ in operational
mechanisms, they all maintain correctness, remain secure
against classical attacks, offer strong quantum resistance,
and are fully compatible with existing Public Key
Infrastructure system. Through both theoretical analysis and
performance evaluation, we demonstrate that diversifying
digital signature constructions from a single underlying hard
problem is not only feasible but also offers practical
advantages: it allows selecting a design best suited for specific
application environments while maintaining post-quantum
security. This result opens a promising new path toward the
development of flexible, efficient, and long-term secure
digital signature schemes for the post-quantum era.

Keywords—post-quantum digital signature, new hard
problem, shor’s algorithm, grover’s algorithm, Public Key
Infrastructure (PKI), non-standard assumption

I. INTRODUCTION

The continuous advancement of quantum computing is
creating a major turning point for modern cryptography.

Manuscript received July 19, 2025; revised August 12, 2025; accepted
September 10, 2025; published January 9, 2026.

doi:10.12720/jem.21.1.1-11

Security assumptions that once served as the solid
foundation for traditional digital signature schemes such
as Rivest-Shamir-Adleman (RSA) [1], Elliptic Curve
Digital Signature Algorithm (ECDSA) [2], Elgamal [3],
etc., are becoming increasingly obsolete under the
influence of quantum algorithms. Specifically, Shor’s
algorithm enables solving the Integer Factorization
Problem (IFP) and the Discrete Logarithm Problem (DLP)
in polynomial time, rendering most group-based
cryptosystems ineffective; meanwhile, Grover’s algorithm
significantly reduces the complexity of brute-force attacks
on hash functions and symmetric ciphers. As large-scale
quantum computers become a reality, many existing
security systems will no longer be safe, including the
widely deployed Public Key Infrastructure (PKI) [4].

In response to this threat, the cryptographic community
has heavily invested in the development of Post-Quantum
Digital Signature schemes [5]. Among them, lattice-based
schemes (e.g., Dilithium [6], Falcon [7]) and hash-based
schemes (e.g., SPHINCS+ [8]) are being standardized by
NIST due to their strong quantum resistance. However,
these schemes still face several practical challenges,
including large key and signature sizes, computational
complexity [9, 10], and difficulties integrating with
existing infrastructures due to incompatibility with
traditional PKI structures. These limitations have created
a gap between post-quantum security theory and real-
world deployment, especially in resource-constrained
environments such as IoT, embedded systems, and high-
speed digital services.

Instead of following the well-established directions
mentioned above [11], this paper approaches the problem
from a different perspective: it proposes a new hard
problem [12], defined over a Finite Field (FF) or on an
Elliptic Curve (EC), in which the generator element is kept
secret to neutralize exploitation by Shor’s algorithm and
reduce the effectiveness of Grover’s algorithm. Unlike
existing PQC schemes [13, 14], which typically rely on a
fixed mathematical problem to construct a single scheme,
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we demonstrate that the proposed hard problem can serve
as the foundation for multiple digital signature schemes,
each with independent signing and verification algorithms
tailored for different requirements in terms of performance,
size, or compatibility.

The results of this research not only clarify the practical
applicability of the new hard problem but also open up a
flexible design path for post-quantum digital signatures,
where a single mathematical foundation can give rise to
diverse schemes tailored to varied deployment
requirements. The following sections present the
relationship between the proposed hard problem and the
limitations of Shor and Grover, as well as how to prevent
quantum attacks through careful group structure design.

II. THE THREATS POSED BY SHOR AND GROVER

The emergence of quantum computers not only
transforms the landscape of modern computation but also
places the entire current cryptographic infrastructure at
risk of collapse. In this section, we examine two
representative quantum algorithms, Shor’s algorithm and
Grover’s algorithm, which lie at the heart of this threat.

However, unlike many current studies that attempt to
build new schemes based on quantum-resistant structures
such as lattice-based or code-based cryptography, our
approach takes a different path: we design a new class of
mathematical hard problems that cannot be reduced to the
attack models used by Shor, while also minimizing the
impact of Grover.

A. Shor’s Algorithm and Its Implications for Classical
Prolems

Shor’s algorithm [15], introduced in 1994, marked a
turning point in cryptography by being the first to solve
two problems that were once considered the “backbone”
of classical cryptography, IFP and DLP, in polynomial
time on a quantum computer. This shattered the long-
standing belief in the “hardness” assumptions that
underpin the security of signature schemes such as RSA,
DSA, and ECDSA.

Specifically, Shor’s algorithm uses the Quantum
Fourier Transform (QFT) to find the period of a number-
theoretic function, a key step in breaking both IFP and
DLP. While classical algorithms like GNFS or Pollard’s
rho solve IFP or DLP in sub-exponential or quasi-
polynomial time, Shor’s algorithm achieves a solution in
0((logN)?3) time, rendering cryptographic systems based
on large integers or cyclic groups highly vulnerable once
scalable quantum computers become a reality.

Therefore, new digital signature schemes must ensure
that there is no reduction from their underlying problem to
a period-finding problem, in order to prevent Shor-style
attacks. In this research, we propose a new class of hard
problems defined over prime finite fields, where the
generator element, typically exposed in traditional systems,
is kept secret. This approach breaks a necessary condition
for applying the quantum Fourier transform, thereby
allowing the proposed scheme to remain resilient against
Shor’s algorithm.

B. Grover’s Algorithm and the Limits of Brute-Force
Search

Grover’s algorithm [16], introduced in 1996, does not
solve structured mathematical problems like Shor’s
algorithm, but it proves to be extremely effective in
reducing the time required for brute-force attacks. With
Grover, a search space of size N requires only VN queries
to locate the desired element, significantly lowering the
cost of attacks on components such as hash functions,
symmetric ciphers, and even private keys if their length is
insufficient.

In this context, the use of popular hash functions such
as SHA-256 or SHA-3 in digital signature schemes is also
affected: the effective security of an n bit hash function is
reduced to approximately 2™/2. This makes preimage
attacks and collision finding easier than originally
expected. For example, with SHA-256, an attacker needs
only 2128 trials instead of 22°¢, compelling us to be more
careful in choosing the output length and compression
functions when designing signature schemes.

The distinctive feature of our approach is this: rather
than replacing the entire cryptographic structure with
bulky post-quantum systems, we make lightweight
adjustments to key parameters, such as increasing the
output length or iteration rounds of the hash function. This
balances the impact of Grover’s algorithm while keeping
the overall design simple and fully compatible with
existing PKI infrastructure.

In summary, the rapid advancement of quantum
computing poses a serious threat to existing cryptographic
systems, particularly those based on DLP and IFP.
Although many post-quanta signature schemes have been
proposed, they still exhibit significant limitations.
Therefore, it is both urgent and promising to explore new
approaches, especially those that construct quantum-
resistant digital signature schemes without relying on
traditional post-quantum algorithms, while remaining
fully compatible with existing PKI systems.

III. RELATED WORKS

In the current trend of constructing quantum-resistant
digital signature schemes, most existing research focuses
on applying well-established post-quantum hard problem
families such as Lattice-based problems (e.g., SVP, LWE
[17]), Multivariate Quadratic (MQ) [18], Code-based (e.g.,
McEliece) [19], Hash-based [20], and Isogeny-based
approaches. However, these directions often come with
challenges such as large key sizes, low computational
efficiency, or limited compatibility with traditional PKI.

An alternative research direction that has attracted
growing attention is to leverage variants of DLP or, with
the goal of constructing quantum-resistant signature
schemes that retain compatibility with existing systems.
Although these approaches may not fall within the scope
of standard post-quantum cryptography, they introduce
new types of hard problems that are sufficiently complex
to serve as the foundation for efficient and quantum-
resistant signature schemes. Notable works in this line of
research include:
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e Dobraunig et al. [21] proposed SPHINCS-256, a post-
quantum secure digital signature scheme based on hash
trees, while maintaining compatibility with traditional
PKI infrastructures. Although it does not rely on
lattice- or code-based assumptions, SPHINCS still
achieves high quantum security.

e Hiilsing et al. [22] introduced qTesla-F, a signature
scheme that exploits special properties from a DLP
variant defined over sparse matrix structures. Although
not part of standardized post-quantum cryptography,
this scheme demonstrates good performance and
integration capabilities with existing PKI systems.

e Koblitz and Menezes [23] proposed using elliptic
curve DLP variants combined with structure-oriented
hash functions to build a new security layer that resists
Shor’s algorithm. They particularly emphasized
selecting group structures that preserve compatibility
with traditional deployment environments.

e Tuan [24] and his collaborators proposed a novel
digital signature scheme based on the Inverse
Nonlinear Multiplicative Problem, an extended form
of classical DLP. This scheme showed promising
performance on embedded systems and quantum
resistance thanks to its nonlinear and hard-to-invert
structure.

These studies have opened a new direction in the design
of post-quantum digital signatures that avoid reliance on
standardized post-quantum algorithms, thereby laying the
groundwork for further research, such as the present paper,
which explores newly proposed non-standard hard
problems to construct digital signature schemes that are
not only quantum-resistant but also fully compatible with
existing PKI infrastructures.

IV. PROPOSED NEW DIFFICULT PROBLEM

In this section, we introduce a new class of
computationally hard problems designed to serve as the
foundation for constructing quantum-resistant digital
signature schemes. This problem is formulated as an
enhanced variant of the traditional DLP [25] and the
Elliptic Curve (ECDLP) [26], with a crucial distinction: a
key parameter (such as g in DLP or G in ECDLP) is kept
secret.

Hiding this parameter not only breaks the conventional
analytical structure but also neutralizes classical solution
techniques based on discrete logarithms. As a result, the
proposed problem becomes significantly harder than the
standard DLP or ECDLP. We present the formal definition
of the problem, analyze its mathematical hardness, and
demonstrate that it cannot be efficiently solved by either
classical or quantum algorithms, including Shor’s and
Grover’s algorithms.

A. Proposed Hard Problem over a Prime Finite Field

Based on the traditional DLP over a prime finite field
F,, we propose two new variants of hard problems that
offer a higher level of security. The core idea is to conceal
the generator parameter g (which is the generator of the
multiplicative group F, and is publicly known in classical
DLP).

When this parameter is hidden or replaced by a secret
value, such as the private key x, the problem loses its
familiar  algebraic  structure, thereby becoming
significantly harder to solve. In the simplest case, if the
generator g is replaced by a secret value x, then the new
problem defined over the prime finite field can be stated
as follows:

Type 1: Nonlinear Monotonic Exponentiation
Problem: Given a prime number p, for every positive
integer y in [F,,, find an integer x that satisfies the equation:

a* = x’mod p €))

Type 2: Nonlinear Polynomial Exponentiation
Problem: Given a prime number p, for every pair of
integers (a, b) in F,, X IFp, find an integer x such that:

a* = x’ mod p. )

Type 3: Two-Dimensional Cross Exponentiation
Problem (Nonlinear): Given a prime number p, for every
pair (y;,¥,) € F,, X [Fp,, find two integers (x;, x;) € F), X
[F,, such that:

= x, %2 d
{}’1 X7 moap 3)

YV, = x,"1 mod p’

All three newly proposed hard problem variants exhibit
strong non-linearity, which makes them resistant to
linearization through conventional techniques and
unsuitable for classical DLP-solving methods. This
indicates their high potential for cryptographic
applications, particularly in constructing digital signature
schemes with enhanced security levels.

None of the three variants can be efficiently solved
using traditional algorithms designed for DLP over finite
fields, such as the Baby-Step Giant-Step algorithm,
Pollard’s Rho for DLP, or the Index Calculus method.
Specifically:

e For Type 1: The function x* is nonlinear with respect
to x, and it is not a fixed-base exponentiation function.
Therefore: Pollard’s Rho algorithm cannot be applied,
as it relies on the linearity of modular exponentiation;
Baby-Step Giant-Step is not applicable, because the
algorithm has no way to precompute a table for the x*
function; Index Calculus cannot be used, since the
function cannot be decomposed into base elements as
required by the method. Moreover, computing the
inverse of the function x* mod p is mathematically
extremely difficult, as it lacks an exploitable group
structure.

e For Type 2: This is an equation involving the
interference of two exponential functions: On the left-
hand side, a* follows the form of traditional discrete
logarithm; On the right-hand side, x? is a polynomial
form. In this equation, x appears both in the exponent
and the base, so it cannot be isolated on one side as in
the traditional DLP. Therefore, known DLP-solving
algorithms cannot be applied. Furthermore, since both
sides of the equation depend on x in fundamentally
different and nonlinear ways, there is no method to
transform it into simple additive or multiplicative
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groups. In other words, the group structure is unclear,

making it impossible to reduce the problem to a cyclic

group DLP, a fundamental requirement for many DLP-
based algorithms.

e For Type 3: Although this type appears superficially
similar to the traditional DLP due to its use of modular
exponentiation, the cross-dependent and nonlinear
relationship between the two variables x; and x;
makes it impossible to transform it into a classical DLP
form. Specifically, traditional algorithms exploit the
one-dimensional structure of the DLP, that is, solving
for the exponent x in the equation y = g* mod p,
given y and g. However, Type 3 is a system of two
nonlinear equations, creating intertwined and
asymmetric dependencies between the two unknowns,
which prevents any straightforward transformation
into a linear or basic logarithmic form where classical
algorithms could be applied.

The absence of a fixed generator, as well as the lack of
a linear relationship between the exponent and the
remaining components, renders operations like
“conversion to discrete logarithm” or “variable separation”
meaningless. Moreover, no standard technique exists to
reduce this system of equations to a single variable without
losing critical information. As a result, Form 3 constitutes
a fundamentally different hard problem compared to the
standard DLP, and it cannot be solved using any existing
classical algorithms for DLP over finite fields.

In summary, both forms of the proposed new hard
problem exhibit strong non-linearity, lack familiar
algebraic structures, and cannot be reduced to traditional
DLPs. This exceptional complexity opens new
possibilities for use as the cryptographic foundation of
post-quantum digital signature schemes, where both
Shor’s and Grover’s algorithms become ineffective.

B. Post-Quantum Resistance of the Proposed Hard
Problems

We evaluate the post-quantum resistance of the newly
proposed hard problems based on their immunity to two
representative quantum algorithms: Shor’s and Grover’s.
e Shor resistance of Type 1 (y = x* mod p): Shor's

algorithm can only solve hidden-variable problems of
the form g* = y, where the base ggg is fixed. In this
case, both the base and the exponent are x, and the
function f(x) = x* lacks a group structure or a usable
period for QFT (Quantum Fourier Transform),
rendering Shor ineffective.

e Shor resistance of Type 2 (a* = x?mod p): This
nonlinear “exponential-polynomial” equation cannot
be reduced to the standard form g*. Since there exists
no quantum transformation capable of exploiting a
hidden period in this type, Shor’s algorithm is
inapplicable to this problem.

= x, %2 d
e Shor resistance of Type 3 (;1 x;"2mod p

=x,"*mod p
a nonlinear, two-dimensional cross-exponentiation
problem, lacking a pure group structure. It does not fall
within the class of Abelian problems like the standard
DLP or other homomorphic group problems. Shor’s

>: This is

algorithm, which leverages periodicity in finite

Abelian groups (especially for classical DLP), cannot

be directly applied to Type 3. Specifically, solving the

system in Type 3 would require a quantum algorithm
to search over the entire space of pairs (x;, X,), which
forms a nonlinear, two-dimensional search space with
no standard group structure. Currently, there is no

known effective quantum method to transform Type 3

into a periodic group structure suitable for Shor’s

algorithm. These highlights Type 3’s potential
resistance to Shor-based quantum attacks, indicating
structural-level post-quantum security.

e In theory, Grover’s algorithm reduces the time
complexity of brute-force search from O(N) to
0(V/N), applicable to so-called “black-box” problems,
where no specialized quantum algorithm exists to
solve the problem faster. The hard problems proposed
in this paper, including: Type 1 (Nonlinear Monotonic
Exponentiation); Type 2 (Nonlinear Exponential-
Polynomial), and Type 3 (Two-Dimensional Cross
Exponentiation); all exhibit high nonlinearity, lack
group structure, and do not possess clear mathematical
forms that would enable exploitation by quantum
algorithms more efficient than Grover.

Therefore, in the worst-case scenario where no specific
quantum algorithm exists, these problems would only be
affected by Grover’s algorithm, meaning the security level
would degrade by half the size of the search space.
Specifically, Grover can reduce the complexity of brute-
force search over the set x € [1,p — 1] from O(p) to
O(N) , which is still exponential complexity. This
implies that if the original key space provides 128 bit
security, under Grover’s impact, the effective security
would drop to approximately 64 bits. To compensate, one
can increase the key size accordingly (e.g., from 128 to
256 bits) to maintain the desired security level. Therefore,
if ppp is chosen sufficiently large (e.g., > 256 bits), the
proposed hard problems remain secure against Grover’s
algorithm. For instance, if p ~ 2256, Grover would require
2128 steps, which remains infeasible for practical attacks.

In summary, all three proposed problem types can
effectively resist Grover’s algorithm through parameter
size scaling, while still maintaining acceptable runtime
performance.

From the three proposed hard problem variants, it can
be observed that they all represent nonlinear, monotonic,
and multidimensional extensions of the classical DLP.
These problems not only preserve strong one-wayness but
also naturally increase computational complexity through
nonlinear exponents and symmetric, interleaved structures
among the variables. Preliminary evaluations of resistance
against classical algorithms, such as Baby-Step Giant-Step,
Pollard’s Rho, and Index Calculus, as well as quantum
algorithms like Shor and Grover, indicate that these
problems have strong potential as the foundation for both
traditionally  secure and  post-quantum  secure
cryptographic schemes. In the following chapters, these
problems will be applied to construct new digital signature
schemes that aim to ensure correctness, security, and
performance, with a vision to eventually replace
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traditional DLP-based schemes in modern computing
environments.

V. CONSTRUCTION OF POST-QUANTUM DIGITAL
SIGNATURE SCHEMES BASED ON THE PROPOSED NON
STANDARD DLP PROBLEM

In this section, we present the construction of two new
digital signature schemes based on the proposed non-
standard exponentiation problems over a prime finite field.
Specifically, the first scheme is built upon Problem Type
1, the Nonlinear Monotonic Exponentiation Problem,
while the second is based on Problem Type 3, the
Nonlinear Polynomial Exponentiation Problem, which
involves two private keys and two public keys. Both
schemes follow the standard three-phase model of a digital
signature scheme (key and parameter initialization,
signature generation, and signature verification) and are
designed with the goal of achieving strong security against
both classical and quantum attacks. Furthermore, the post-
quantum resistance, including robustness against Shor’s
and Grover’s algorithms, is thoroughly analyzed for each
scheme in this section.

A. First Scheme (DSS-5.1)
1) Key and parameter generation algorithm for DSS-5.1

The public/private key pair of the end-user is generated
by the Key Generation algorithm, based on a set of domain
parameters, which includes a pair of prime numbers p and
q satisfying q|(p — 1). These domain parameters can be
generated according to standards such as ISO/IEC 14888-
3, FIPS 186-4, or GOST R34.10-94.

The proposed scheme is constructed based on Problem
Type 1 of the newly introduced hard problems, and unlike
traditional DLP-based systems where the private key is
chosen directly, here the private key x is computed from
an element a € Z.

The Key Generation Algorithm of DSS-5.1 is described
as follows:

Algorithm DSS-5.1a:
Input: L, Lg.
Output: p,q, x,y.

[1]. generate p, q: len(p) = Ly, len(q) = Lq,ql(p — 1)

[2].selecta: 1 <a<p

p_—l
[3]. x « @ ¢ modp: If (x = 1) then goto [2]
[4].y « x~® " mod p: If (y = 1) then goto [2]
[5]. return (p, q, x, V)

where len(.) denotes function that calculates the length

(in bits) of an integer, L,, and L, denote the lengths (in bits)

of prime numbers p and g, p and q are system parameters

or domain parameters, and x and y denote the private and
public keys of the signer.
Note that:

e Not choosing the secret key x directly, but instead
computing x through a, where a € ZJ;, offers several
advantages in both security and the mathematical
structure of the scheme: (i) This construction ensures
that the secret key x lies within the subgroup generated

by a, meaning the secret key space is constrained by a

controllable structure with high randomness, rather

than being chosen arbitrarily. This reduces the risk of
generating weak or degenerate keys; (ii) The use of the
p-1

exponentiation function @ 4 leverages the structure
of the order-q subgroup in Z;, a common technique in
DLP-based schemes. This enhances resistance against
structural analysis attacks or weak-key exploitation
techniques; and (iii) Theoretically, deriving x from the
element « rather than selecting it directly makes the
key generation process less dependent on the quality of
the random number generator. It is well known that
low-quality randomness sources are frequently
exploited in real-world attacks.

e In the Type 1 hard problem, the expression x* mod p
is used to construct a nonlinear one-way function with
high computational complexity, thereby forming the
foundation for the problem’s security. However, when
designing a digital signature scheme, directly using the
formula y = x* mod p to compute the public key can
lead to relationships that are easily traceable in reverse,
especially if information such as the value of x or parts
of the signature are leaked. Moreover, the expression
x* mod p may result in repetitions or collisions for
certain values of x, potentially compromising the
uniqueness and unpredictability of the public key.

e Instead, the formula y « x~ ™ mod p is chosen to
enhance nonlinearity and further complicate the
attacker’s ability to infer the private key. This
expression introduces two layers of nonlinearity: one
involving an inverse, and another involving an
exponentiation of that inverse, significantly increasing
the difficulty of decryption or reverse-engineering.
This is a key distinction that allows the scheme to
achieve a higher level of security, while effectively
leveraging the structure of the Type 1 hard problem
without directly copying its full expression into the
public key formula.

Moreover, this approach introduces a level of
independence between the hard problem and the public
key: Although the scheme is constructed based on the
Type 1 hard problem, modifying the public key generation
formula helps decouple the direct dependency between the
problem and the key entity. This enhances the overall
security because the attacker cannot easily exploit the
solution of the hard problem to attack the signature scheme.

2) Signature generation algorithm for message M

Assume (7, s) is the digital signature for the message
M. The first component of the signature, r, is computed
using the following formula:

r= (x)(xxh)‘lx(1+k‘("‘1)xx_(k_1)) (k)k_xxx_(k_l) mod p
4)

where k is a random integer selected in the range (1,q), h
is the representative value (hash value) of the message M,
generated by the hash function H(.) as h = H(M).

The second component of the signature, s is calculated
as follows (wheren = p X q):
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s=rxk"xx¥modn )

The signature generation algorithm of the DSS-5.1
scheme is described as follows:

Algorithm DSS-5.1b:

Input: p,q,x, M.

Output:(7,s).
[1].selectB:1 < < p

p=1
[2]. k « B @ modp:If (k = 1) then goto [1]
[3]. h « HM)
[4]. 7 e () XM X (kD on) o

(k™ ™ mod p
[Bl.nepXxq
[6].5s « 7 x k" x x*mod n
[7]. return (7, s)

where M denotes the message to be signed, with M €
{0,1}®; H(.) is hash function defined as H :{ 0,1}* » Z,,
and the message value satisfiesq <M < p .

3) Signature verification algorithm for message M

The signature verification algorithm of the scheme is
based on the following assumption:

(y)(smod q) X (S mod p)r modp — (r)(smodq)xh+r modp

Q)

That is, if the message M and the signature (7, s) satisfy
Eq. (6), then the signature is considered valid, and the
message is verified as authentic and intact. Conversely, if
Eq. (6) is not satisfied, the signature is considered forged,
and the message is rejected in terms of authenticity and
integrity.

The signature verification algorithm of the DSS-5.1
scheme is described as follows:

Algorithm DSS-5.1c:

Input: p,q,y, M, (1, 5).
Output: TRUE/FALSE.
[1]. h « H(M)
2]. a « (y)$™Mod D x (s mod p)" mod p

b« (T‘)(S mod q)Xh+r mod p
if (a = b) then return (True)
else return (False)

[
(3]
[4]

where M denotes the message and (7,s) denotes the
signature to be verified. If the result is True, the integrity
and origin of M are confirmed; otherwise, if the result is
False, the origin and integrity of M are rejected.

4) Proof of correctness of the DSS-5.1 scheme
What needs to be proved here is:

If a=(y)6™m?D x (smodp)" modp (7) and b =
(r)Smod DXh+T 464 1y (8) then: a = b.

Indeed, if the signature and message to be verified are
not forged, from Eqs. (4)—(7) we will have:

a = (y,)6™m4D x (s mod p)" mod p
— (x)—x_lxrxkhxxk X (r X kh x xk)r mod p
— (x)—rxkhxxk_l X (k)hxr X (x)er X (T)r modp
©)
From Eqgs. (5-8) we get:

b= (r)(smodq)xh+r modp
- (T.)(smod @Oxh 5 (r)r modp

— (T.)rxhxkhxxk X (r)r modp
— ((x)—x‘lxh‘l % (x)k‘(x‘l)xx‘kxh‘l %

)rxhxkhxxk

(k)k_hxx_k

— (x)—rxkhxxk_l x (x)rxk x (k)rxh X ()" mod p

(10)

X (r)"modp

From Egs. (9)—(10) we have: a = b.
Thus, the correctness of the scheme has been proved.

B. Second Scheme (DSS-5.2)
1) Key and parameter generation algorithm for DSS-5.2

In the second scheme, which is constructed based on
Problem Type 3 of the proposed hard problem, the signer
must generate a pair of private keys consisting of two
components (x4, X, ), along with the corresponding public
key pair (y;,¥,) , and standard domain parameters
including a large prime p and a smaller prime q such that
q|(p — 1). The selection and generation of these domain
parameters are performed according to current
recommendations from international standards such as
ISO/IEC 14888-3, FIPS 186-4, or GOST R34.10-94, to
ensure compatibility and security in real-world application
environments.

The DSS-5.2a key generation algorithm below
describes the detailed initialization procedure. Here, L,
and L, denote the bit lengths of q and p, respectively. The
algorithm ensures that the generator elements are chosen
randomly, without repetition, and that the resulting public
key values have strong cryptographic strength, while
avoiding degenerate values that may lead to private key
information leakage.

Algorithm DSS-5.2a:
Input: L, L.
Output: p, q, X1, X2, Y1, V2.
[1]. generate p, q, len(p) = Ly; len(q) = Lq; q|(q — 1)
2].selecta;:l <ay <p
3

p-1
x; < (a1) @ mod p if (x; = 1) then goto [2]

4].selecta:1<a, <p

p_—l
5]. x5 « (ay) 19 mod p: If (x, = 1) then goto [4]
6]. y1 < (x1)*2 modp: If (y; = 1) then goto [2

—r—, e, e .,
—_ e e e e

]
7]. ¥2 < (x3) 7% modp: If (y, = 1) then goto [2]
[8]. return (p, g, X1, X2, Y1, ¥2)

where len(.) denotes the function that calculates the
length (in bits) of an integer; L, and L,, denote the lengths
(in bits) of prime numbers p and q; p and q are domain
parameters; and x4, X5, Y1, Y, denote the private and public
keys of the signer.

Re-selecting values when the result is 1 is intended to
avoid degenerate cases in which some intermediate values
during the signing process become overly simple (e.g.,
equal to 1), potentially allowing an attacker to exploit this
to establish a direct relationship with the private key,
thereby leaking key information or enabling key recovery.
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2) Signature generation algorithm for message M

Assume we need to generate a digital signature (7, s)
for the message M. The first component of the signature,
1, is calculated using the following formula:

r = ((xl)x2+h><(x1)'hx(x2)'k X
(xz)(x1><h+k)><(x1)_h><(x2)_k) modp (1)

where k is a random integer selected in the range (1, q)
and h is the hash value representing the message M,
computes as h = H(M).

The second component of the signature, s, is calculated
as follows (n = p X q):

s=1rx (x)"x (x,)*modn (12)

The signature generation algorithm of the proposed
scheme is described in detail as follows (see DSS-5.2b).
where M denotes the message to be signed, with M €
{0,1}®; H(.) is a hash function defined as H:{0,1}* »
Zy, where g < h < p; h is the representative value (hash
value) of M, computedas h = H(M) and k is a randomly
chosen value in the range (1, q).

Algorithm DSS-5.2b:

Input: p, q, Xq, X3, M,
Output: (7,s)
[1]. generate k: 1 < k < q
[2]. h « H(M)
[3]. 7 e ((e) TG x G ™
(xz)(X1Xh+k)X(x1)"‘x(XZ)_k) mod p
[4l.nepXxgq
[5]. s « 7 x (x)" X (x)* mod n
[6]. return (1, 5)

3) Signature verification algorithm for message M

The signature verification algorithm of the proposed
scheme is based on the following assumption:

(y) €™M x (s mod p)” mod p
— (yz)rxh X (r)(smod q)+r modp (13)

In other words, if the message M and the signature
(r, s) satisfy Eq. (13), the signature is considered valid,
and the message is verified as authentic and intact.
Conversely, if the equation is not satisfied, the signature is
deemed forged, and the message is rejected in terms of
authenticity and integrity.

The signature verification algorithm of the proposed
scheme is described as follows:

Algorithm DSS-5.2¢:

Input: p, q,y1,y2, M, (1, 5)
Output: True/False.
[1].h « HM)
[2]. a « (y,)©m0dq) x (s mod p) 'mod p
[3]. b « (y)"" x (r)smod D+rmodp
[4]. if (a = b) then return (True)
else return (False)

where M denotes the message and (r,s) denotes the
signature to be verified. If the result is True, the integrity
and origin of M are confirmed; otherwise, if the result is
False, the origin and integrity of M are rejected.

4) Proof of correctness of the DSS-5.2 scheme

What needs to be proved here is:

If a = (y;)¢ ™4 x (s mod p)"mod p (14) and b =
)" x () md D+ mod p (15) then: a = b.

Indeed, if the signature and message to be verified are
not forged, from (12) and (14) we will have:

a = (y,)6™dD x (s mod p)” mod p
= () (X ()" X ()" mod p

= ()OO 5 (e )X ¢ (36)RX x ()" mod p (16)

and from Egs. (11, 12, 15) we get:
b= (yz)rxh X (r)(smod qQ)+r modp
= ()" x (NE™LD x (1) mod p

= (xz)_xlxrx’l X ((xl)x2+h><(x1)_h><(x2)_k X (xz)(x1xh+k)><(x1)_hx(x2)_k

(smod q)
) X (r)"modp

— (xz)—xlxrxh X (xz)xlxhx(xl)‘hx(xz)‘kx(smod q) X (xl)xzx(smod q)

X (xl)hx(xl)‘hx(xz)‘kx(smod q) X (xz)kx(xl)‘hx(xz)‘kx(smod q) X (r)r modp

— (xz)—xlxrxh X (xz)xl><h><(xl)—hx(xz)—erx(xl)hx(xz)k % (xl)xzxrx(xl)hx(xz)k

X (g )G X Ge2) T ) () 5 () Y kX)X ) X (e x(2)* ¢ (1) mod p
— (xz)—xlxrxh % (xz)xlxrxh x (xl)rx(k)hx(xz)k+1 % (xl)hxr % (xz)er % (r)r modp

= ()X o (2 YT 5 (1, )57 X (1) mod p (17)

From Egs. (16—17) we have: a = b.
Thus, the correctness of the scheme has been proved.
C. Security Level of the Constructed DS Schemes

1) Resistance to classical attacks of DSS-5.1 and DSS-5.2
Both DSS-5.1 and DSS-5.2 are designed based on

nonlinear variants of the newly proposed hard problem
over a prime finite field, with the goal of eliminating the
applicability of traditional discrete logarithm solving
algorithms. As a result, they offer strong resistance against
two common types of attacks in current PKI environments:
attacks aimed at recovering the private key, and signature
forgery attacks.
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a) For the DSS-5.1 scheme

Attacks on the private key: Attacks targeting the
private key typically occur at the key generation algorithm
(DSS-5.1a) and the signature generation algorithm (DSS-
5.1b). The attacker’s goal is to recover the private key x
from the public key y, or from a generated signature on a
message M.

e Key Generation Algorithm: In this phase, the public

key is computed asy = x* " mod p. To recover x
from y, an attacker would have to solve the nonlinear
equation x* = y mod p, which is exactly Type 1 of
the proposed hard problems. Currently, no known
mathematical method can solve this problem in
polynomial time, except by brute-forcing all possible
values. Hence, the only feasible attack is exhaustive
search with complexity about 2™, where n = |p|.

¢ Signature Generation Algorithm: In steps such as [2]

and [4], variables k and x are used, but k is
randomly generated and not disclosed. Step [6]
involves a complex expression combining k, x, and
the hash value h, which is highly resistant to
inversion. Therefore, attacking to recover x from the
output of the signature generation algorithm also
reduces to solving the equation x* =y modp ,
which remains infeasible except through brute-force
methods.

Forgery attacks: A forgery attack occurs when an
attacker can generate a valid signature for a message
without knowing the private key.

The signature verification algorithm (Algorithm DSS-
5.1c¢) for this scheme specifies that a pair of values (7, s)
is accepted as a valid signature for the message M if the
following condition is satisfied:

(y)™mod D x (s mod p)” mod p
— (T)(S mod q)xh+r mod p (*)

It can be seen that condition (*) essentially corresponds
to Type 2 of the proposed hard problems, as discussed in
Section IV. This is a nonlinear exponential-polynomial
problem, with no clear group structure, making it
impossible to apply the traditional DLP techniques. That
means the attacker cannot solve this equation, and
therefore cannot forge a valid signature.

b) For the DSS-5.2 scheme

Attack on the Private Key: Attacks on the private key
typically target the key generation algorithm (DSS-5.2a)
and the signature generation algorithm (DSS-5.2b). The
attacker’s goal is to recover the private key pair x4, x,
from the public key y;,y, or from an existing signature
generated for message M.

e However, the attacker cannot recover the private key
from the public key, because in algorithm DSS-5.2a:
Lines 2 and 4: Two random numbers a;, a, € F), are
selected. Lines 3 and 5: Ensure that x; and x, are not
equal to 1; Lines 6 and 7: The public keys are
generated using nonlinear functions: y; =
f(x;) mod p and y, = g(x,) mod p, where f and
g are nonlinear functions that cannot be reduced to
forms solvable via discrete logarithms. Therefore,

since no discrete logarithm computation can be
applied, the attacker cannot recover the private key
from the public key.

o The attacker also cannot derive the private key from
the signature on message M, because in algorithm
DSS-5.2b: Line 1: A random k is selected from the
range (1,q); Lines 3 and 4: The signature (7,s) is
generated based on the newly proposed hard problem,
not on standard multiplication. Thus, since the
signature formula is based on the newly proposed
hard problem, the attacker cannot solve the equations
to recover the private key without also solving this
hard problem, which is currently intractable.

Forgery Attack on Signatures: A forgery attack occurs

when an attacker is able to generate a valid signature for a
message without knowing the private key. However, in
this scheme, an attacker cannot forge a signature because
a forged signature must satisfy the condition:

(y,)medad) x (s mod p) ' mod p
— (yz)rxh X (T')(S mod q)+rm0d )

It can be observed that this condition essentially
corresponds to the second type of the newly proposed hard
problems. Therefore, in order to generate a valid signature,
the attacker would have to solve this new hard problem.
However, as of now, no algorithm other than brute-force
can achieve this.

Thus, both schemes demonstrate strong resistance
against classical attacks due to their novel nonlinear
structures that cannot be reduced to the traditional DLP.
DSS-5.1 employs a complex single-variable nonlinear
function, while DSS-5.2 extends this to a nested two-
variable system, thereby offering a higher level of security.
Although both schemes are built on the same mathematical
foundation, a prime finite field, they represent two distinct
implementation approaches, similar in principle yet
different in structure and cryptographic complexity.

2) Post-quantum resistance of the proposed digital
signature schemes

As analyzed in Section IV.B, the newly proposed hard
problems demonstrate resistance to the quantum
algorithms Shor and Grover, thanks to their nonlinear
structure and the fact that they cannot be reduced to the
standard discrete logarithm form. However, the post-
quantum security level of a digital signature scheme does
not rely solely on the underlying hard problem, but also on
how this problem is integrated into each step of the signing
and verification process.

In this paper, both proposed schemes, DSS-5.1 and
DSS-5.2, leverage different variants of the new hard
problem, with a design that ensures the generator element
is never publicly disclosed and the cyclic structure is not
exposed, conditions required for Shor’s algorithm to be
applicable. At the same time, all parameters potentially
affected by Grover’s algorithm (e.g., symmetric keys, hash
values) are chosen with sufficient bit-lengths to ensure
post-quantum security.

a) Resistance to shor and grover of the dss-5.1 scheme
The DSS-5.1 scheme is constructed based on Type 1 of
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the newly proposed hard problem, a special nonlinear
problem in which the unknown appears both as the base
and the exponent. This form cannot be reduced to the
traditional DLP, which is the primary target of Shor’s
quantum algorithm.

e On resistance to Shor’s algorithm:

In the DSS-5.1a key generation algorithm, the private
key x is not selected directly; instead, it is generated
indirectly from a secret generator element «. This element
a is never publicly disclosed, meaning that an attacker has
no knowledge of the generator needed to apply Shor’s
algorithm, which relies on finding periodicity based on a
known base.

Moreover, the public key y is computed through a
nonlinear function, deliberately avoiding direct use of the
expression x* mod p, as that could expose the structure of
the underlying hard problem. However, the nonlinear
nature of the key generation function is still preserved, and
there exists no clear periodic mapping that Shor’s
algorithm could exploit.

e On resistance to Grover’s algorithm:

During the signature generation process (algorithm
DSS-5.1b), a random number k € (1, q) is selected for
each signing session. Additionally, the message is hashed
using a cryptographic hash function H(M), with the hash
value hhh typically residing in a large space (e.g., 256 bits
or more).

Grover’s algorithm only reduces the number of brute-
force steps over a key space from 2™ to 2"/2. Therefore, to
maintain a security level equivalent to NIST standards
(e.g., NIST Level 1, which corresponds to 128 bit
security), the scheme must use parameters such as p, p, k,
and h with a minimum length of 256 bits. The current
design of DSS-5.1 satisfies this requirement.

In conclusion, the DSS-5.1 scheme resists Shor’s
algorithm by keeping the generator element secret and
using a nonlinear key generation function. It also resists
Grover’s algorithm through sufficiently large parameter
sizes and per-signature randomness. This ensures a high
level of security in both classical and quantum
environments.

b) Resistance to shor and grover of the dss-5.2 scheme

The DSS-5.2 scheme is constructed based on Type 3 of
the newly proposed hard problems, a two-dimensional
cross exponentiation system, in which the two
unknownsxy, x, appear simultaneously in both the base
and the exponent. Therefore, Type 3 is considered a
strongly nonlinear system of equations, lacking a clear
group structure as in DLP, and also lacking the periodicity
required by Shor’s quantum algorithm.

¢ Regarding resistance to Shor’s algorithm:

To solve the DLP or ECDLP, Shor’s algorithm
fundamentally requires the ability to construct a quantum
oracle that performs a transformation such as: | r) — |
g" modp) in a finite field, or | r) =] r X G) on an elliptic
curve.

However, in the proposed scheme over a finite field, the
generator g is randomly generated and kept secret within
the private key; the only public value is y = x* mod p.
This prevents the attacker from constructing the oracle

f(r) =g, since g is unknown.

As a result, the scheme completely nullifies the
applicability of Shor’s algorithm, not only in theory, but
also at the level of each concrete step in the quantum
procedure.

¢ Regarding resistance to Grover’s algorithm:

Grover’s algorithm accelerates brute-force attacks by
reducing the complexity from 0(2") to 0(2V?) .
However, the proposed scheme requires a minimum
private key length of n = 256, which means the attack
cost remains 0(2128), still infeasible even for powerful
quantum computers.

Moreover, in the signature generation process
(algorithm DSS-5.2b), a valid signature depends not only
on a single pair (7, s), but must simultaneously satisfy two
independent verification equations, each involving distinct
keys and generators. This forces an attacker to solve two
separate hard problems concurrently, significantly
expanding the search space and thus drastically reducing
Grover’s effectiveness.

The resistance of the scheme against Shor and Grover
attacks stems not only from the hardness of the underlying
problem but also from the algorithmic design itself.

The public key conceals the generator element; The
signing and verification processes are decentralized;

No quantum oracle can be constructed for Shor’s
algorithm;

The complex search space significantly reduces the
effectiveness of Grover’s algorithm. As a result, the
scheme offers strong post-quantum security while
maintaining high performance and ease of integration into
existing PKI infrastructures without major modifications.

VI. DISCUSSION

The proposed scheme introduces a novel approach that
does not rely on lattice-based, hash-based, or code-based
constructions like Dilithium, Falcon, or SPHINCS+. By
leveraging a non-standard hard problem, it provides
resistance against both Shor’s and Grover’s algorithms
while maintaining compatibility with existing PKI
infrastructures. With key and signature sizes of reasonable
magnitude, the scheme is easy to implement and facilitates
a smoother transition to the post-quantum cryptographic
environment. However, a more comprehensive evaluation
is still required to fully assess its practical feasibility and
security.

e Computational Cost Comparison between Proposed
Schemes, DSA, and SPHINCS+: Table I provides a
detailed comparison of computational costs among the
traditional signature scheme (DSA), the proposed
schemes (DSS-5.1 and DSS-5.2), and a representative
post-quantum scheme from the hash-based family
(SPHINCS+). The evaluated operations include: the
number of large modular exponentiations (N.exp),
modular multiplications (N.mul), modular inversions
(N.inv), and hash function calls (N.h). This analysis
offers a theoretical performance assessment of each
scheme during the signing and signature verification
phases.
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TABLE I. COMPARISON OF COMPUTATIONAL COSTS BETWEEN THE PROPOSED SCHEMES, DSA, AND SPHINCS+

Operation DSA DSA DSS-5.1 DSS-5.1 DSS-5.2 DSS-5.2 SPHINCS+ SPHINCS+
Sign  Verify Sign Verify Sign Verify Sign [27] Verify [27]
N.exp 2 3 3 4 4 3 _ —
N.mul 3 2 5 3 6 4 - _
N.inv 1 1 1 2 0 1 - -
~65,000 — ~25,000 —
h : : : . ! ! 200,000 60,000

It can be seen that the two proposed schemes, DSS-5.1
and DSS-5.2, incur slightly higher computational costs
than DSA/DCDSA, but remain feasible for practical
deployment owing to the use of simple modular operations
and the absence of complex structures such as those in
hash-based or lattice-based schemes. In contrast,
SPHINCS+ [27] achieves strong quantum-resistant
security but incurs extremely high computational costs
because it requires tens of thousands of hash operations per
signature, rendering it less suitable for resource-
constrained environments, including IoT and high-speed
blockchain applications. Therefore, the proposed schemes
strike a balanced trade-off between efficiency, security,
and compatibility with current PKI infrastructures.

e Performance and Scalability: The proposed schemes
achieve high performance by relying solely on modular
multiplication and exponentiation, which are easily
optimized in both software and hardware
implementations. The public key is compatible with
current PKI infrastructures, and the compact signature
size is well-suited for blockchain, IoT, and smart cards.
However, further experimental evaluation and
comparison with other PQC schemes, especially on
FPGA/ASIC platforms, are necessary.

Resistance to Attacks: Both schemes are resistant to
Shor’s and Grover’s algorithms as well as classical
attacks, thanks to the use of a newly designed problem
where the generator is kept secret, disrupting the
underlying group structure crucial for solving discrete
logarithms. Furthermore, brute-force attacks would
require testing up to 22" cases (with n > 256),
rendering them practically infeasible. These schemes
are also immune to structure-specific attacks common
in lattice-based cryptography (e.g., Dilithium).
Nevertheless, further evaluation is needed regarding
side-channel resistance, especially against timing and
power analysis, and countermeasures such as masking
or blinding should be considered to better protect the
private key.

Limitations and Future Work: Despite showing
quantum resistance and PKI compatibility, the
proposed schemes have yet to be experimentally
verified across various platforms and remain
unstandardized, unlike current PQC candidates such as
Dilithium and Falcon. Future directions include
algorithmic optimization, real-world implementation
on PKI, blockchain, and IoT systems, and expansion to
group signatures. Once fully validated, these schemes
could offer a practical and flexible post-quantum
signature solution.
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VII. CONCLUSION

In this paper, we propose two post-quantum digital
signature schemes, denoted as DSS-5.1 and DSS-5.2,
based on two different forms of the same newly proposed
hard problem over a prime finite field. Although they share
the same mathematical foundation, these schemes adopt
signature generation and verification algorithms which
differ from those of previous schemes. This demonstrates
that the newly proposed hard problem can serve as a
foundation for various types of digital signature schemes
with different structures, all aimed at the same goals: being
secure against both classical and quantum attacks, and
remaining compatible with current PKI infrastructures.

Theoretical analysis shows that both schemes are
resistant to Shor’s algorithm owing to their nonlinear
structure and the concealment of the generator parameter.
At the same time, the impact of Grover’s algorithm is
mitigated by appropriately choosing sufficiently large
parameters. Compared to DSA and DCDSA, although the
proposed schemes entail slightly higher computational
costs, they avoid certain computationally expensive
operations, such as the modular inverse in the signing
phase (as in DSS-5.2), while achieving higher levels of
security that are well suited for the quantum era.

These results pave the way for developing digital
signature schemes that do not rely on existing post-
quantum primitives but instead leverage newly proposed
mathematical structures to achieve both efficiency and
long-term security at the same time. In the future, practical
implementations should be explored on specific platforms,
such as blockchain and IoT devices, as well as further
investigations into side-channel resistance, in order to
provide a more comprehensive solution.
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