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Abstract—Cognitive radios are characterized as intelligent
radios that can detect, learn, and adapt; they perceive their
operational environment and gather information via
experience. Future wireless networks are anticipated to
establish a dispersed, intelligent platform for wireless
communication, sensing, and computation, necessitating the
complex integration of the physical and digital realms in a
smooth and sustainable fashion. This research is based on the
analysis and the optimal solution of security attacks related to
the cognitive radio network. The risks associated with both
infrastructure-less and infrastructure-based cognitive radio
networks are also covered. We address the frequently
disregarded longer-term behavioral changes that are imposed
by such attacks through the learning capabilities of cognitive
radio network in addition to the short-term consequences of
attacks on cognitive radio network performance. However, a
few of them considered the punishment of attackers and
ignored the effective measures to punish them. In this paper,
a new sanction mechanism based on cognitive trust value is
proposed. To deal with this issue, a hierarchical architecture
cluster heads and data fusion center, the trust value of
cognitively engaged users was managed. Fusion Center would
punish bad users because they would decline their confidence;
it is, therefore, essential to guarantee the safety of the network
through a distinction between attack users. A simulation setup
based on MATLAB is built for each step of the proposed
system. The simulation results show the effectiveness of the
proposed architecture in detecting attacks with a detection
rate of over 80%.
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I.  INTRODUCTION

Cognitive  technologies mainly focus on the
opportunistic use by Secondary Users of the licensed band
with licensed users called Primary Users. In spectrum
sensing, the performance of Secondary Users. Primary
Users detection can consequently be reduced by a few
factors like shadows and multipath. Cooperative sensing
increases the overall performance of detection by adding
sensing results of the different spatially located Secondary
Users. The combined sensors are more accurate due to
spatial diversity than the perceptive outcome of a single
Secondary Users.

The cognitive radio networks have lately gained
prominence for their capacity to reconcile the disparity
between restricted spectrum availability and spectrum
demand. The cognitive radio network has recently become
a leading provider of wireless technology networks to
solve conflict between the restricted spectrum supply and
spectrum demand of growing wireless applications and
services, identified as the wireless networks that allow
them to learn about their geographic and operational
conditions, policies, and internal status. The cognitive
radio networks are therefore a free, random networking
environment where unlicensed secondary users can
operate channels not currently operating with spectrum
sensing technology for licensed Primary Users. Because of
their unique cognitive characteristics, they are therefore
vulnerable to new threats in addition to all of the safety
risks associated with conventional wireless networks, such
as User Emulation Primary Attacks. Attackers can
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successfully broadcast and duplicate the primary user
within prohibited time slots, leading a protocol-compliant
SU to believe that this attack is the primary user.
Falsification attacks on spectrum ensign data intentional or
unintended assailants give the Fusion Centre false
observation details, causing the FC to make incorrect
determinations.

Cognitive radio networks are facing an inevitable
challenge with security problems, and how to solve them
has become an area of research. The main focus of the
current research is the detection of signals based on
defense attacks, but it was unable to punish them. We are
unlikely to punish the offender, even if the person violates
morality or civil law; we can only prove it to the law
enforcement office. Before our proposed one, we will
analyze the existing security mechanisms. The rest of the
sections of this paper are sorted out as follows. Section II
analyzes previous literature that focused on research on
security issues on cognitive radio networks. Section III
proposes the cognitive trust value-based mechanism for
the punishment of attackers and effective measures to
punish them. The simulation results of this proposed
approach are explored in Section IV. Finally, the
conclusion of this research work is described in Section V.

II. LITERATURE REVIEW

Sohu et al. [1] proposed that that Malicious nodes are a
well-known source of security threats in cognitive Radio
Wireless Sensor Networks (CRWSN). This study focuses
on security challenges linked to CRWSN, such as Fusion
methods, Cooperative Spectrum sensing, and two severe
CR attacks: Spectrum Sensing Data Falsification and
Primary User Emulation (PUE).

Wang et al. [2] proposed an algorithm to detect fake
nodes within the network. The trust and consistency factor
can be calculated for every user and nodes whose values
of confidence and coherence are below the threshold value
and can be considered for detecting malicious nodes. The
downside is that only one attacker is activated once.

Noon and Li [3] studied a new type of attack, named the
hit and run attack, in which the attacker can produce a
sensor report honestly or falsify sensor reports in two
modes. The author also found a way to alleviate the attack.
Wang et al. [4] suggested a soft decision scheme to detect
several faux nodes of a system, in which the attacker is
assumed to have a policy, and the base station knows
where each user is located. The heuristic method was used
to detect false nodes. Also, a posterior likelihood was used
to detect each node’s suspicion level. The calculated
probability was then compared to the determined threshold,
and if the value exceeds the determined threshold value,
the node is regarded as a malicious node. This approach is
also referred to as “onion peeling”.

The signal generation from PUs detected nodes that sent
a false signal to detect data falsification attackers provided
by Bansal et al. [5] The authors also assessed the attack
strength, in which the attack force was seen as the
relationship between the number of fake nodes and the
total available nodes present in the network. Huang et al.
considered in Ref. [6] the weight factor that shows the
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user’s contribution. Each user has a reputation, and the
decline negatively impacts this reputation factor.
Matsui et al. [7] proposed an algorithm like the proposed
method of Huang et al. that would consider only the
difference between the two nodes where it was assumed
that the base station where SUs were located.

Chen et al. [8] and Clancy et al. [9] suggested a trusted
and reputable mathematical model. Kar ef al. [10] used
four parameters for the calculation of confidentiality in
their work. The active factors, consistency factors,
incentive factors, and trust factors were the factors. The
nodes are declared to be fake based on calculated
trustworthiness. However, to apply the confidence factor,
the SUs must be successfully detected [11]. Meng et al.
[12] demonstrated that SUs might benefit from the multi-
user benefit in every time frame for the installed TDMA
technology.

Aishwarya et al. [13] uses a memetic algorithm to
choose the best routing routes that maximize the data
delivery ratio and minimize energy usage. When compared
to conventional routing techniques, preliminary findings
show a notable improvement in the network’s overall
performance parameters, such as a longer lifespan and
improved data dependability. Saranya and Natarajan [14]
proposed that, prompted by the growing need for effective
spectrum use in wireless communications, to improve EE
in CRNs without sacrificing PU protection. The ELSTM-
RPO model, the first of its kind in s, is one of the study’s
main achievements. It offers systematic optimization of
essential parameters and outperforms state-of-the-art
techniques in terms of EE and spectrum utilization. With
its exceptional performance and resilience across a range
of network circumstances, this work establishes a new
standard for energy-efficient CRNs. This study looks at a
number of situations in which SUs may transmit data after
asserting that spectrum sensing prevented the PU from
being present, has been proposed by Ali et al. [15].

In some circumstances, SU’s transmission should
disrupt PU’s communication, leading to wasteful spectrum
use. The optimization problem in this connection is to
maximize the SUE while meeting the requirements of a
low likelihood of PU interference and a high target
identification probability. In this approach, several SUs
and PUs coexist in a realistic, overlapping clustered
structure [16].

In order to gather energy from both SUs and PU
transmissions for improved active probability, Sensing
Reputation (SR), a revolutionary trust management
technique that assesses each node’s trustworthiness in the
CSS system, is what we presented. SR calculation
incorporates a number of choice elements, including the
history-based trust factor, active factor, incentive factor,
and consistency factor, in order to reflect the complexity.
This SR value is used to identify suspicious individuals
and filter out harmful users from the CSS scheme’s
decision-making process [17].

We also propose the idea of a reputation chain sensing
system to document and monitor the future actions of the
identified problematic people. With greater accuracy and a
reduced false alarm rate, theoretical analysis and
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simulation results show the effectiveness of suggested
malicious user detection approach.

Wang et al. [18] reported a centralized data fusion
center is used for decision-making. Next, we extend it to
the scenario where autonomous and dispersed decision-
making results are obtained from the absence of the data
fusion center. Mechanism design theory serves as the
foundation for our trust-based data fusion systems, which
encourage users to submit real sensing data in order to
increase the success rate. Amit et al. reported that one of
the hardest problems in Mobile Ad-hoc Networks
(MANET) is IP address auto reconfiguration, which
guarantees the best routing [19].

There are two types of reconfiguration protocols:
stateful and stateless. Address conflicts must be avoided,
and each address must be distinct. Furthermore, we
prevent needless penalties for good users by separating
fraudulent reports from erroneous sensing reports caused
by assaults and limited sensing capabilities. In order to
determine the ideal parameter settings for our trust-based
data fusion methods to beat current non-trust-based
cooperative spectrum sensing data fusion systems, we
conduct a theoretical study that is confirmed by extensive
simulation. In order to combat data fabrication attacks, we
suggested and examined trust-based data fusion techniques
for cooperative spectrum sensing in cognitive radio
networks. Amit et al. investigated that determine the
specifications of the aerial that depend on its different
geometrical parameters, a sequential parametric analysis
has been conducted.

The aerial’s many geometrical parameters, which
include the matrix material’s dielectric constant, are up to
the patch and horizontal foundation planes’ extended
qualities and their segregation. An etched symmetrical or
non-symmetrical amalgamation of organization in the
horizontal foundation plane of MPA is known as a
“defective ground structure.” The suggested antenna is the
recessed ground plane parasitic patch antenna, which is
based on the existing parasitic rectangular patch antenna
on a FR4-epoxy substrate material with permittivity. The
substrate’s dimensions are 20 x 20 x 0.5 mm. Antenna
characteristics including gain, VSW R, S-parameters, and
bandwidth are enhanced and contrasted by Amit et al.

To differentiate false reports resulting from hostile
assaults from those caused by limited sensing capabilities,
we created data fusion rules. Our architecture successfully
compels malevolent nodes to disclose their actual sensing
capabilities and results, enabling a high success rate. SUs
must first become winning, that is, reduce their own miss
detection probability below the upper limit set by PUs in
order to obtain the communication chances. A proposed
method for enhancing SU detection performance is
Collaborative Spectrum Sensing (CSS), in which many
SUs bands together and exchange sensing data.
Additionally, the likelihood that successful SUs accurately
identifies the idle state of PUs’ spectrum will influence
their communication prospects.
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III. METHODOLOGY

A reputable architecture was introduced to identify
cognitive users in cooperative spectrum detection
algorithms by Zeng et al. [20]. The algorithm begins by
choosing certain cognizant users as credible and
categorizes each user’s reputation in three states as
discharged, pending and reliable. Even when their
reputation is accumulated through uniform tests between
local and global sensing results, an algorithm gives
pending status to every cognitive user other than
trustworthy. Cognitive users who exceed a trusted
threshold are categorized as trustworthy, while those who
do not are placed in a discarded category.

Mapunya et al. [21] have introduced the trust-based
TCRN architecture for supporting network functions,
including Dynamic Spectrum Access (DSA) and routing.
As per authors, the CRN trust model should include two
main components: confident association and algorithms of
learning. The confident partnership involves a cognitive
user’s initial decision to either accept or reject the
application for a neighboring partnership. Learning
algorithms helps make better decisions on package
transmission, routing, and confidence measures.

Sensors that raise awareness of the surroundings,
actuators that allow interaction with the environment, a
model of the environment that incorporates the state or
memory of events that have been observed, a learning
capability that aids in choosing particular actions or
adaptations to achieve a performance goal, and a certain
amount of autonomy in action are all features of cognitive
radio. Geolocation, spectrum awareness/frequency
occupancy, biometrics, time, spatial awareness or
situational awareness, and software technology are the
technologies that power CR. Given the variety of uses that
could arise from a radio knowing its current location, as
well as its intended path and destination, geolocation is a
crucial CR-enabling technology.

This study aims to improve the penalty mechanism
model and how to improve the effectiveness of the penalty,
optimize the cognitive radio network and achieve the Nash
balance among the cluster heads and the network scale.
This research concerns the extension, in this regard, to the
SMTD protocol proposed by Li et al. [22] (trust
determination-based security management). The authors
suggested in their work an active mechanism to detect
attacks based on building trust in the clustered cognitive
network. A new compensation scheme is being proposed
to Implement a new spectrum sensing algorithm and a
central cognitive radio network. Resources Ensure
physical layer security assessment and reward and penalty
allocation of confidence-built resources to trusted users but
do not take data transmission protection into account. The
Secret Capacity Enhancement Scheme was implemented
to enhance physical layer safety in cognitive radio
networks in the hybrid co-operative Spectrum Sensing
Algorithm (SMTD), approach. The following is given to
the network model and the flow mechanism:
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Fig. 1. Proposed paper flow work.
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Fig. 2. Cognitive network scenario.

Consider a centralized CN scenario shown in Fig. 1, in
which there are multiple CNs with the primary network.
Each network is divided into different subnetworks, each
of which is centralized as the cluster header [23]. A
centralized Fusion Center (FC) for the assembly of open
radios to primary users via cognitive users sensing know-
how connects various subnets. Fig. 2 illustrates the
Cognitive Network Scenario. The first step in hierarchical
clustering is to regard every observation as a distinct
cluster. Then, it does the next two actions repeatedly: First,
determine which two clusters are closest to one another,
and then combine the two clusters that are most similar.
Until all of the clusters are combined, this iterative process
keeps going. A cluster’s reelection message is initially
broadcast by the cluster leader. Each sensor node in the
cluster then uploads two candidates, and all the sensor
nodes vote for a new cluster. The current cluster head uses
the majority rule to determine the winner after tallying the
votes. If a candidate energy is sufficient, a confirmation
message is sent to the sensor node once it has been chosen
as a contender. However, if the applicant’s energy is
insufficient, the current cluster head will have to choose
another candidate until someone with sufficient energy is
chosen and appointed as the new cluster leader.

e Computation and storage of all cognitive users’
confidence values in the cognitive network.
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e Implement discipline for misbehavior users, update
trust value assessments, collect confidence values from
cognitive users via Cluster heads, and monitor FC
experiences.

Reporting misbehavior of user information to the FC

promptly when an attack is identified.

A. Network Configuration

Consider that N cognitive users are randomly
distributed over a square meter area. At the center of the
field, a fusion center is deployed. Each cognitive user is
preloaded with public and private key pair based on RSA
and initialized with a random trust value between {0, 2}.
It highlights important elements, including dynamic
spectrum management, channel-state estimation, and radio
scene analysis. Common uses for CRNs include spectrum
trading, automatic interoperability, intelligent
beamforming, opportunistic spectrum usage, and
emergency services communication. CRNs are one of the
main facilitators of contemporary networks due to their
growing popularity in both industry and academics [24].
The radio spectrum is now divided among many wireless
technologies. There are frequencies that are rarely used,
leading to spectral inefficiency, even while the frequency
spectrum in some mobile communications network
frequency bands is becoming congested.

Latency can be increased, and data transmission can be
slowed down by an abrupt spike in the number of users or
an increase in the volume of data being transmitted over
the network. Secondary Users (SUs) can sense licensed
spectrum using a Cognitive Radio Network (CRN) and
transmit if an idle band is identified. As a result, SUs must
make quick use of the spectrum band as soon as it becomes
accessible. In order to investigate how scalability affects a
single node of the CRN and how SUs on cloud computing
platforms may effectively optimize an idle band, this
research suggests a novel Generalized Stochastic Petri Net
(GSPN) model with intrusion detection. In this case, more
resources are dynamically released to make extensive use
of the spectrum space before the return of Primary Users
(PUs) as soon as the band becomes unoccupied and there
are SU requests awaiting encryption and transmission.

The clustering algorithm is used to meet the
aforementioned criteria. In comparison to earlier
clustering algorithms, this algorithm’s cluster head
selection necessitates resolving uneven clustering and
increased communication costs. A model for optimum
Cluster Head Selection (CHS) is created in relation to
energy-conscious and safe routing in Wireless Sensor
Networks (WSNs). Based on factors including distance,
energy, security (risk likelihood), delay, trust assessment
(direct and indirect trust), and Received Signal Strength
Indicator (RSSI), the best CH is chosen in this case.

An SN functions as an active sensor during the data
broadcast between BS and CH, and the WSN comprises a
variety of SNs denoted by ZS. The WSN is often
associated with data sensing, radio communication, sensor
allocation, topological features, and energy consumption.
In manual mode, the sensor is dispersed randomly over
each application area. The CH is favored, and the number
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of CHs is inferred by ZC, and the SNs are connected to
create clusters. The cluster’s SN must be within a small
radius of the CH. Correlated data is collected by all the
SNs from the predicted region and sent to the CH. The BS
receives the information from the associated CH. A
uniform distribution serves as the basis for each sink
node’s transmission pattern, which disperses data
throughout the range’s maximum radio frequency. Sensor
nodes comprise this cluster, which resembles a network.
For each cluster, the sentence identifies the appropriate
cluster head. Cluster head-based routing is the collective
term for this technique of spreading decrease from the
cluster to the BS. Cluster head-based routing is the
collective term for this technique of spreading decrease
from the cluster to the BS. The distance between the cluster
head and the base station is what the network model calls
the distance between other nodes and the cluster head. The
cluster head is selected for ease of transmission. The
cluster head in the suggested model is selected according
to RSSI, energy, latency, distance, security, and trust. It is
intriguing to select a cluster head in order to get much more
energy efficiency, power consumption, and energy load
balancing during each cycle of the sensor nodes.

The authentication information of each cognitive user is
stored in the fusion center. The entire initialization process
of the network is divided into five phases as follows:

Step 1: Enable all cognitive trust values of the
memorizer and set the FC coverage radius, the selected
cluster head threshold, and the permitted maximum
number of cluster heads L.

Step 2: Cognitive users report their position (xm, ym)
and their initial trust value v to FC.

Step 3: FC picks up users whose trust values are higher
than the threshold and records the total number as N.

Step 4: If N > L, FC should apply the following
additional selection criteria:

e Cluster heads are expected to be above the FC.
Any two selected cluster heads should be far enough
away from each other.
Step S5: The L cognitive users are selected as cluster
heads, and the trust value is stored as matrix V in the FC.

B. Phase-2: Resource Collection

The Fusion Center gathers knowledge about the primary
user’s available radio tools through a two-stage hybrid
cooperative spectrum sensing algorithm. Various sensing
methods encompass the following:

Measurement of energy

Matched filtration (MF)

Cyclo-stationary identification

The most critical and fundamental technique is energy
detection. In contrast to other methods, the detected signal
is not previously aware of and resilient to unexplained
fading multipath. The detection of energy depends on
signal noise, but the exact noise power of the signal is
almost impossible to determine. Energy detection has a
huge disadvantage. To address this disadvantage, a
technique based on statistical covariance or automatic
correlation of the received signal was proposed. Two
stages of decision-making on each continuum are carried
out with regard to cluster-based architecture. The first
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point involves assigning cognitive users to a given
spectrum in any sub-network. If n is the available number
of radio resources and L is the number of cognitive
subnetworks, then the sensed radio resource is assigned to
each sub-network. If K is the number of cognitive users in
any subset, K observations shall always be sent to the
cluster head node. A data fusion based on the rules
governing AND, OR, and majoritarian fusion is the
clustered node. In order to compare sensing information,
the fused information is sent to the melting station, where
the final decision is made regarding any existing spectrum.
The suggested algorithmic spectrum sensing phases are:

Step 1: The x(n) represents the signal received and the
sample number is Ns, and the covariance matrix of the
signal received can be measured as Ns.

1 op-
R, (Ns) = N_SZ£1=%,4—-11[ x(m)x t (n) (1)
where, T Hermitian operation.

Step 2: The covariance matrix R, (Ng) determines the
minimum and maximum self-values.

Step 3: To decide on signal detection by comparing the

= with the threshold v. If imﬂ > v, then there is a

signal; otherwise, it does not exist. The y threshold can be
calculated using the formula as follows:

-z

(VNs—VHL)”
And the probability of false alarm is given as follows:

Ne—VML) -
Pra=1-F, [7”5 . ) “]

Amax

ratio

(N +vmL) "
(N5 ML)V/®

X (1 - Pfa)] @

3)

Ns is the number of samples; M is the factor of
oversampling and L is the factor of smoothing. The
probability of detection can be measured using the formula
provided, depending on the false alarm probability and
threshold:

”l

where F; (t) is the Tracy-Widom distribution function.

Ns(ypML-p)
YNt

Pi=1-F 4

v

C. Phase-3: Calculation of Trust — Penalty and Reward

Trust may be measured on the basis of further contact
with other users and is responsible for further activity on
the network by the user. The reputation of a cognitive user
can be described as an evaluation by other users or a
description of the past behavior of a cognitive user. The
trust model should have the following characteristics:

e The ability to detect and withstand security threats such
as hacking, checking fraudulently, etc. Attack
resistance.

The measured trust should be based on the outcomes of
the continuous learning process and will deteriorate
over time.

The trust scheme must have provision for remuneration
and penalties.

The Trust Determination Scheme must ensure that the
new consumer is authenticated.
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In addition to the attributes listed above, the trust model
must include a trust management mechanism involving the
creation, presentation, measurement, punishment, and
updating of trust facilities.

1) Generation of trust

Mechanisms to generate trust involve building trust
based on sharing and communication of resources, driven
by demand. An authentication header is provided for all
trust reports by the fusion center.

2) Characterization of trust
The structure of the three layers for the trust given as:

Trust=V xR x A &)

V indicates an honest or malicious group of cognitive
users. R represents the cognitive area of the radio network
and 4 is the fusion center attribute that could be defined as
the interaction quality (TQ), service quality (SQ), cost of
CM, time for processing (PT). By changing the weight of
the attribute as follows, interactive confidence for different
cognitive users can be determined.

U=a-RQ+b-TQ+c-PT+ d.CM (©6)

The attribute weight elements here a, b, ¢ and d fulfil the
condition+b+c+d=1.

The cluster leader collects and reports on the importance
of trust for the uniting core in this network architecture.
Each cognitive user interacts in any subnetwork with the
cluster header so as to generate a trust value. The
confidence value is stored with the cluster header in the
trust vector ei = [eil, ei2, ..., ein], where the number of
cognitive users in each sub-network is n. Each head cluster
report collects confidence value at the fusion center or
through a trust poll where each user’s confidence is
measured in a certain time called polling time. The fusion
center collects trust value through trust reports (Tpoll). In
both cases, the data is stored as follows in the fusion
center’s confidence matrix:

where n = Number of network cluster header

The number of cognitive users within each head of the
clusteris ki=1, 2, ...., n).

Suppose that there are m cognitive users in SRi. The
network initially verifies the direct interaction experience
between user SUi and the cluster header SUh when a new
cognitive user SUi wishes to connect.

The general confidence assessment between user i and
user j is:

€11 €12..61k1
€21 €22, €22
€n1 €n2 - Enit

E- )

Trij = ®. DiTrij + 6. InTrij + p. HisTri+rew  (8)

where,

@ = Standardized factor of weight equal to DiTrij direct
confidence

0 = Standardized indirect confidence equivalent weight
factor In Trij

u= Standardized weight factor comparable to historical
trust HisTri

Also, ®+d+u=1
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rew = Rewarding trust.
The basic trust matrices for users can be given as: based
on the above discussion:

3) Trust value (Direct)

Direct trust is the product of the interaction between the
cluster head and the cognitive consumer. By reducing the
influence that nodes with more uncertainty may have on
the measurement, the NUT model seeks to reduce the
measurement’s total uncertainty at the network level. The
notions of reputation, trust, and uncertainty are applied to
the network of measuring nodes.

DirTrih = %z;;l A(s,t;) X Attry, x DSk 9)

l = Interaction Frequency

DSih= SUh to S satisfaction assessment,

DSih={SQ,TQ, PT,CM}

Attrih = ] is the matrix coefficient of the weight of DSih.
The attenuation function is expressed as:

A(s, t; ) =v.e SLED (10)

where, d =decay rate (0 <s <1)
I(tl)= Interactive Time Function
I(tl) = Round((tl — t0)/T)
sp= Duration of scanning.
4) Trust value (Indirect)

Similarly, for interactions between user I and other m—2
users in the subnetwork the indirect trust value is
determined as follows:

m—-2\n

. . 1
INDirTrih = n(m—Zkﬂ l=1

-2)
5) Historical trust

The trust value (HistTr) in the past round of observation
is the absolute value of the approximate trust. During the
observation time, the trust value HistTi—a deterministic
value but not a vector—Dbetween the user, cluster header,
and FC will be recorded by cognitive users who have
previously visited the network but have since departed or
whose trust value license has expired.

6) Reward

Based on its reliability, the reward value of trust applies
to the overall confidence of a cognitive consumer. It is
used by cognitive users to promote honest behavior and the
following:

A(s, t1) X Attry, X DS (11)

Act;i(t).A(s,t)
Dev(t)

r(t) = AL k( )

Here, A1is the reward factor, &(.) is the standard function
and the trust differences in user value, Acti(f), A(s, ?),
Dev(?) is the operation material matrix. The Activity
Matrix reflects the user-to-user interaction in the network

and is given by:
) (13)

Act;(t) = (

The attenuation function is used to restrict trust value in
the predefined range and let v be the initial trust value, “is
the attenuation factor, s is the attenuation rate and t is the
scanning time.

(12)

Y jeC IndTrij
Yk,jeC IndTrkj
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A(s,t) = o.round(10.v.e™5t) (14)

The User Evaluation Trust Difference is a measure of
the transformation of the trust value of any user in a given
time and is given by:

Dev(t) = Var(Tr;(t)) (15)

The values of Egs. (13—15) are used to determine the

incentive value for each consumer.
7)  Punishment mechanism

The Fusion Center is responsible not only for storing
and distributing award confidence but also for penalizing
misconduct and malicious users. The network’s cognitive
features make it vulnerable to various attacks. In essence,
there are two types of online attackers: a malicious attacker
and a gullible attacker. The altered trust value curves for
three different user assault types. Users’ trust values are
initially equal to one another. After the user initiates, the
value of its trust will shift. Because they have caused the
network to be destroyed, the malevolent users are harshly
punished. They are, therefore, relevant to example 1, and
their trust levels drop to less than —1 right away. However,
the recovery of trust value is a progressive process and is
intended to allow re-access to the network following a
penalty time, which is consistent with attenuation [25].

Both a data channel and a common control channel
employed the punishment mechanism. The outcomes of
the simulations demonstrate that the suggested punishment
mechanism enhances the self-giving cooperation between
nodes in the networks and raises the cognitive radio
networks’ fairness index. We examine the traits of selfish
behavior and the ways in which it may be identified. This
research developed a strict punishment mechanism based
on network traffic to enhance the self-giving cooperation
among nodes in cognitive radio networks and raise the
fairness index of the entire network. Both a data channel
and a common control channel employed the punishment
mechanism. The outcomes of the simulations demonstrate
that the suggested punishment mechanism enhances the
self-giving cooperation between nodes in the networks and
raises the cognitive radio networks’ fairness index. When
both are detected, depending on the intensity of the attack,
they are treated differently. This can lead to malicious
users causing SSDF, PUEA, and Denial of Service (DoS)
attacks when detected; users of that kind should be
punished quickly and released slowly. For malicious users,
the penalty feature is as follows:

pen,(t) = —B.e St + £ (16)

where, £ € (0, 3) penalty factor. { > 0 recovery factor £ =
regulation factor.

We demonstrate the variation rule of honest users who
do not attack or engage in misbehavior, where the X-axis
indicates the time of interaction and the Y-axis represents
the trust level, which spans from —2 to 2. The normalized
weight factors of & = 0.85, = 0.1, and y = 0.05 were used
to provide a range of direct trust ratings that gradually
increase and mostly stay constant.

Greedy users frequently inform that the main user
dominates a certain spectrum that leaves the spectrum
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band for all the other users. Thus, a greedy user obtains the
exclusive use of a particular spectrum. Gullible users
should be sanctioned and published gradually as they are
not distracting. The following can be stated:

pen,(t) = —B.e 5" + £ (17)

a) Phase-4.: Resource allocation

The Fusion Center has the right, according to the trust
of any user, to grant or deny any user access to a particular
resource. Therefore, a resource allocation scheme based on
the threshold is taken into account. If FC provides services
to SUs whose trust value exceeds that resource’s access
threshold (vij > Ai).

b) Phase-5: Information security at the physical layer

The hostile intruder in this assault mimics primary user
transmissions in order to stop them from communicating
and disclosing their original data. It gives the impression
that the channel is busy with the secondary users.
Furthermore, this assault uses a lot more energy than
traditional communication since the hacker continuously
scans the channel for transmission chances. The
malevolent SU impersonating a PU in order to exploit the
spectrum selfishly and without disclosing it to other users
is known as the PU Emulation Attack. The SUs is unable
to use the white space because of the false identification.
In fact, the licensed PU’s existence is detected wrongly by
the SUs. On the other hand, the malicious emulator
greedily takes use of the resource while the channel
remains idle. In order to determine which unlawful route,
the self-centered PUEA attackers.

The idea of a cognitive network contends that CNs are
a way to handle the intricacy of the wireless medium,
network parameters, and end-to-end goal needs.
Specifically, we contend that the local and reactive
approach of networking protocols is unable to address or
comprehend the complexity of wireless networks. Due to
their commonalities, we show how CNs relate to two other
techniques for handling these complexities: CRs and
cross-layer design. Their advantages and disadvantages in
a networking setting are demonstrated, showing how many
of the features that are missing from their feature list are
present in a CN, altering the user’s successful transmission
rate standards for different types of attacks. We take into
account the FC’s incentive and penalty programs, the
attenuation of cognitive users’ trust values, etc. We
Suppose that the initial successful transmission rate for
each user is 0.9. The successful transmission rate of honest
cognitive users increases continuously as the interactional
time increases and gradually approaches 1 that complies
with the reward scheme, even in the absence of attackers.

On the other hand, when attacks take place, the
successful transmission rate steadily decreases because FC
controls all users and has the ability to punish misbehavior
to lower the trust value in order to accomplish the goal of
preventing access to cognitive networks.

The time it takes for trust values to recover from the
three types of frequent attacks. The graph indicates that the
value of the restored trust is somewhat less than the value
prior to punishment. If users repeatedly attack, they will be
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barred from accessing the network as part of this
punishment plan designed to restrain attackers.

The utilization of deep learning techniques in cognitive
radio networks can significantly enhance the network’s
capability to adapt to changing environments and improve
the overall system’s efficiency and reliability. As the
demand for higher data rates and connectivity increases,
B5G/6G wireless networks are expected to enable new
services and applications significantly. Therefore, the
significance of deep learning in addressing cognitive radio
network challenges cannot be overstated.

Denial of Service (DoS) and network degradation are
possible outcomes of this type of assault. It also entails
making use of unclaimed frequency bands. The attackers
can jam a range of frequencies in one stretch (barrage
jamming), sweep over the frequency range (sweep
jamming), or target a single frequency (spot jamming). A
single jammer or a group of jammers working together
may also carry out the assaults, lowering user throughput
by extracting more information from the channel.

Additionally, the attackers might cycle between
attacking and resting modes or broadcast jamming signals
continually.

Because Cognitive Radio Networks (CRNs) offer and
share resources, they are exposed to several safety risks,
such as eavesdropping. Both the main and secondary
networks can simultaneously use the same spectrum band
in the current situation. In order for eavesdroppers to be
completely safe, the basic idea behind eavesdropper data
security is to strengthen the main channel of the legitimate
receiver. Consider the situation of contact when a
Secondary User (SU-1) shares a Primary User’S (PU)
spectrum in the presence of an eavesdropper to relay data
to a Secondary User (SU-2). This research concentrates on
the cognitive radio architecture of clusters so that the
eavesdropper may be a secondary malicious user in the
same subnetwork of an infected cluster header.

Single and Identically Distributed (I.I.D) Rayleigh
fading both the primary Channel (SU1 to SU2) and the
secondary Channel (SU1 to Eavesdropper). The
coefficient for the channel is #M, which implies that the
channel is almost static, i.e., for all channel operators the
channel coefficients are constant, therefore /(i) = 2M total.
Let nM indicate zero-mean Gaussian noise that is
circularly symmetrically complex.

Let SU-1 want to send a message block to SU-2 encoded
with:

x(m) = [x(1),x(2) ..., x(n)] (18)
The signal received by the SU-2 will be:
Yy () = hyy (DX (@) + ny (D) 19)
And the channel output to the eavesdropper:
Yp () = hg (DX (@) + ng (D) (20)

where hy and ng have the same characteristics as the main
channel, and the eavesdroppers’ noise. Also, the power of
the channel is believed to be constrained:

YL E[X (@] < P 1)
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Allow N and Ny to reflect on the channel main and
eavesdropper. Then the SNR in SU-2 is instant:

. _ PlHM®D)* _ PlHpy|?
ym() == = = (22)
Average SNR:
— .. PEHy®1)|? _ PE|Hy|? —
YD) ==t === = = (23)
Eavesdropped instantaneous SNR:
. _PIHE(I|?> _ P|HE|2
VE (i) = 52‘)' - INEEI —VE (24)
Average SNR:
—. . _ PE|HE(®)|? PE[|HEg| 2 -
E E

Assuming that the SU-1 and SU-2 interact through the
normal AWGN channel with Ny, noise, the observation of
the Eavesdropper is also distorted by Gaussian noise with
Noise power Ng, where Ng > Ny,. Under this condition, the
capacity for confidentiality can be calculated by the
formula:

where Cy, Cg represents both the main power channel
(SU-1 to SU-2) and the channel of the eavesdropper and
can be detected with this formula:

_1 P

CM =log (1 +—) 27)
_1 £

CE=-log (1 +-2-) (28)

If the complex AWGN channel is two real-established
AWGN channels. The confidentiality capacity of the
complex wiretap channel is calculated in such a case by:

Cs = log(l +$)—10g(1+ﬁ)

Since the main and eavesdropper channels are assumed
to be quasi-static, the confidentiality capacity will be:

(log(1 + yM) —log(1 + YE)ifyM > yE}
CS_{O ifyM < yE J G

The probability of a hidden loss, i.e. the probability that
the instant confidentiality capacity is less than the Rs > 0
target confidentiality limit, can be given as:

Pout(Rs ) =P(Cs <Rs)

(29)

(31
Invoking the total probability theorem,
Pou(Rs ) =P(Cs <Rs |[yM >yE YP(yM > yE )+

P(Cs<Rs|yM <yE)P(yM<yE) (32)
__¥wM
Now, (yM > )—W+VE (33)
Consequently, we have:
1 _ ™
YM=yE)=1-(yM>)=—r0 (34

On the other hand, (Cs <Rs [yM > ) = P(log(l + yM)
—log(1+yE)<Rs|yM>yE) =PyM<2Rs(l+
YE) — llyM>yE):
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_ foo fz RS(1+YE)_1.:P()/M, th/M > )/E)d]/Ed)/M
0 JyE

(o 2Rs(1+YE)-1 P(yM)P(YE)
- fo fvE "P(YM>YE) dyEdyM

1 _M n YE (—2Rs-1)

14 YM + 2RsYE ™M
(35)
Since Rs > 0,

(Cs<Rs[yM<yE)=1 (36)

On combining these Egs. (33), (34), (35) and (36), the
result is given as:

1 YM — (= 2Rs-1)
Pou(Rs ) =1 M ZRSTW yM exp M (37)
IV. RESULTS

Five primary and five secondary users were provided to
reflect the cognitions process with a simulation scenario
based on MATLAB. In this section, we present the
numerical results for the proposed mechanism. The main
parameters used for the simulations are L = 10, K = 50, 4
= {1.2, 1.5, 1.8}, Rf =1,500 ms and the simulations are
conducted in MATLAB R2012b environment.

120
— Custer Head
100 ~ Coghnitive User
B Q’f 7, | e . . N -~ o
/Q °\ o o\ o ®
. [l o ® ‘ - = -,
8 " / oG \
g J e o e =
. "t.' “'_, et ® S .
8 Ko . / "\ *
£ 60 ; o N -\
5 74 I ", Fusion Center
a / - & \ | —
a o | . . e .
40 { s i)
O ) B . \
e A |
o
20 ., - \ - 4
., ® \ S . Vi
ol | - S
0 - - 218
-20 0 20 40 60 80 100
Distance

Fig. 3. Cluster head selection.

With simulation parameters, the simulation scenario is
generated as given below in Fig. 3 that presents a two-level
hierarchy network simulation model for the proposed
cognitive radio network security system. The Fusion
Center is located at the highest level of the hierarchy and
is responsible for authenticating the customer who is
coming in, selecting the available resources, and
implementing the compensation and penalty scheme.
Cluster heads are available on the second level of the
hierarchy and are responsible for collecting and
forwarding trust values to the fusion center. Also, the
cluster head should notify the fusion core if an attack is
detected. By keeping an eye on different cluster nodes, a
cluster head initiates the maintenance procedure.
According to the various methods, a member would be
automatically removed from the neighbor list if it lost
contact with the cluster leader. The main simulation
objects are the variation rule of trust value, attenuation

627

characteristics of trust value, cluster head selection scheme,
penalty scheme and complexity analysis.

In Fig. 4, where the X-axis represents the contact
duration and the Y-axis represents the trust level, which
ranges from —2 to 2 that exhibit the variation rule of honest
users who do not attack or engage in misbehavior. With

—#—GUs
—@— MUs
UMUs | 4

06

trust value

3 4
Interaction time

Fig. 4. Change the confidence value in three attack types.

the normalized weight factors set at a = 0.85, f= 0.1,
and y = 0.05, a series of direct trust values that
progressively rise and generally remain steady were
obtained. Each licensed user has a 1 kHz frequency band,
which secondary users can use opportunistically. This
entire process can be understood using a series of Power
Spectral Density (PSD) plots.

Similarly, the cluster is deemed dead, and the cluster
head will begin the neighbor-finding process if all linked
members no longer have ties to the cluster head.
Depending on several algorithms and security
considerations, the cluster head will either approve or deny
an affiliation request from a new node. In some instances,
the primary cluster head uses certain metrics to choose the
backup cluster head. The interaction time is represented by
the Y-axis, and the trust value by the X-axis. In Cognitive
Radio Networks (CRNs), a node’s trustworthiness is
assessed using a measure called trusted value or Trust
Value (TV). The communication properties of the
requesting node are used to determine the trust value. A
transceiver can identify which communication channels
are being used and which are not in CRNs. After that, the
transceiver can enter open channels without disturbing
authorized users. In Cognitive Radio Networks (CRNs),
interaction time defined in the spectrum mobility
management seeks to reduce spectrum handoff delay for
low communication latency. Important data on the length
of the spectrum handoff may be obtained using sensing
techniques. Fig. 4 shows the modified trust value curves
for three types of attack users

In the beginning, the user’s confidence values are equal
to each other. When an attack is initiated by the user, the
trust value of the attack can change. By carrying out the
various stages of the Cognitive Radio Network (CRN)
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cycle—sensing, decision-making, sharing (accessing), and
hand-off (mobility)—the CU nodes are able to access the
available bands/channels. The hand-off phase is the most
crucial of these as, when a PU emerges, the CU must
remember all of its prior operations in order to transition
its ongoing data transmissions to another accessible
channel.

Additionally, from a security standpoint, a Malicious
User (MU) could mimic the PU signal with the goal of
preventing the CU from ever using its idle band, which
eventually impairs network performance. Attacks such as
the Cognitive User Emulation Attack (CUEA) and
Primary User Emulation Attack (PUEA) may be
encountered by the handoff procedure, which need to be
resolved.

To address this issue, a secure and trusted routing and
handoff mechanism is proposed specifically for the CRN
environment, where malicious devices are identified at the
lower layers, thus prohibiting them from being part of the
communication network. Further, at the network layer,
users need to secure their data that is transmitted through
various intermediate nodes. To ensure a secure handoff
and routing mechanism, a Trust Analyser (TA) is
introduced between the CU nodes and network layer.

UMU s are the most common type of attacker. This kind
of assault is simple to identify and doesn’t pose any
harmful subjective threats to the network. The successful
transmission rate curve appears to decline as FC shows
significant tolerance for this attack, resulting in a reduced
penalty level. GUs are the second type of attacker that may
quickly destroy the network, leading to unequal resource
allocation.

As a result, FC faces harsher penalties for this kind of
attack. The punishment impact is evident, and the
successful transmission rate drops more sharply because of
the existing punishment time and decreased trust levels.
SSDF and PUEA are included in the third class of MUs.
This kind of attack carries the worst punishment, and if the
culprits are identified, they will face swift consequences.
As a result, the successful transmission rate curve graphs
show a steep decline. Under centralized management,
PUEA has a higher detection probability than SSDF [26],
making it easier for FC to identify them and causing their
transmission rate to drop more quickly than SSDF. The
findings of the simulation demonstrate that security
management based on the trust value mechanism
successfully protects the transmission rate of honest users
while partially or completely shielding misbehaving users
and validating a stronger anti-attack capability than the
system possesses. Malicious users are seriously
disciplined for damaging the network. Figure 5 shows that
the trust value recovery time is dependent on three forms
of regular attacks.

In Fig. 4, Factor 4 = 0 of penalty accumulation Cycle
diagram of the trust value recovery. The figure illustrates
that the returned value of the trust is slightly less than the
pre-penalty value. Under this penalty system, users would
be barred from network access if targeted repeatedly. We
determine the best channel allocation and admission
control choices for cognitive overlay networks to
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accommodate  unlicensed  users’  delay-sensitive
communications. We solve it by converting the original
formulation into a stochastic shortest path problem, which
we express as a Markov decision process issue [20]. Next,
we present a straightforward heuristic control strategy that
consists of a largest-delay-first channel allocation scheme
and a threshold-based admission control method. We also
demonstrate that the latter is the most effective. Using the
rollout algorithm, we also suggest an enhanced policy. The
effectiveness of Cooperative Spectrum Sensing (CSS) in
enhancing Cognitive Radio Networks’ (CRNs’) sensing
capabilities has been confirmed. We examine a
fundamental trade-off between the sensing, reporting, and
transmission periods of CSS and assess the effect of the
fusion rule with varying numbers of local sensing results,
in contrast to previous works that typically consider fusion
with fixed inputs and neglect the duration of the reporting
period in the design. More specifically, the sensing time
might be exchanged for longer transmission time or more
mini slots to provide more local sensing findings for fusion.
Fig. 5 illustrates the relationship between the load on the
network and the user size.
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Fig. 5. The relationship between the load on the network and the user
size.

A Network Load is a key index for assessing the
proposed process, specifically in terms of user
management complexity. We see that when the network
scale is small, the network load on the proposed
mechanism is comparatively higher, as the proposed
mechanism has an additional burden on the added trust
authentication function, the selection of cluster heads and
penalty functions, etc. However, our proposed mechanism
shows better results, with the increasing size of the
network. The probability of detecting Signal-to-Noise
Ratio (SNR) in MATLAB code uses different parameters
as follows:

%% system model parameters

pf=.1; % target probability of false alarm

pd=.9; % target probability of detection

R=500:2:2000; % distance between PU TX and each SU
TX

iter=10000;
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d0=1; % reference distance
n=3; % path loss exponent
R pu=500; % primary user transmission radius
R su=384.9326; % secondary user transmission radius
protection_factor=.95;
p_n_dbm=-100;% noise p
pd=.9; % target probability of detection
R=500:2:2000; % distance between PU TX and each SU
TX
iter=10000;
d0=1; % reference distance
n=3; % path loss exponent
R pu=500; % primary user transmission radius
R su=384.9326; % secondary user transmission radius
protection_factor=.95;
p_n_dbm=-100;% noise power in dbm
p_n_db=-100-30;
p_n=10"((p_n_dbm-30)/10);% noise power in watt
snr_su lim db=3; % snr threshold for successful reception
snr_su_lim=10"(snr_su_lim db/10);
snr_pu_lim_ db=3;
snr_pu_lim=10"(snr_pu_lim_db/10);
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Fig. 6. Probability of detection for various SNR.

Fig. 6 illustrated that Probability of detection for various
SNR. The signal-to-noise ratio is a key parameter
characterizing spectrum sensing algorithm efficiency. The
detection accuracy of a spectrum sensing algorithm is
influenced by the Signal-to-Noise Ratio (SNR). A
simulation scenario is developed to show the effect of SNR
on the probabilities of detection. The suggested system
establishes the threshold on the Average Received Signal
Strength (RSS) of a primary signal below which feature
detection is preferred and decides whether energy or
feature detection incurs less sensing overhead at each SNR
level. We showed that when collaborative sensing utilizes
its geographic diversity, energy detection under lognormal
shadowing can still perform effectively at the average SNR
< SNRwall. The figure shows, for —22 dB SNR, that a
probability of detection is 0.5 for PFA equivalent to 0.2,
0.75 for PFA equivalent to 0.4, and 0.9 for PFA equivalent
to 0.6 for PFA.

The mass detection probability used the following
parameter in for detection range in the 80%. Cognitive
users N=150 and cluster head L= [3 5 10] are the
parameters for network sizing. As shown in Fig. 8, there is
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a connection between the network effort and the number
of users.
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Fig. 8 shows the estimation for the proposed PUEA
analytical model of the probability of false alarm. As can
be seen, 500 iterations of PFA range from 0.2 to 0.25. Fig.
8 is the result of the proposed study’s resource collection
process. Change in the probability of detection is shown
with SNR with a distinct probability of false alarm. The
false alarm probability is also used in different parameters
as follows:
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Fig. 8. Miss detection probability for the model.

Fig. 8 shows the estimated probability of not having
detected the proposed PUEA detection analytical model.
For 500 iterations simulation is done, and it is clear from
the above figure that the chance of not detecting the
proposed scenario ranges from 0.11 to 0.15. The false
alarm and miss detection comparison are used in various
parameters.

Fig. 9 shows the simulation result for the analysis of
false alarms and the probability that they will be
undetected. The simulation was conducted over 500
iterations with a threshold value of 2, considering a
scenario with 10 malicious users. This simulation has
confirmed the effectiveness and rationale of the
mechanism discussed in this work. When compared to
other mechanisms, the advantages of this approach are
primarily expressed as follows:
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e A trust model that aligns with the fundamental traits of
human society

e To apply various penalties in accordance with the
various attack kinds

e The network management complexity is successfully
decreased by the FC + CH hierarchical architecture.
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Fig. 9. False alarm and miss detection comparison for the model.

V. CONCLUSION

This paper discussed the challenges of fighting attacks
on cognitive wireless networks. We also found that a large
number of research studies focused on the detection of
attackers, but also a number of important literature studies
on how they can be handled while the mechanism is
detected and optimised. We therefore proposed a new trust
and penalty mechanism to address security concerns in the
CRNs. The proposed mechanism has been confirmed to be
superior to other mechanisms and to comply with current
application criteria.

A survey on guarding PUEA and SSDF assaults was
conducted, and the defense measures were divided into
two categories: active (rapid attack detection) and passive
(delayed attack detection). The cognitive radio network’s
defense mechanisms and a variety of assaults that target its
physical layer have been examined and contrasted. The
primary user emulation attack is one type of physical layer
attack. The primary user signal is faked in a Primary User
Emulation Attack (PUEA) to trick cognitive users into
thinking the spectrum is not empty, preventing secondary
users from using the channel. In reality, a number of flaws
can significantly impair a CR system’s performance,
including noise  uncertainty, channel/interference
uncertainty, hardware flaws in the transceiver, signal
uncertainty, and synchronization problems. For this reason,
it is crucial to investigate workable ways to address
different practical flaws to use cognitive technology
successfully. So, in this direction, this survey report offers
a summary of the enabling strategies for CR
communications. The primary flaws that might arise in the
most popular CR paradigms are then covered, and the
current methods for fixing these flaws are reviewed.

The versions of the tools that are based on the cognitive
radio network simulator are given below. Researchers may
choose from a variety of tools and obtain comprehensive
information about them.
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Every module of the cognitive radio network has to be
understood by researchers, and we provide research
students with all the assistance they need to comprehend
and use each module in the cognitive radio network
simulator. For convenience, we have only highlighted the
two main modules. Here, we have listed the study topics
together with the relevant cognitive radio network
simulator tools.
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