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Abstract—Cognitive radios are characterized as intelligent 

radios that can detect, learn, and adapt; they perceive their 

operational environment and gather information via 

experience. Future wireless networks are anticipated to 

establish a dispersed, intelligent platform for wireless 

communication, sensing, and computation, necessitating the 

complex integration of the physical and digital realms in a 

smooth and sustainable fashion. This research is based on the 

analysis and the optimal solution of security attacks related to 

the cognitive radio network. The risks associated with both 

infrastructure-less and infrastructure-based cognitive radio 

networks are also covered. We address the frequently 

disregarded longer-term behavioral changes that are imposed 

by such attacks through the learning capabilities of cognitive 

radio network in addition to the short-term consequences of 

attacks on cognitive radio network performance. However, a 

few of them considered the punishment of attackers and 

ignored the effective measures to punish them. In this paper, 

a new sanction mechanism based on cognitive trust value is 

proposed. To deal with this issue, a hierarchical architecture 

cluster heads and data fusion center, the trust value of 

cognitively engaged users was managed. Fusion Center would 

punish bad users because they would decline their confidence; 

it is, therefore, essential to guarantee the safety of the network 

through a distinction between attack users. A simulation setup 

based on MATLAB is built for each step of the proposed 

system. The simulation results show the effectiveness of the 

proposed architecture in detecting attacks with a detection 

rate of over 80%.   
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I. INTRODUCTION 

Cognitive technologies mainly focus on the 

opportunistic use by Secondary Users of the licensed band 

with licensed users called Primary Users. In spectrum 

sensing, the performance of Secondary Users. Primary 

Users detection can consequently be reduced by a few 

factors like shadows and multipath. Cooperative sensing 

increases the overall performance of detection by adding 

sensing results of the different spatially located Secondary 

Users. The combined sensors are more accurate due to 

spatial diversity than the perceptive outcome of a single 

Secondary Users. 

The cognitive radio networks have lately gained 

prominence for their capacity to reconcile the disparity 

between restricted spectrum availability and spectrum 

demand. The cognitive radio network has recently become 

a leading provider of wireless technology networks to 

solve conflict between the restricted spectrum supply and 

spectrum demand of growing wireless applications and 

services, identified as the wireless networks that allow 

them to learn about their geographic and operational 

conditions, policies, and internal status. The cognitive 

radio networks are therefore a free, random networking 

environment where unlicensed secondary users can 

operate channels not currently operating with spectrum 

sensing technology for licensed Primary Users. Because of 

their unique cognitive characteristics, they are therefore 

vulnerable to new threats in addition to all of the safety 

risks associated with conventional wireless networks, such 

as User Emulation Primary Attacks. Attackers can 
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successfully broadcast and duplicate the primary user 

within prohibited time slots, leading a protocol-compliant 

SU to believe that this attack is the primary user. 

Falsification attacks on spectrum ensign data intentional or 

unintended assailants give the Fusion Centre false 

observation details, causing the FC to make incorrect 

determinations. 

Cognitive radio networks are facing an inevitable 

challenge with security problems, and how to solve them 

has become an area of research. The main focus of the 

current research is the detection of signals based on 

defense attacks, but it was unable to punish them. We are 

unlikely to punish the offender, even if the person violates 

morality or civil law; we can only prove it to the law 

enforcement office. Before our proposed one, we will 

analyze the existing security mechanisms. The rest of the 

sections of this paper are sorted out as follows. Section II 

analyzes previous literature that focused on research on 

security issues on cognitive radio networks. Section III 

proposes the cognitive trust value-based mechanism for 

the punishment of attackers and effective measures to 

punish them. The simulation results of this proposed 

approach are explored in Section IV. Finally, the 

conclusion of this research work is described in Section V. 

II. LITERATURE REVIEW 

Sohu et al. [1] proposed that that Malicious nodes are a 

well-known source of security threats in cognitive Radio 

Wireless Sensor Networks (CRWSN). This study focuses 

on security challenges linked to CRWSN, such as Fusion 

methods, Cooperative Spectrum sensing, and two severe 

CR attacks: Spectrum Sensing Data Falsification and 

Primary User Emulation (PUE). 

Wang et al. [2] proposed an algorithm to detect fake 

nodes within the network. The trust and consistency factor 

can be calculated for every user and nodes whose values 

of confidence and coherence are below the threshold value 

and can be considered for detecting malicious nodes. The 

downside is that only one attacker is activated once. 

Noon and Li [3] studied a new type of attack, named the 

hit and run attack, in which the attacker can produce a 

sensor report honestly or falsify sensor reports in two 

modes. The author also found a way to alleviate the attack. 

Wang et al. [4] suggested a soft decision scheme to detect 

several faux nodes of a system, in which the attacker is 

assumed to have a policy, and the base station knows 

where each user is located. The heuristic method was used 

to detect false nodes. Also, a posterior likelihood was used 

to detect each node’s suspicion level. The calculated 

probability was then compared to the determined threshold, 

and if the value exceeds the determined threshold value, 

the node is regarded as a malicious node. This approach is 

also referred to as “onion peeling”. 

The signal generation from PUs detected nodes that sent 

a false signal to detect data falsification attackers provided 

by Bansal et al. [5] The authors also assessed the attack 

strength, in which the attack force was seen as the 

relationship between the number of fake nodes and the 

total available nodes present in the network. Huang et al. 

considered in Ref. [6] the weight factor that shows the 

user’s contribution. Each user has a reputation, and the 

decline negatively impacts this reputation factor.  

Matsui et al. [7] proposed an algorithm like the proposed 

method of Huang et al. that would consider only the 

difference between the two nodes where it was assumed 

that the base station where SUs were located. 

Chen et al. [8] and Clancy et al. [9] suggested a trusted 

and reputable mathematical model. Kar et al. [10] used 

four parameters for the calculation of confidentiality in 

their work. The active factors, consistency factors, 

incentive factors, and trust factors were the factors. The 

nodes are declared to be fake based on calculated 

trustworthiness. However, to apply the confidence factor, 

the SUs must be successfully detected [11]. Meng et al. 

[12] demonstrated that SUs might benefit from the multi-

user benefit in every time frame for the installed TDMA 

technology.  

Aishwarya et al. [13] uses a memetic algorithm to 

choose the best routing routes that maximize the data 

delivery ratio and minimize energy usage. When compared 

to conventional routing techniques, preliminary findings 

show a notable improvement in the network’s overall 

performance parameters, such as a longer lifespan and 

improved data dependability. Saranya and Natarajan [14] 

proposed that, prompted by the growing need for effective 

spectrum use in wireless communications, to improve EE 

in CRNs without sacrificing PU protection. The ELSTM-

RPO model, the first of its kind in s, is one of the study’s 

main achievements. It offers systematic optimization of 

essential parameters and outperforms state-of-the-art 

techniques in terms of EE and spectrum utilization. With 

its exceptional performance and resilience across a range 

of network circumstances, this work establishes a new 

standard for energy-efficient CRNs. This study looks at a 

number of situations in which SUs may transmit data after 

asserting that spectrum sensing prevented the PU from 

being present, has been proposed by Ali et al. [15].  

In some circumstances, SU’s transmission should 

disrupt PU’s communication, leading to wasteful spectrum 

use. The optimization problem in this connection is to 

maximize the SUE while meeting the requirements of a 

low likelihood of PU interference and a high target 

identification probability. In this approach, several SUs 

and PUs coexist in a realistic, overlapping clustered 

structure [16].  

 In order to gather energy from both SUs and PU 

transmissions for improved active probability, Sensing 

Reputation (SR), a revolutionary trust management 

technique that assesses each node’s trustworthiness in the 

CSS system, is what we presented. SR calculation 

incorporates a number of choice elements, including the 

history-based trust factor, active factor, incentive factor, 

and consistency factor, in order to reflect the complexity. 

This SR value is used to identify suspicious individuals 

and filter out harmful users from the CSS scheme’s 

decision-making process [17].  

We also propose the idea of a reputation chain sensing 

system to document and monitor the future actions of the 

identified problematic people. With greater accuracy and a 

reduced false alarm rate, theoretical analysis and 

Journal of Communications, vol. 20, no. 5, 2025

620



simulation results show the effectiveness of suggested 

malicious user detection approach.  

Wang et al. [18] reported a centralized data fusion 

center is used for decision-making. Next, we extend it to 

the scenario where autonomous and dispersed decision-

making results are obtained from the absence of the data 

fusion center. Mechanism design theory serves as the 

foundation for our trust-based data fusion systems, which 

encourage users to submit real sensing data in order to 

increase the success rate. Amit et al. reported that one of 

the hardest problems in Mobile Ad-hoc Networks 

(MANET) is IP address auto reconfiguration, which 

guarantees the best routing [19].  

There are two types of reconfiguration protocols: 

stateful and stateless. Address conflicts must be avoided, 

and each address must be distinct. Furthermore, we 

prevent needless penalties for good users by separating 

fraudulent reports from erroneous sensing reports caused 

by assaults and limited sensing capabilities. In order to 

determine the ideal parameter settings for our trust-based 

data fusion methods to beat current non-trust-based 

cooperative spectrum sensing data fusion systems, we 

conduct a theoretical study that is confirmed by extensive 

simulation. In order to combat data fabrication attacks, we 

suggested and examined trust-based data fusion techniques 

for cooperative spectrum sensing in cognitive radio 

networks. Amit et al. investigated that determine the 

specifications of the aerial that depend on its different 

geometrical parameters, a sequential parametric analysis 

has been conducted.  

The aerial’s many geometrical parameters, which 

include the matrix material’s dielectric constant, are up to 

the patch and horizontal foundation planes’ extended 

qualities and their segregation. An etched symmetrical or 

non-symmetrical amalgamation of organization in the 

horizontal foundation plane of MPA is known as a 

“defective ground structure.” The suggested antenna is the 

recessed ground plane parasitic patch antenna, which is 

based on the existing parasitic rectangular patch antenna 

on a FR4-epoxy substrate material with permittivity. The 

substrate’s dimensions are 20 × 20 × 0.5 mm. Antenna 

characteristics including gain, VSW R, S-parameters, and 

bandwidth are enhanced and contrasted by Amit et al. 

 To differentiate false reports resulting from hostile 

assaults from those caused by limited sensing capabilities, 

we created data fusion rules. Our architecture successfully 

compels malevolent nodes to disclose their actual sensing 

capabilities and results, enabling a high success rate. SUs 

must first become winning, that is, reduce their own miss 

detection probability below the upper limit set by PUs in 

order to obtain the communication chances. A proposed 

method for enhancing SU detection performance is 

Collaborative Spectrum Sensing (CSS), in which many 

SUs bands together and exchange sensing data. 

Additionally, the likelihood that successful SUs accurately 

identifies the idle state of PUs’ spectrum will influence 

their communication prospects. 

III. METHODOLOGY  

A reputable architecture was introduced to identify 

cognitive users in cooperative spectrum detection 

algorithms by Zeng et al. [20]. The algorithm begins by 

choosing certain cognizant users as credible and 

categorizes each user’s reputation in three states as 

discharged, pending and reliable. Even when their 

reputation is accumulated through uniform tests between 

local and global sensing results, an algorithm gives 

pending status to every cognitive user other than 

trustworthy. Cognitive users who exceed a trusted 

threshold are categorized as trustworthy, while those who 

do not are placed in a discarded category. 

Mapunya et al. [21] have introduced the trust-based 

TCRN architecture for supporting network functions, 

including Dynamic Spectrum Access (DSA) and routing. 

As per authors, the CRN trust model should include two 

main components: confident association and algorithms of 

learning. The confident partnership involves a cognitive 

user’s initial decision to either accept or reject the 

application for a neighboring partnership. Learning 

algorithms helps make better decisions on package 

transmission, routing, and confidence measures. 

Sensors that raise awareness of the surroundings, 

actuators that allow interaction with the environment, a 

model of the environment that incorporates the state or 

memory of events that have been observed, a learning 

capability that aids in choosing particular actions or 

adaptations to achieve a performance goal, and a certain 

amount of autonomy in action are all features of cognitive 

radio. Geolocation, spectrum awareness/frequency 

occupancy, biometrics, time, spatial awareness or 

situational awareness, and software technology are the 

technologies that power CR. Given the variety of uses that 

could arise from a radio knowing its current location, as 

well as its intended path and destination, geolocation is a 

crucial CR-enabling technology.  

This study aims to improve the penalty mechanism 

model and how to improve the effectiveness of the penalty, 

optimize the cognitive radio network and achieve the Nash 

balance among the cluster heads and the network scale. 

This research concerns the extension, in this regard, to the 

SMTD protocol proposed by Li et al. [22] (trust 

determination-based security management). The authors 

suggested in their work an active mechanism to detect 

attacks based on building trust in the clustered cognitive 

network. A new compensation scheme is being proposed 

to Implement a new spectrum sensing algorithm and a 

central cognitive radio network. Resources Ensure 

physical layer security assessment and reward and penalty 

allocation of confidence-built resources to trusted users but 

do not take data transmission protection into account.  The 

Secret Capacity Enhancement Scheme was implemented 

to enhance physical layer safety in cognitive radio 

networks in the hybrid co-operative Spectrum Sensing 

Algorithm (SMTD), approach. The following is given to 

the network model and the flow mechanism: 
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Fig. 1. Proposed paper flow work. 

 

Fig. 2. Cognitive network scenario. 

Consider a centralized CN scenario shown in Fig. 1, in 

which there are multiple CNs with the primary network. 

Each network is divided into different subnetworks, each 

of which is centralized as the cluster header [23]. A 

centralized Fusion Center (FC) for the assembly of open 

radios to primary users via cognitive users sensing know-

how connects various subnets. Fig. 2 illustrates the 

Cognitive Network Scenario. The first step in hierarchical 

clustering is to regard every observation as a distinct 

cluster. Then, it does the next two actions repeatedly: First, 

determine which two clusters are closest to one another, 

and then combine the two clusters that are most similar. 

Until all of the clusters are combined, this iterative process 

keeps going. A cluster’s reelection message is initially 

broadcast by the cluster leader. Each sensor node in the 

cluster then uploads two candidates, and all the sensor 

nodes vote for a new cluster. The current cluster head uses 

the majority rule to determine the winner after tallying the 

votes. If a candidate energy is sufficient, a confirmation 

message is sent to the sensor node once it has been chosen 

as a contender. However, if the applicant’s energy is 

insufficient, the current cluster head will have to choose 

another candidate until someone with sufficient energy is 

chosen and appointed as the new cluster leader. 

• Computation and storage of all cognitive users’ 

confidence values in the cognitive network. 

• Implement discipline for misbehavior users, update 

trust value assessments, collect confidence values from 

cognitive users via Cluster heads, and monitor FC 

experiences. 

• Reporting misbehavior of user information to the FC 

promptly when an attack is identified. 

A. Network Configuration 

Consider that N cognitive users are randomly 

distributed over a square meter area. At the center of the 

field, a fusion center is deployed. Each cognitive user is 

preloaded with public and private key pair based on RSA 

and initialized with a random trust value between {0, 2}. 

It highlights important elements, including dynamic 

spectrum management, channel-state estimation, and radio 

scene analysis. Common uses for CRNs include spectrum 

trading, automatic interoperability, intelligent 

beamforming, opportunistic spectrum usage, and 

emergency services communication. CRNs are one of the 

main facilitators of contemporary networks due to their 

growing popularity in both industry and academics [24]. 

The radio spectrum is now divided among many wireless 

technologies. There are frequencies that are rarely used, 

leading to spectral inefficiency, even while the frequency 

spectrum in some mobile communications network 

frequency bands is becoming congested.  

Latency can be increased, and data transmission can be 

slowed down by an abrupt spike in the number of users or 

an increase in the volume of data being transmitted over 

the network. Secondary Users (SUs) can sense licensed 

spectrum using a Cognitive Radio Network (CRN) and 

transmit if an idle band is identified. As a result, SUs must 

make quick use of the spectrum band as soon as it becomes 

accessible. In order to investigate how scalability affects a 

single node of the CRN and how SUs on cloud computing 

platforms may effectively optimize an idle band, this 

research suggests a novel Generalized Stochastic Petri Net 

(GSPN) model with intrusion detection. In this case, more 

resources are dynamically released to make extensive use 

of the spectrum space before the return of Primary Users 

(PUs) as soon as the band becomes unoccupied and there 

are SU requests awaiting encryption and transmission. 

The clustering algorithm is used to meet the 

aforementioned criteria. In comparison to earlier 

clustering algorithms, this algorithm’s cluster head 

selection necessitates resolving uneven clustering and 

increased communication costs. A model for optimum 

Cluster Head Selection (CHS) is created in relation to 

energy-conscious and safe routing in Wireless Sensor 

Networks (WSNs). Based on factors including distance, 

energy, security (risk likelihood), delay, trust assessment 

(direct and indirect trust), and Received Signal Strength 

Indicator (RSSI), the best CH is chosen in this case. 

An SN functions as an active sensor during the data 

broadcast between BS and CH, and the WSN comprises a 

variety of SNs denoted by 𝑍𝑆. The WSN is often 

associated with data sensing, radio communication, sensor 

allocation, topological features, and energy consumption. 

In manual mode, the sensor is dispersed randomly over 

each application area. The CH is favored, and the number 
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of CHs is inferred by 𝑍𝐶, and the SNs are connected to 

create clusters. The cluster’s SN must be within a small 

radius of the CH. Correlated data is collected by all the 

SNs from the predicted region and sent to the CH. The BS 

receives the information from the associated CH. A 

uniform distribution serves as the basis for each sink 

node’s transmission pattern, which disperses data 

throughout the range’s maximum radio frequency. Sensor 

nodes comprise this cluster, which resembles a network. 

For each cluster, the sentence identifies the appropriate 

cluster head. Cluster head-based routing is the collective 

term for this technique of spreading decrease from the 

cluster to the BS. Cluster head-based routing is the 

collective term for this technique of spreading decrease 

from the cluster to the BS. The distance between the cluster 

head and the base station is what the network model calls 

the distance between other nodes and the cluster head. The 

cluster head is selected for ease of transmission. The 

cluster head in the suggested model is selected according 

to RSSI, energy, latency, distance, security, and trust. It is 

intriguing to select a cluster head in order to get much more 

energy efficiency, power consumption, and energy load 

balancing during each cycle of the sensor nodes.  

The authentication information of each cognitive user is 

stored in the fusion center. The entire initialization process 

of the network is divided into five phases as follows: 

Step 1: Enable all cognitive trust values of the 

memorizer and set the FC coverage radius, the selected 

cluster head threshold, and the permitted maximum 

number of cluster heads L. 

Step 2: Cognitive users report their position (xm, ym) 

and their initial trust value v to FC. 

Step 3: FC picks up users whose trust values are higher 

than the threshold and records the total number as N. 

Step 4: If N > L, FC should apply the following 

additional selection criteria: 

• Cluster heads are expected to be above the FC. 

• Any two selected cluster heads should be far enough 

away from each other.  

Step 5: The L cognitive users are selected as cluster 

heads, and the trust value is stored as matrix V in the FC. 

B. Phase-2: Resource Collection 

The Fusion Center gathers knowledge about the primary 

user’s available radio tools through a two-stage hybrid 

cooperative spectrum sensing algorithm. Various sensing 

methods encompass the following: 

• Measurement of energy 

• Matched filtration (MF) 

• Cyclo-stationary identification 
The most critical and fundamental technique is energy 

detection. In contrast to other methods, the detected signal 
is not previously aware of and resilient to unexplained 
fading multipath. The detection of energy depends on 
signal noise, but the exact noise power of the signal is 
almost impossible to determine. Energy detection has a 
huge disadvantage. To address this disadvantage, a 
technique based on statistical covariance or automatic 
correlation of the received signal was proposed. Two 
stages of decision-making on each continuum are carried 
out with regard to cluster-based architecture. The first 

point involves assigning cognitive users to a given 
spectrum in any sub-network. If n is the available number 
of radio resources and L is the number of cognitive 
subnetworks, then the sensed radio resource is assigned to 
each sub-network. If K is the number of cognitive users in 
any subset, K observations shall always be sent to the 
cluster head node. A data fusion based on the rules 
governing AND, OR, and majoritarian fusion is the 
clustered node. In order to compare sensing information, 
the fused information is sent to the melting station, where 
the final decision is made regarding any existing spectrum. 
The suggested algorithmic spectrum sensing phases are: 

Step 1: The x(n) represents the signal received and the 

sample number is Ns, and the covariance matrix of the 

signal received can be measured as Ns. 

𝑅𝑥 (𝑁𝑠) =
1

𝑁𝑠
∑ 𝑥(𝑛)𝑥 † (𝑛)𝐿−2+𝑛

𝑛=𝐿−1          (1)  

where, † Hermitian operation.  

Step 2: The covariance matrix 𝑅𝑥 (𝑁𝑠) determines the 

minimum and maximum self-values.  

Step 3: To decide on signal detection by comparing the 

ratio 
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 with the threshold γ. If 

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
 > γ, then there is a 

signal; otherwise, it does not exist. The γ threshold can be 

calculated using the formula as follows: 

γ = (
(√𝑁𝑠+√𝑀𝐿)

2

(√𝑁𝑠−√𝑀𝐿)
2) [1 +

(√𝑁𝑠+√𝑀𝐿)
−2/3

(𝑁𝑠   𝑀𝐿)1/6
×  𝐹1

−1 (1 − 𝑃𝑓𝑎)]     (2) 

And the probability of false alarm is given as follows: 

𝑃𝑓𝑎 = 1 − 𝐹1 [
𝛾 (√𝑁𝑠−√𝑀𝐿)

2
−µ

𝜐
]                     (3) 

Ns is the number of samples; M is the factor of 

oversampling and L is the factor of smoothing. The 

probability of detection can be measured using the formula 

provided, depending on the false alarm probability and 

threshold: 

𝑃𝑑 = 1 − 𝐹1 [
𝛾𝑁𝑠+

𝑁𝑠(𝛾𝜌𝑀𝐿−𝜌)

𝜎𝑛
2 −µ

𝜐
]                    (4)  

where 𝐹1 (𝑡) is the Tracy-Widom distribution function. 

C. Phase-3: Calculation of Trust – Penalty and Reward  

Trust may be measured on the basis of further contact 

with other users and is responsible for further activity on 

the network by the user. The reputation of a cognitive user 

can be described as an evaluation by other users or a 

description of the past behavior of a cognitive user. The 

trust model should have the following characteristics: 

• The ability to detect and withstand security threats such 

as hacking, checking fraudulently, etc. Attack 

resistance. 

• The measured trust should be based on the outcomes of 

the continuous learning process and will deteriorate 

over time.  

• The trust scheme must have provision for remuneration 

and penalties.  

• The Trust Determination Scheme must ensure that the 

new consumer is authenticated. 
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In addition to the attributes listed above, the trust model 

must include a trust management mechanism involving the 

creation, presentation, measurement, punishment, and 

updating of trust facilities. 

1) Generation of trust  

Mechanisms to generate trust involve building trust 

based on sharing and communication of resources, driven 

by demand. An authentication header is provided for all 

trust reports by the fusion center.  

2) Characterization of trust 

The structure of the three layers for the trust given as:  

𝑇𝑟𝑢𝑠𝑡 = V × R × 𝐴                      (5)  

V indicates an honest or malicious group of cognitive 

users. R represents the cognitive area of the radio network 

and A is the fusion center attribute that could be defined as 

the interaction quality (TQ), service quality (SQ), cost of 

CM, time for processing (PT). By changing the weight of 

the attribute as follows, interactive confidence for different 

cognitive users can be determined. 

U = 𝑎 · R𝑄 + 𝑏 · 𝑇𝑄 + 𝑐 · 𝑃𝑇 +  d. 𝐶𝑀           (6) 

The attribute weight elements here a, b, c and d fulfil the 

condition + b + c + d = 1. 
The cluster leader collects and reports on the importance 

of trust for the uniting core in this network architecture. 
Each cognitive user interacts in any subnetwork with the 
cluster header so as to generate a trust value. The 
confidence value is stored with the cluster header in the 
trust vector ei = [ei1, ei2, ..., ein], where the number of 
cognitive users in each sub-network is n. Each head cluster 
report collects confidence value at the fusion center or 
through a trust poll where each user’s confidence is 
measured in a certain time called polling time. The fusion 
center collects trust value through trust reports (Tpoll). In 
both cases, the data is stored as follows in the fusion 
center’s confidence matrix: 

E = ⌊

𝑒11  𝑒12…..𝑒1𝑘1

𝑒21   𝑒22……𝑒2𝑘2

𝑒𝑛1  𝑒𝑛2 … . 𝑒𝑛𝑘𝑡

⌋                 (7)  

where n = Number of network cluster header 

The number of cognitive users within each head of the 

cluster is ki = 1, 2, ...., n). 

Suppose that there are m cognitive users in SRi. The 

network initially verifies the direct interaction experience 

between user SUi and the cluster header SUh when a new 

cognitive user SUi wishes to connect.  

The general confidence assessment between user i and 

user j is: 

𝑇𝑟𝑖𝑗 = Φ. 𝐷𝑖𝑇𝑟𝑖𝑗 + δ. 𝐼𝑛𝑇𝑟𝑖𝑗 + µ. 𝐻𝑖𝑠𝑇𝑟𝑖 + r𝑒𝑤   (8)  

where,  

Φ = Standardized factor of weight equal to DiTrij direct 

confidence 

δ = Standardized indirect confidence equivalent weight 

factor In Trij  

µ= Standardized weight factor comparable to historical 

trust 𝐻𝑖𝑠𝑇𝑟𝑖  
Also, Φ + δ + µ = 1 

r𝑒𝑤 = Rewarding trust. 

The basic trust matrices for users can be given as: based 

on the above discussion: 

3) Trust value (Direct)  

Direct trust is the product of the interaction between the 

cluster head and the cognitive consumer. By reducing the 

influence that nodes with more uncertainty may have on 

the measurement, the NUT model seeks to reduce the 

measurement’s total uncertainty at the network level. The 

notions of reputation, trust, and uncertainty are applied to 

the network of measuring nodes.  

DirTrih =
1

𝑛
∑ A(s, 𝑡1 )  ×  Attr𝑖𝑘  ×  𝐷𝑆𝑖ℎ

𝑙  𝑛
𝑙=1   (9)  

𝑙 = Interaction Frequency 

𝐷𝑆𝑖ℎ= SUh to S satisfaction assessment, 

𝐷𝑆𝑖ℎ = {𝑆𝑄, 𝑇𝑄, 𝑃𝑇, 𝐶𝑀} 

𝐴𝑡𝑡𝑟𝑖ℎ = [ ] is the matrix coefficient of the weight of 𝐷𝑆𝑖ℎ.  

The attenuation function is expressed as:  

A(s, 𝑡1 ) = υ. 𝑒−𝑠.𝐿(𝑡𝑙)                     (10)  

where, d =decay rate (0 < 𝑠 ≤ 1)  

I(𝑡𝑙)= Interactive Time Function 

I(𝑡𝑙) = 𝑅𝑜𝑢𝑛𝑑((𝑡𝑙 – 𝑡0)/𝑇) 

sp= Duration of scanning. 

4) Trust value (Indirect) 

Similarly, for interactions between user I and other m−2 

users in the subnetwork the indirect trust value is 

determined as follows: 

INDirTrih =
1

𝑛(𝑚−2)
∑ ∑ A(s, 𝑡1) × Attr𝑖𝑘 × 𝐷𝑆𝑖𝑘

𝑙    𝑛
𝑙=1

𝑚−2
𝑘=1  (11) 

5) Historical trust 

The trust value (HistTr) in the past round of observation 
is the absolute value of the approximate trust. During the 
observation time, the trust value HistTi—a deterministic 
value but not a vector—between the user, cluster header, 
and FC will be recorded by cognitive users who have 
previously visited the network but have since departed or 
whose trust value license has expired. 

6) Reward  

Based on its reliability, the reward value of trust applies 

to the overall confidence of a cognitive consumer. It is 

used by cognitive users to promote honest behavior and the 

following: 

𝑟(𝑡) = 𝜆. 𝑘(
𝐴𝑐𝑡𝑖(𝑡).𝐴(𝑠,𝑡)

𝐷𝑒𝑣(𝑡)
)                     (12) 

Here, λ is the reward factor, k(.) is the standard function 

and the trust differences in user value, Acti(t), A(s, t), 

Dev(t) is the operation material matrix. The Activity 

Matrix reflects the user-to-user interaction in the network 

and is given by: 

𝐴𝑐𝑡𝑖(𝑡) = (
∑𝑗ϵ𝐶 𝐼𝑛𝑑𝑇𝑟𝑖𝑗 

∑𝑘,𝑗ϵ𝐶 𝐼𝑛𝑑𝑇𝑟𝑘𝑗 
)                     (13)  

The attenuation function is used to restrict trust value in 

the predefined range and let v be the initial trust value,  ̈is 

the attenuation factor, s is the attenuation rate and t is the 

scanning time. 
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𝐴(𝑠, 𝑡) = 𝜎. 𝑟𝑜𝑢𝑛𝑑(10. 𝜐. 𝑒−𝑠𝑡 )              (14) 

The User Evaluation Trust Difference is a measure of 

the transformation of the trust value of any user in a given 

time and is given by: 

𝐷𝑒𝑣(𝑡) = 𝑉𝑎𝑟(𝑇𝑟𝑖(𝑡))                     (15)  

The values of Eqs. (13−15) are used to determine the 

incentive value for each consumer. 

7) Punishment mechanism 

The Fusion Center is responsible not only for storing 

and distributing award confidence but also for penalizing 

misconduct and malicious users. The network’s cognitive 

features make it vulnerable to various attacks. In essence, 

there are two types of online attackers: a malicious attacker 

and a gullible attacker. The altered trust value curves for 

three different user assault types. Users’ trust values are 

initially equal to one another. After the user initiates, the 

value of its trust will shift. Because they have caused the 

network to be destroyed, the malevolent users are harshly 

punished. They are, therefore, relevant to example 1, and 

their trust levels drop to less than −1 right away. However, 

the recovery of trust value is a progressive process and is 

intended to allow re-access to the network following a 

penalty time, which is consistent with attenuation [25].  

Both a data channel and a common control channel 

employed the punishment mechanism. The outcomes of 

the simulations demonstrate that the suggested punishment 

mechanism enhances the self-giving cooperation between 

nodes in the networks and raises the cognitive radio 

networks’ fairness index. We examine the traits of selfish 

behavior and the ways in which it may be identified. This 

research developed a strict punishment mechanism based 

on network traffic to enhance the self-giving cooperation 

among nodes in cognitive radio networks and raise the 

fairness index of the entire network. Both a data channel 

and a common control channel employed the punishment 

mechanism. The outcomes of the simulations demonstrate 

that the suggested punishment mechanism enhances the 

self-giving cooperation between nodes in the networks and 

raises the cognitive radio networks’ fairness index. When 

both are detected, depending on the intensity of the attack, 

they are treated differently. This can lead to malicious 

users causing SSDF, PUEA, and Denial of Service (DoS) 

attacks when detected; users of that kind should be 

punished quickly and released slowly. For malicious users, 

the penalty feature is as follows: 

𝑝𝑒𝑛1(𝑡) = −𝛽. 𝑒−𝜁𝑡 + £                     (16) 

where, β ∈ (0, 3) penalty factor. 𝜁 > 0 recovery factor £ = 

regulation factor.  

We demonstrate the variation rule of honest users who 

do not attack or engage in misbehavior, where the X-axis 

indicates the time of interaction and the Y-axis represents 

the trust level, which spans from −2 to 2. The normalized 

weight factors of α = 0.85, β = 0.1, and γ = 0.05 were used 

to provide a range of direct trust ratings that gradually 

increase and mostly stay constant. 

Greedy users frequently inform that the main user 

dominates a certain spectrum that leaves the spectrum 

band for all the other users. Thus, a greedy user obtains the 

exclusive use of a particular spectrum. Gullible users 

should be sanctioned and published gradually as they are 

not distracting. The following can be stated: 

𝑝𝑒𝑛2(𝑡) = −𝛽. 𝑒−𝜁𝑡2
+ £                           (17) 

a) Phase-4: Resource allocation 

The Fusion Center has the right, according to the trust 

of any user, to grant or deny any user access to a particular 

resource. Therefore, a resource allocation scheme based on 

the threshold is taken into account. If FC provides services 

to SUs whose trust value exceeds that resource’s access 

threshold (𝑣𝑖𝑗 ≥ 𝜆𝑖). 
b) Phase-5: Information security at the physical layer 

The hostile intruder in this assault mimics primary user 

transmissions in order to stop them from communicating 

and disclosing their original data. It gives the impression 

that the channel is busy with the secondary users. 

Furthermore, this assault uses a lot more energy than 

traditional communication since the hacker continuously 

scans the channel for transmission chances. The 

malevolent SU impersonating a PU in order to exploit the 

spectrum selfishly and without disclosing it to other users 

is known as the PU Emulation Attack. The SUs is unable 

to use the white space because of the false identification. 

In fact, the licensed PU’s existence is detected wrongly by 

the SUs. On the other hand, the malicious emulator 

greedily takes use of the resource while the channel 

remains idle. In order to determine which unlawful route, 

the self-centered PUEA attackers. 

The idea of a cognitive network contends that CNs are 

a way to handle the intricacy of the wireless medium, 

network parameters, and end-to-end goal needs. 

Specifically, we contend that the local and reactive 

approach of networking protocols is unable to address or 

comprehend the complexity of wireless networks. Due to 

their commonalities, we show how CNs relate to two other 

techniques for handling these complexities: CRs and 

cross-layer design. Their advantages and disadvantages in 

a networking setting are demonstrated, showing how many 

of the features that are missing from their feature list are 

present in a CN, altering the user’s successful transmission 

rate standards for different types of attacks. We take into 

account the FC’s incentive and penalty programs, the 

attenuation of cognitive users’ trust values, etc. We 

Suppose that the initial successful transmission rate for 

each user is 0.9. The successful transmission rate of honest 

cognitive users increases continuously as the interactional 

time increases and gradually approaches 1 that complies 

with the reward scheme, even in the absence of attackers.  

On the other hand, when attacks take place, the 

successful transmission rate steadily decreases because FC 

controls all users and has the ability to punish misbehavior 

to lower the trust value in order to accomplish the goal of 

preventing access to cognitive networks.  

The time it takes for trust values to recover from the 

three types of frequent attacks. The graph indicates that the 

value of the restored trust is somewhat less than the value 

prior to punishment. If users repeatedly attack, they will be 
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barred from accessing the network as part of this 

punishment plan designed to restrain attackers. 

The utilization of deep learning techniques in cognitive 

radio networks can significantly enhance the network’s 

capability to adapt to changing environments and improve 

the overall system’s efficiency and reliability. As the 

demand for higher data rates and connectivity increases, 

B5G/6G wireless networks are expected to enable new 

services and applications significantly. Therefore, the 

significance of deep learning in addressing cognitive radio 

network challenges cannot be overstated. 

Denial of Service (DoS) and network degradation are 

possible outcomes of this type of assault. It also entails 

making use of unclaimed frequency bands. The attackers 

can jam a range of frequencies in one stretch (barrage 

jamming), sweep over the frequency range (sweep 

jamming), or target a single frequency (spot jamming). A 

single jammer or a group of jammers working together 

may also carry out the assaults, lowering user throughput 

by extracting more information from the channel. 

Additionally, the attackers might cycle between 

attacking and resting modes or broadcast jamming signals 

continually.  

Because Cognitive Radio Networks (CRNs) offer and 

share resources, they are exposed to several safety risks, 

such as eavesdropping. Both the main and secondary 

networks can simultaneously use the same spectrum band 

in the current situation. In order for eavesdroppers to be 

completely safe, the basic idea behind eavesdropper data 

security is to strengthen the main channel of the legitimate 

receiver. Consider the situation of contact when a 

Secondary User (SU-1) shares a Primary User’S (PU) 

spectrum in the presence of an eavesdropper to relay data 

to a Secondary User (SU-2). This research concentrates on 

the cognitive radio architecture of clusters so that the 

eavesdropper may be a secondary malicious user in the 

same subnetwork of an infected cluster header. 

Single and Identically Distributed (I.I.D) Rayleigh 

fading both the primary Channel (SU1 to SU2) and the 

secondary Channel (SU1 to Eavesdropper). The 

coefficient for the channel is hM, which implies that the 

channel is almost static, i.e., for all channel operators the 

channel coefficients are constant, therefore h(i) = hM total. 

Let nM indicate zero-mean Gaussian noise that is 

circularly symmetrically complex. 

Let SU-1 want to send a message block to SU-2 encoded 

with: 

𝑥(𝑛) = [𝑥(1), 𝑥(2) … … . . , 𝑥(𝑛)]               (18)  

The signal received by the SU-2 will be: 

𝑌𝑀(𝑖) = ℎ𝑀(𝑖)𝑋(𝑖) + 𝑛𝑀(𝑖)                   (19)  

And the channel output to the eavesdropper: 

𝑌𝐸(𝑖) = ℎ𝐸(𝑖)𝑋(𝑖) + 𝑛𝐸(𝑖)                    (20)  

where ℎ𝐸 and 𝑛𝐸 have the same characteristics as the main 

channel, and the eavesdroppers’ noise. Also, the power of 

the channel is believed to be constrained: 

1

𝑛
∑ E[|𝑋(𝑖)2|] < 𝑃𝑛

𝑖−1                        (21) 

Allow 𝑁𝑀  and 𝑁𝐸  to reflect on the channel main and 

eavesdropper. Then the SNR in SU-2 is instant: 

𝛾M (𝑖) = 
P|𝐻𝑀(i)|2 

𝑁𝑀

 = 
P|𝐻𝑀|2   

𝑁𝑀

 = 𝛾𝑀                (22)  

Average SNR: 

𝛾 ̅M(𝑖) = 
PE|𝐻𝑀(i)|2  

𝑁𝑀
 = 

PE|𝐻𝑀|2  

𝑁𝑀
 = 𝛾 ̅𝑀               (23) 

Eavesdropped instantaneous SNR: 

𝛾𝐸 (𝑖) =
P|𝐻𝐸(i)|2 

𝑁𝐸
 = 

P|𝐻𝐸| 2  

𝑁𝐸
  = 𝛾𝐸                (24)   

Average SNR: 

𝛾 ̅𝐸 (𝑖) = 
PE|𝐻𝐸(i)|2 ] 

𝑁𝐸
  = 

PE[|𝐻𝐸| 2 ] 

𝑁𝐸
 = 𝛾̅𝐸              (25)  

Assuming that the SU-1 and SU-2 interact through the 

normal AWGN channel with 𝑁𝑀 noise, the observation of 

the Eavesdropper is also distorted by Gaussian noise with 

Noise power NE, where 𝑁𝐸 > 𝑁𝑀. Under this condition, the 

capacity for confidentiality can be calculated by the 

formula: 

𝐶𝑠 = 𝐶𝑀−𝐶𝐸                               (26)  

where 𝐶𝑀 , 𝐶𝐸  represents both the main power channel 

(SU-1 to SU-2) and the channel of the eavesdropper and 

can be detected with this formula: 

𝐶𝑀 = 
1

2
log (1 +

𝑃

𝑁𝑀
)                            (27)  

𝐶𝐸 = 
1

2
log (1 + 

𝑃

𝑁𝑀
 )                           (28)  

If the complex AWGN channel is two real-established 

AWGN channels. The confidentiality capacity of the 

complex wiretap channel is calculated in such a case by: 

𝐶𝑠 = log (1 +
𝑃

𝑁𝑀
) − log (1 +

𝑃

𝑁𝑊
) (29)  

Since the main and eavesdropper channels are assumed 

to be quasi-static, the confidentiality capacity will be: 

C𝑠={
log(1 +  γM) − log(1 +  γE ) if γM >  𝛾𝐸 
0                                                       if γM ≤  γE 

} (30) 

The probability of a hidden loss, i.e. the probability that 

the instant confidentiality capacity is less than the Rs > 0 

target confidentiality limit, can be given as: 

𝑃𝑜ut (𝑅𝑠 ) = 𝑃(𝐶𝑠 < 𝑅𝑠 )        (31) 

Invoking the total probability theorem,  

𝒫𝑜𝑢𝑡(𝑅𝑠 ) = 𝒫(𝐶𝑠 < 𝑅𝑠 |𝛾𝑀 > 𝛾𝐸 )𝒫(𝛾𝑀 > 𝛾𝐸 ) + 

𝒫(𝐶𝑠 < 𝑅𝑠 |𝛾𝑀  ≤ 𝛾𝐸 )𝒫(𝛾𝑀 ≤ 𝛾𝐸 )              (32) 

Now, (𝛾𝑀 >  ) =
γ̅M

γ̅M+γ̅E 
                  (33)  

Consequently, we have:  

(𝛾𝑀 ≤ 𝛾𝐸 ) = 1 − (𝛾𝑀 >  ) = 
γ̅M

γ̅M+γ̅E 
              (34)  

On the other hand, (𝐶𝑠 < 𝑅𝑠 |𝛾𝑀 >  ) = 𝒫(log(1 + 𝛾𝑀) 

− log(1 + 𝛾𝐸 ) < 𝑅𝑠 | 𝛾𝑀 > 𝛾𝐸)    = 𝒫(𝛾𝑀 < 2𝑅𝑠 (1 + 

𝛾𝐸 ) − 1|𝛾𝑀 > 𝛾𝐸 ): 
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= ∫ ∫ .
2 Rs(1+γE)−1

γE

∞

0
𝒫(𝛾𝑀, 𝛾𝐸|𝛾𝑀 > 𝛾𝐸)𝑑𝛾𝐸𝑑𝛾𝑀  

= ∫ ∫ .
2 Rs(1+γE)−1

γE

∞

0

𝒫(γM)𝒫(γE ) 

𝒫(γM > 𝛾𝐸 )  
 𝑑𝛾𝐸𝑑𝛾𝑀 

= 1 − 𝛾̅𝑀 + 
γ̅E

γ̅M + 2Rsγ̅E 
 exp 

(− 2 Rs−1) 

γ̅M 
      

(35) 

Since 𝑅𝑠 > 0, 

 (𝐶𝑠 < 𝑅𝑠 |𝛾𝑀 ≤ 𝛾𝐸 ) = 1                        (36)  

On combining these Eqs. (33), (34), (35) and (36), the 

result is given as:  

𝒫out(𝑅𝑠 ) = 1 − 
γ̅M

γ̅M+2Rsγ̅W 
𝛾 ̅𝑀 exp 

(− 2 Rs−1) 

γ̅M 
   (37) 

IV. RESULTS 

Five primary and five secondary users were provided to 

reflect the cognitions process with a simulation scenario 

based on MATLAB. In this section, we present the 

numerical results for the proposed mechanism. The main 

parameters used for the simulations are L = 10, K = 50, λ 

= {1.2, 1.5, 1.8}, Rf =1,500 ms and the simulations are 

conducted in MATLAB R2012b environment.  

 

 Fig. 3. Cluster head selection. 

With simulation parameters, the simulation scenario is 

generated as given below in Fig. 3 that presents a two-level 

hierarchy network simulation model for the proposed 

cognitive radio network security system. The Fusion 

Center is located at the highest level of the hierarchy and 

is responsible for authenticating the customer who is 

coming in, selecting the available resources, and 

implementing the compensation and penalty scheme. 

Cluster heads are available on the second level of the 

hierarchy and are responsible for collecting and 

forwarding trust values to the fusion center. Also, the 

cluster head should notify the fusion core if an attack is 

detected. By keeping an eye on different cluster nodes, a 

cluster head initiates the maintenance procedure. 

According to the various methods, a member would be 

automatically removed from the neighbor list if it lost 

contact with the cluster leader. The main simulation 

objects are the variation rule of trust value, attenuation 

characteristics of trust value, cluster head selection scheme, 

penalty scheme and complexity analysis. 

 In Fig. 4, where the X-axis represents the contact 

duration and the Y-axis represents the trust level, which 

ranges from −2 to 2 that exhibit the variation rule of honest 

users who do not attack or engage in misbehavior. With  

 

  Fig. 4. Change the confidence value in three attack types. 

the normalized weight factors set at α = 0.85, β = 0.1, 

and γ = 0.05, a series of direct trust values that 

progressively rise and generally remain steady were 

obtained. Each licensed user has a 1 kHz frequency band, 

which secondary users can use opportunistically. This 

entire process can be understood using a series of Power 

Spectral Density (PSD) plots.  

Similarly, the cluster is deemed dead, and the cluster 

head will begin the neighbor-finding process if all linked 

members no longer have ties to the cluster head. 

Depending on several algorithms and security 

considerations, the cluster head will either approve or deny 

an affiliation request from a new node. In some instances, 

the primary cluster head uses certain metrics to choose the 

backup cluster head. The interaction time is represented by 

the Y-axis, and the trust value by the X-axis. In Cognitive 

Radio Networks (CRNs), a node’s trustworthiness is 

assessed using a measure called trusted value or Trust 

Value (TV). The communication properties of the 

requesting node are used to determine the trust value. A 

transceiver can identify which communication channels 

are being used and which are not in CRNs. After that, the 

transceiver can enter open channels without disturbing 

authorized users. In Cognitive Radio Networks (CRNs), 

interaction time defined in the spectrum mobility 

management seeks to reduce spectrum handoff delay for 

low communication latency. Important data on the length 

of the spectrum handoff may be obtained using sensing 

techniques. Fig. 4 shows the modified trust value curves 

for three types of attack users 

In the beginning, the user’s confidence values are equal 

to each other. When an attack is initiated by the user, the 

trust value of the attack can change. By carrying out the 

various stages of the Cognitive Radio Network (CRN) 
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cycle—sensing, decision-making, sharing (accessing), and 

hand-off (mobility)—the CU nodes are able to access the 

available bands/channels. The hand-off phase is the most 

crucial of these as, when a PU emerges, the CU must 

remember all of its prior operations in order to transition 

its ongoing data transmissions to another accessible 

channel.  

Additionally, from a security standpoint, a Malicious 

User (MU) could mimic the PU signal with the goal of 

preventing the CU from ever using its idle band, which 

eventually impairs network performance. Attacks such as 

the Cognitive User Emulation Attack (CUEA) and 

Primary User Emulation Attack (PUEA) may be 

encountered by the handoff procedure, which need to be 

resolved.  

To address this issue, a secure and trusted routing and 

handoff mechanism is proposed specifically for the CRN 

environment, where malicious devices are identified at the 

lower layers, thus prohibiting them from being part of the 

communication network. Further, at the network layer, 

users need to secure their data that is transmitted through 

various intermediate nodes. To ensure a secure handoff 

and routing mechanism, a Trust Analyser (TA) is 

introduced between the CU nodes and network layer. 

UMUs are the most common type of attacker. This kind 

of assault is simple to identify and doesn’t pose any 

harmful subjective threats to the network. The successful 

transmission rate curve appears to decline as FC shows 

significant tolerance for this attack, resulting in a reduced 

penalty level. GUs are the second type of attacker that may 

quickly destroy the network, leading to unequal resource 

allocation. 

As a result, FC faces harsher penalties for this kind of 

attack. The punishment impact is evident, and the 

successful transmission rate drops more sharply because of 

the existing punishment time and decreased trust levels. 

SSDF and PUEA are included in the third class of MUs. 

This kind of attack carries the worst punishment, and if the 

culprits are identified, they will face swift consequences. 

As a result, the successful transmission rate curve graphs 

show a steep decline. Under centralized management, 

PUEA has a higher detection probability than SSDF [26], 

making it easier for FC to identify them and causing their 

transmission rate to drop more quickly than SSDF. The 

findings of the simulation demonstrate that security 

management based on the trust value mechanism 

successfully protects the transmission rate of honest users 

while partially or completely shielding misbehaving users 

and validating a stronger anti-attack capability than the 

system possesses. Malicious users are seriously 

disciplined for damaging the network. Figure 5 shows that 

the trust value recovery time is dependent on three forms 

of regular attacks. 

In Fig. 4, Factor μ = 0 of penalty accumulation Cycle 

diagram of the trust value recovery. The figure illustrates 

that the returned value of the trust is slightly less than the 

pre-penalty value. Under this penalty system, users would 

be barred from network access if targeted repeatedly. We 

determine the best channel allocation and admission 

control choices for cognitive overlay networks to 

accommodate unlicensed users’ delay-sensitive 

communications. We solve it by converting the original 

formulation into a stochastic shortest path problem, which 

we express as a Markov decision process issue [20]. Next, 

we present a straightforward heuristic control strategy that 

consists of a largest-delay-first channel allocation scheme 

and a threshold-based admission control method. We also 

demonstrate that the latter is the most effective. Using the 

rollout algorithm, we also suggest an enhanced policy. The 

effectiveness of Cooperative Spectrum Sensing (CSS) in 

enhancing Cognitive Radio Networks’ (CRNs’) sensing 

capabilities has been confirmed. We examine a 

fundamental trade-off between the sensing, reporting, and 

transmission periods of CSS and assess the effect of the 

fusion rule with varying numbers of local sensing results, 

in contrast to previous works that typically consider fusion 

with fixed inputs and neglect the duration of the reporting 

period in the design. More specifically, the sensing time 

might be exchanged for longer transmission time or more 

mini slots to provide more local sensing findings for fusion. 

Fig. 5 illustrates the relationship between the load on the 

network and the user size. 

 

 

Fig. 5. The relationship between the load on the network and the user 
size. 

A Network Load is a key index for assessing the 

proposed process, specifically in terms of user 

management complexity. We see that when the network 

scale is small, the network load on the proposed 

mechanism is comparatively higher, as the proposed 

mechanism has an additional burden on the added trust 

authentication function, the selection of cluster heads and 

penalty functions, etc. However, our proposed mechanism 

shows better results, with the increasing size of the 

network. The probability of detecting Signal-to-Noise 

Ratio (SNR) in MATLAB code uses different parameters 

as follows: 

%% system model parameters 

pf=.1; % target probability of false alarm  

pd=.9; % target probability of detection 

R=500:2:2000; % distance between PU TX and each SU 

TX 

iter=10000; 
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d0=1; % reference distance 

n=3; % path loss exponent 

R_pu=500; % primary user transmission radius 

R_su=384.9326; % secondary user transmission radius 

protection_factor=.95;  

p_n_dbm=-100;% noise p 

pd=.9; % target probability of detection 

R=500:2:2000; % distance between PU TX and each SU 

TX 

iter=10000; 

d0=1; % reference distance 

n=3; % path loss exponent 

R_pu=500; % primary user transmission radius 

R_su=384.9326; % secondary user transmission radius 

protection_factor=.95;  

p_n_dbm=-100;% noise power in dbm 

p_n_db=-100-30; 

p_n=10^((p_n_dbm-30)/10);% noise power in watt 

snr_su_lim_db=3; % snr threshold for successful reception 

snr_su_lim=10^(snr_su_lim_db/10); 

snr_pu_lim_db=3; 

snr_pu_lim=10^(snr_pu_lim_db/10); 

 

 

Fig. 6. Probability of detection for various SNR. 

Fig. 6 illustrated that Probability of detection for various 

SNR. The signal-to-noise ratio is a key parameter 

characterizing spectrum sensing algorithm efficiency. The 

detection accuracy of a spectrum sensing algorithm is 

influenced by the Signal-to-Noise Ratio (SNR). A 

simulation scenario is developed to show the effect of SNR 

on the probabilities of detection. The suggested system 

establishes the threshold on the Average Received Signal 

Strength (RSS) of a primary signal below which feature 

detection is preferred and decides whether energy or 

feature detection incurs less sensing overhead at each SNR 

level. We showed that when collaborative sensing utilizes 

its geographic diversity, energy detection under lognormal 

shadowing can still perform effectively at the average SNR 

< SNRwall. The figure shows, for −22 dB SNR, that a 

probability of detection is 0.5 for PFA equivalent to 0.2, 

0.75 for PFA equivalent to 0.4, and 0.9 for PFA equivalent 

to 0.6 for PFA.  

The mass detection probability used the following 

parameter in for detection range in the 80%. Cognitive 

users N=150 and cluster head L= [3 5 10] are the 

parameters for network sizing. As shown in Fig. 8, there is 

a connection between the network effort and the number 

of users. 

 

 

Fig. 7. False alarm probability for the model. 

Fig. 8 shows the estimation for the proposed PUEA 

analytical model of the probability of false alarm. As can 

be seen, 500 iterations of PFA range from 0.2 to 0.25. Fig. 

8 is the result of the proposed study’s resource collection 

process. Change in the probability of detection is shown 

with SNR with a distinct probability of false alarm. The 

false alarm probability is also used in different parameters 

as follows:  

 

 

Fig. 8. Miss detection probability for the model. 

Fig. 8 shows the estimated probability of not having 

detected the proposed PUEA detection analytical model. 

For 500 iterations simulation is done, and it is clear from 

the above figure that the chance of not detecting the 

proposed scenario ranges from 0.11 to 0.15. The false 

alarm and miss detection comparison are used in various 

parameters. 

Fig. 9 shows the simulation result for the analysis of 

false alarms and the probability that they will be 

undetected. The simulation was conducted over 500 

iterations with a threshold value of 2, considering a 

scenario with 10 malicious users. This simulation has 

confirmed the effectiveness and rationale of the 

mechanism discussed in this work. When compared to 

other mechanisms, the advantages of this approach are 

primarily expressed as follows: 
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• A trust model that aligns with the fundamental traits of 

human society 

• To apply various penalties in accordance with the 

various attack kinds 

• The network management complexity is successfully 

decreased by the FC + CH hierarchical architecture. 

 

 

Fig. 9. False alarm and miss detection comparison for the model. 

V. CONCLUSION 

This paper discussed the challenges of fighting attacks 

on cognitive wireless networks. We also found that a large 

number of research studies focused on the detection of 

attackers, but also a number of important literature studies 

on how they can be handled while the mechanism is 

detected and optimised. We therefore proposed a new trust 

and penalty mechanism to address security concerns in the 

CRNs. The proposed mechanism has been confirmed to be 

superior to other mechanisms and to comply with current 

application criteria. 

A survey on guarding PUEA and SSDF assaults was 

conducted, and the defense measures were divided into 

two categories: active (rapid attack detection) and passive 

(delayed attack detection). The cognitive radio network’s 

defense mechanisms and a variety of assaults that target its 

physical layer have been examined and contrasted. The 

primary user emulation attack is one type of physical layer 

attack. The primary user signal is faked in a Primary User 

Emulation Attack (PUEA) to trick cognitive users into 

thinking the spectrum is not empty, preventing secondary 

users from using the channel. In reality, a number of flaws 

can significantly impair a CR system’s performance, 

including noise uncertainty, channel/interference 

uncertainty, hardware flaws in the transceiver, signal 

uncertainty, and synchronization problems. For this reason, 

it is crucial to investigate workable ways to address 

different practical flaws to use cognitive technology 

successfully. So, in this direction, this survey report offers 

a summary of the enabling strategies for CR 

communications. The primary flaws that might arise in the 

most popular CR paradigms are then covered, and the 

current methods for fixing these flaws are reviewed. 

The versions of the tools that are based on the cognitive 

radio network simulator are given below. Researchers may 

choose from a variety of tools and obtain comprehensive 

information about them. 

Every module of the cognitive radio network has to be 

understood by researchers, and we provide research 

students with all the assistance they need to comprehend 

and use each module in the cognitive radio network 

simulator. For convenience, we have only highlighted the 

two main modules. Here, we have listed the study topics 

together with the relevant cognitive radio network 

simulator tools. 
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