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Abstract—In the modern era of widespread wireless devices 

and their underlying connectivity requirements in the 

Internet of Things, efficient use of resources across networks 

is inevitable. The 5G emerging techniques aim to equip each 

application with advanced features and to make connectivity 

between the devices ubiquitous. Therefore, the Resource 

Allocation (RA) in the 5G and 6G networks has gained more 

research traction to use the sparse resources in the wireless 

channels effectively. In Vehicular communication 

encompassing autonomous driving, there is a need to embed 

the Multi-Radio Access Technology (Multi-RAT) to form 

Heterogeneous Networks (HetNet) and meet the diverse 

network requirements. Thus, this paper provides an 

overview of the resource allocation enablers and methods for 

Beyond 5G (B5G) Vehicle-to-Everything (V2X) systems. It 

begins by discussing the key features of B5G V2X systems, 

such as the slicing RA technique. The paper then proposes 

and describes a taxonomy that represents the enablers of RA 

in B5G V2X systems in the network and physical layers. The 

paper also discusses various allocation methods used as keys 

of 6G networks, such as machine learning algorithms, deep 

learning algorithms, and management modelling, such as 

graph and game theories. At the end of this paper, some open 

research challenges are discussed, such as the efficient use of 

machine learning algorithms in RA and virtual RA 

backhauling.   

 
Keywords—resource allocation, Beyond 5G, 6G, Vehicle-to-

Everything (V2X), Multi-Radio Access Technology (Multi-
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I.
 

INTRODUCTION

 
The world is progressing toward higher connectivity 

needs between devices. There is a need to make 
connectivity ubiquitous to ensure a smooth flow of 
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information between the devices [1]. Vehicular 
communication is one of these advanced networks that aim 
to connect vehicles anywhere and anytime with everything 
along the road and the surrounding areas, encompassing 
the communication between Vehicle-to-Vehicle (V2V), 
Vehicle-to-Infrastructure (V2I), Vehicle-to-Pedestrian 
(V2P), and Vehicle-to-Networks (V2N) [2]. These 
networks can be combined in one name called Vehicle-to-
Everything (V2X) networks, which assist in relaying 
information, improving road safety, broadcasting 
awareness and warning messages, providing a better travel 
experience, reducing traffic congestion, and establishing 
intelligent networks to reach autonomous driving [3]. To 
ensure clarity, the acronyms used in this study are 
summarized and presented in Table I. 

In the context of Beyond 5G (B5G) and the evolution of 
communication networks specific to V2X applications, 
several types of networks are being explored in this paper, 
such as:  

A. Cellular V2X (C-V2X) 

C-V2X is designed to enable direct communication 

between vehicles and infrastructure using cellular 

networks. It includes both short-range direct 

communication and long-range communication.  

B. Ad-Hoc V2X Networks 

Ad-hoc V2X networks involve direct vehicle 
communication without relying on a centralised 
infrastructure. This type of network is especially useful in 
scenarios where communication needs to occur quickly 
and without depending on a fixed infrastructure. 

Mesh networks are a special type of ad-hoc V2X that 
involve vehicles forming a dynamic mesh where each 
vehicle acts as a relay point for others. This helps extend 

 

Journal of Communications, vol. 20, no. 5, 2025

573doi:10.12720/jcm.20.5.573-588

mailto:mohammedm_1990@yahoo.com
mailto:malhartomi@ut.edu.sam
mailto:hanif@uthm.edu.my
mailto:alheety567@gmail.com
mailto:sameer.h@uoanbar.edu.iq
mailto:mohatahrawi@gmail.com
https://orcid.org/0000-0003-2054-143X
https://orcid.org/0000-0003-2054-143X


the communication range and improve reliability, 
especially in areas with limited infrastructure. 

C. Multi-Access Edge Computing (MEC) 

As one of the cloud networks, MEC involves placing 

computing resources at the edge of the network, closer to 

the V2X communication endpoints.  

D. Software-Defined Networking (SDN) and Network 

Function Virtualisation (NFV) 

SDN and NFV technologies can provide a more flexible 

and programmable network infrastructure, allowing for the 

dynamic allocation of resources based on V2X 

communication demands. 

TABLE I. LIST OF ACRONYMS USED IN THE STUDY 

Acronyms Definitions Acronyms Definitions 

5G Fifth Generation 6G Six Generation 

ACC Adaptive Component Carrier AI Artificial Intelligent  

APS Adaptive Packet Scheduling  ATOA Adaptive Task Offloading Algorithm 

B5G Beyond 5G CA Channel Assignment 

CNN Convolutional Neural Network CRRM Cooperative Radio Resource Management   
CSI Channel State Information D2D Device-to-Device  

DL Deep Learning DNN Deep Neural Network 

DSRC Dedicated Short-Range Communication eMBB Enhanced Mobile Broadband 

GCS Global Cloud Server GS Gale-Shapley 

GWS Gateway Server HetNet Heterogeneous Network  

ICI Inter-Channel-Interference IoT Internet-of-Things 

ISI Inter-Symbol- Interference ITS Intelligent Transportation Systems 

LIS Local ISP Server LSTM Long Short-Term Memory 

LTE Long Term Evolution MDP Markov Decision Process 

MDP-PS Markov Decision Process-based Cost Reward Packet Selection  MEC Mobile Edge Computing  

MIMO Multiple-Input Multiple-Output ML Machine Learning  

MLB Mobility Load Balancing NANS Network Assisted Networks’ resource Selection 
NFV Network Function Virtualisation PA Power Allocation 

PAWAS Power Allocation with Antenna Selection  PHY Physical Layer  

PSO Particle Swarm Optimisation QoS Quality of Service  

RA Resource Allocation RAN Radio Access Network  

RAT Radio Access Technology RL Reinforcement Learning 

RSU Roadside Units SDN Software-Defined Networking 

ST-KNN Space-Time k-Nearest Neighbour  TDD Time Division Duplex 

URLLC Ultra-Reliable Low Latency Communications   V2I Vehicle-to-Infrastructure 
V2N Vehicle-to-Network V2P Vehicle-to-Pedestrian 

V2V Vehicle-to-Vehicle V2X Vehicle-to-Everything 

VANS Vehicular cognitive radio Node Assisted Networks’ resource Selection WLAN Wireless Local Area Network 

 

These network types are designed to address the specific 

requirements of V2X communication, including low 

latency, high reliability, and the ability to support a 

massive number of connected devices. 

V2X communication makes city traffic control safer by 

enabling Intelligent Transportation Systems (ITS) [4]. 

These networks use existing Internet of Things (IoT) 

networks and effectively utilise available resources. 

Researchers in academia and industry are working to 

improve V2X communication by using existing vehicular 

networks and enabling technologies like Dedicated Short-

Range Communication (DSRC) and Long-Term Evolution 

(LTE) [5]. Combining these networks can overcome the 

challenges of IEEE 802.11p, such as hidden Roadside 

Units (RSU), short communication, and high data rate 

requirements [6]. It also addresses the challenges of LTE 

by allowing for broadcasting messages to surrounding 

vehicles and providing the fastest V2V links [7]. 

Combining these two networks creates a heterogeneous 

network (HetNet), as shown in Fig. 1, which allows small-

cell configurations to be used in vehicular networks. 

HetNet has been seen as a promising setup for improving 

the efficiency, capacity, scalability, reliability, and low-

latency communication of V2X [8]. However, a high 

number of microcells in the network can lead to congestion 

and high demands on resources such as power, spectrum, 

time, and signalling control [9], especially in 5G and 

Beyond 5G (B5G) networks due to the growing number of 

requests for network connectivity during travel [10]. 

Therefore, using efficient Resource Allocation (RA) 

techniques is crucial for efficient communication, 

offloading, and scheduling. 

Both DSRC and LTE have their techniques for 

allocating resources [11]. The techniques used in DSRC 

include packet collision modelling, throughput modelling, 

mobility-based access modelling, priority-based allocation, 

and exhaustive search, particularly for mobility networks 

[12]. For the LTE network, the techniques used are Graph 

theory, Karush-Kuhn Tucker Theory, Perron-Frobenius 

Theory, Semi-Markov Decision Process, Greedy 

algorithm, and Lyapunov Optimisation. These techniques 

form the foundation of HetNets with necessary 

improvements [13]. 

All these RA techniques and models should meet the 

B5G system’s requirements. This means that it is helpful 

to use these techniques and models if they overcome and 

take into consideration the following challenges:   

• B5G systems depend on highly dynamic scenarios 

where vehicular speed could exceed 500 km/h [14]. 

Thus, the RA algorithm shall incorporate low to high-
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mobility vehicular ranges. The proposed RA 

algorithm shall also cater to the effect of Doppler 

spread/shifts and multi-path fading channels [15]. 

• B5G systems are expected to support a wide range of 

data services such as infotainment, security, video 

streaming/gaming, Internet browsing, and 

information exchange between vehicles. These 

services require efficient RA algorithms to ensure 

ultra-reliable and low-latency communication, high 

throughput, and efficient spectrum to satisfy the 

Quality-of-Service (Qos) requirements [16].  

• The several kinds of services that B5G networks 

cover are to be ensured in Radio Access Technology 

(RAT) under the tri-band cell configuration. Using 

multi-RAT becomes more attractive in advanced 

networks like V2X because it offers low latency and 

high throughput communication. However, the need 

for efficient RA algorithms and techniques is also 

indispensable to meet multi-RAT requirements 

including the control signalling that leads to the use 

of advanced RA enablers and models such as 

Software-Defined Network (SDN), slicing, Machine 

Learning (ML) algorithms, and Deep Learning (DL) 

algorithms [17].  
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Fig. 1. Multi-RAT HetNet configuration. 

The main goal of this overview paper is to provide a 

detailed explanation of the advanced technologies and 

promising allocation models that can address the 

challenges and requirements of B5G systems. 

E. Existing Overviews 

Considering the aforementioned challenges as a 

baseline, and the ultimate objective of attaining efficient 

RA in the fast-changing dynamic networks, designing 

novel algorithms in DSRC and LTE is essential [18]. Some 

of the underlying techniques that complement the design 

of new models for RA are cognitive networks [19], ultra-

dense networks [20], and massive Multiple-Input 

Multiple-Output (MIMO) [21].  

Many surveys review the RA techniques and algorithms 

in vehicular communication [22], For instance, introduces 

vehicular networks in light of the network requirements 

and the existence of enabling technologies in the context 

of LTE Device-to-Device (D2D) Communication. 

Another survey aimed at V2X communication considers 

the requirements of the networks, various modes including 

the LTE-D2D communication, and the existing RA 

algorithms used [23]. These have been summarised in 

Table II.  

One potential limitation of the two surveys presented 

above is their non-inclusion of the RA techniques used in 

IEEE 802.11p, and instead have focused only on LTE-

D2D communication. Additionally, the spectrum of 

techniques reviewed is limited and does not incorporate 

Machine Learning and network slicing, which are 

becoming essential in limited resources. These limitations 

have been overcome in Ref. [24], which provides a 

comprehensive survey on RA techniques in both vehicular 

networks, IEEE 802.11p and LTE-V2X. Further, it covers 

the RA techniques suitable for the HetNets. In the context 

of RA improvements, ML/DL and slicing techniques have 

also been discussed in Ref. [24]. 

Nevertheless, some of the essential parts that have not 

been covered involve using SDN, Network-Function 

Virtualisation (NFV), and cloud computing to improve RA 

techniques. Thus, we have focused the work in this study 

on reviewing all the essential techniques for improving RA 

for the B5G networks. These include the small cell 

configuration and smart communication using massive 

MIMO, beamforming, slicing, ML, and DL. 

F. This Overview 

This overview provides an in-depth examination of 

Resource Allocation (RA) techniques in B5G and 

emerging 6G networks, focusing on their applications 

within Vehicle-to-Everything (V2X) systems. The primary 

objective is to offer a comprehensive understanding of 

current and promising RA techniques in B5G while 

exploring advancements anticipated in 6G. The main 

contributions of this overview are: 

• We present and investigate recent network 

configurations used in B5G vehicular 

communication, such as the HetNet, which includes 

the small-cells topology, multi-RAT, and smart 

communication using ML and Artificial Intelligence 

(AI), SDN, Network Slicing, and Cloud Computing 

to decrease latency in the RA process.  

• Building upon B5G, this review also explores 

emerging 6G paradigms. These incorporate advanced 

ML techniques like federated learning, graph neural 

networks, and blockchain-based approaches for RA. 

These technologies are anticipated to significantly 

enhance RA’s flexibility, security, and efficiency, 

particularly in scenarios with high mobility and low-

latency requirements. 

• A taxonomy for the RA process has been derived in 

the vehicular communication context based on 

different parameters such as enablers, allocation 

techniques, and computation.     

• The review culminates by highlighting several open 

research challenges and suggestions for applying 

efficient RA in HetNet.  
The work is structured as follows: Section II discusses 

recent network configurations used in vehicular B5G, such 
as smart communication based on HetNet and multi-RAT 
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to enhance their performance and network slicing. A 
taxonomy based on different parameters is presented in 
Section III. Section IV introduces some open research 
challenges toward efficient B5G systems RA, such as 
virtual backhauling and autonomous RA. The potential of 

6G in overcoming RA challenges is presented in Section 
V. Finally, the conclusion and future recommendations are 
presented in Section VI. The work structure is shown in 
Fig. 2.  

 
TABLE II. RA TECHNIQUES IN LITERATURE 

Ref.  Taxonomy HetNet. ML/Slicing SDN / Cloud Remarks 

[22]     
Study the RA of the LTE-D2D network only without involving the HetNet 

configuration.  

[23] ✓    
A Taxonomy of the RA techniques used in the LTE-D2D network has been 

presented.  

[24] ✓ ✓ ✓  
Provides a taxonomy of the HetNet with some mention of the use of ML 

algorithms and slicing methods to perform RA in vehicular communication.   

 

 
Fig. 2.  Structure of the overview. 

II. EXISTING RA ENABLERS AND MODELS IN 5G V2X 

This section examines the current state of RA enablers 

and methods in 5G networks and delves into the specific 

enablers and methods used for RA in V2X. The discussion 

covers the utilisation of advanced techniques for RA in 

V2X and the implementation of network slicing enablers 

as used in 5G technology. The details of these topics are 

presented in the following paragraphs: 

A. Smart RA Enablers 

Multi-RAT utilisation in 5G networks necessitates 
implementing holistic RAT management to effectively 
allocate network resources, particularly when small-cell 
configurations are used [25]. This management process 
requires advanced techniques such as SDN and NFV to 
manage resources efficiently. SDN enables centralised 
control of the network and provides a comprehensive view 
of the network, but the challenge is the increased latency 
caused by signalling through a centralised controller. A 
potential solution is the use of distributed SDNs [26].  

Additionally, an efficient routing method between 
SDNs is needed to facilitate control. Cloud computing is 
increasingly being used to ensure real-time computation 
and management of resources, as it allows for 
decentralised processing while utilising fewer 
infrastructure components. Efficient resource allocation 
enablers also aim to decrease energy consumption and 
execution time through heuristic algorithms [27].  

The proposed work in Ref. [28] focuses on determining 

the amount of traffic data and scheduling the order of each 

RAT to achieve a balance between the vehicle’s speed and 

required traffic data, leading to a decrease in energy 

consumption and allowing for offloading between RATs.  
Similarly, the work in Ref. [29] proposes cloud 

Cooperative Radio Resource Management (CRRM) in 
HetNet, which enables resource allocation between 
various types of networks such as cellular and Wireless 
Local Area Networks (WLAN), resulting in increased 
throughput and decreased latency when transitioning 
between RATs. A summary of the above-mentioned works 
is presented in Table III. 

B. Network Slicing  

Recently, one of the most significant developments in 
the RAT infrastructure of 5G networks is network slicing, 
which involves dividing the network into several smaller 
networks, each designed to serve specific applications. 
Network slicing is highly relevant in 5G and beyond 
networks.  

Multi-RATS are divided into slices, each dedicated to 
specific applications such as WLAN for infotainment, 
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LTE for cellular applications, and IEEE 802.11p for short-
range communication and broadcasting of information 
[30]. This technique is efficient regarding Resource 
Allocation (RA) as it saves resources such as power 
consumption and spectrum optimisation due to the specific 
operations of each slice.  

By implementing the network slicing technique, 
resources can be allocated efficiently in segments, where 
each slice or group of slices is intended to perform a 
specific task [31]. This technique includes various slicing 
cases, as well as the allocation of resources in the core 
network, known as the core network slice, and the Radio 
Access Network (RAN) segment called the RAN-slice 
[32]. The aim is to improve the Qos across each slice of 
the network. ML and DL algorithms are used to allocate 
resources across slices.  

Additionally, other techniques such as Markov Decision 
Process-based cost reward Packet Selection (MDP-PS) 
[33], Adaptive Packet Scheduling (APS) [34], and 
Adaptive Component Carrier scheduling (ACC) [35] are 

also used to allocate resources for each slice to increase 
network throughput. Another approach is to slice the 
network according to vehicle requirements.  

This method divides the network into two parts: a slice 
for high throughput requirements connected to enhanced 
Mobile Broadband (eMBB) and a slice for 
safety/emergency requirements connected to Ultra-
Reliable Low Latency Communications (URLLC). This 
reduces computation and network switching using the 
Gale-Shapley (GS) algorithm [4] to achieve a stable 
matching between URLLC and eMBB connections with 
low computational complexity. A similar study has been 
presented in Ref. [25], focusing on edge users, which poses 
a challenge.  

Using cloud computing, combining Mobile Edge 
Computing (MEC) and network slicing can offer efficient 
RA for edge users. This combination allows for the 
efficient offloading of data from one slice to another 
without compromising their effectiveness. All of these 
mentioned works are summarised in Table IV. 

 
TABLE III. SUMMARY OF THE RECENT ADVANCEMENTS IN SMART COMMUNICATION TECHNIQUES 

Reference Feature Merit 

[28] 
Using the cloud to enable online computation decreases the connection latency when using SDN.  

Allows scheduling between the available RATs using heuristic algorithms.  

Reducing energy 
consumption.   

Reducing the execution time.   

[29] 

Cloud Cooperative Radio Resource Manager (CRRM) is used to allow efficient use of the 
spectrum available between two different networks.   

Increasing throughput of the communication and decreasing the latency of the connection when 

travelling between one RAT to another. 

Allow real-time resource 

allocations across multiple 
RATs.  

 

TABLE IV. SUMMARY OF THE NETWORK SLICING RECENT ADVANCES 

Ref.  Feature Merit 

[35] 
Reinforcement learning is followed by a low-complexity heuristic algorithm.  

Maximising resource utilisation while ensuring the availability of resources.  
Allocate resources for each slice.  

[34] Several types of ML algorithms are used to perform slicing. To increase the throughput of the network 

[36] Slicing the network into eMBB slice and URLLC slice.   Requirement-aware RA 

[25] Combining MEC and Slicing to serve edge users.  Requirement-aware RA 

 

C. Future RA Enablers and Models in 6G V2X 

The 6G communication is the next ground-breaking 
technology anticipated to enhance existing RA enablers’ 
developments. The 6G communication networks are 
fundamentally built upon the principles of 5G [37], yet 
with the incorporation of new technologies such as AI-
driven RA, quantum communication, and Terahertz (THz) 
communication [38, 39]. These components will enable 
ultra-fast, reliable connectivity to enhance RA efficiency 
and support for various V2X applications.   

1) AI-Driven RA and autonomous management 

The 6G networks are anticipated to extensively use AI 
and machine learning for RA optimisation in real-time. 
Advanced techniques like Deep Reinforcement Learning 
(DRL) and Federated Learning (FL) [40, 41] in RA will 
allow autonomous decision-making that can lead to their 
adoption in highly dynamic V2X environments with 
minimal latency. Compared to the SDN approach in 5G 
the 6G technologies will rely on a more distributed AI 
framework [42]. The AI agents will operate locally on the 
edge nodes to improve latency and scalability. This will 
reduce the reliance on the central controllers [43]. The AI-
driven RA enablers will be able to efficiently handle 
massive data influx from the 6G V2X due to a predictive 

analysis capability. The predictive analysis can help 
forecast the resource needs per the vehicular movement 
patterns, allowing a proactive RA. This will enable 
seamless and stable connections while the vehicles 
navigate several network zones [44, 45]. FL will help 
mitigate privacy concerns as the data will be kept 
decentralised. This will be critical for handling sensitive 
user information.  

2) Quantum communication and RA 

Quantum communication is anticipated to play a critical 
and significant role in 6G V2X. This will help offer 
improved security and faster data transmission rates. The 
Quantum Key Distribution (QKD) can be integrated along 
the RA mechanisms to allow secure communication 
channels [46]. This is particularly important for the 
mission-critical V2X application, including autonomous 
driving and emergency vehicle coordination [47]. The 
quantum-assisted RA models can curtail the computation 
times in real-world environments. This can help optimise 
the RA process for URLLC.  

3) Terahertz (THz) communication and RA 

The 6G technologies will potentially operate in the THz 
spectrum, which allows immense bandwidth that allows 
multi-gigabit data rates and ultra-low latency. Such high-
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frequency THz bands are well suited for short-range high-
speed V2X communication. Nevertheless, RA in the THz 
spectrum requires sophisticated beamforming and 
dynamic frequency allocation strategies for handling path 
loss and signal attenuation issues [48]. Adaptive RA 
mechanisms will become in place to utilise THz beams and 
AI-controlled beam tracking to cater to this. This will 
enable connectivity between rapidly moving vehicles.  

4) Network slicing and blockchain for enhanced 

security 

6G will extend upon the slicing capabilities for dynamic 
slice management. Integrating blockchain in 6G slices will 
help achieve a higher level of security. The dynamic 
creation of the slices will help support several applications 
that range from Ultra-High Definition (UHD) to real-time 
safety communication. The enablement of decentralised 
trust management across the slices will help maintain 
multislice applications in the V2X communication [49, 50].  

Blockchain-based RA models can provide decentralised 

trust management across slices, which is essential for V2X 

applications involving multiple stakeholders. 

A summary of the future RA enablers and models in 6G 

V2X has been presented in Fig. 3.  

 

 

Fig. 3.  Future RA Enablers and Models in 6G V2X. 

D. Adaptive Resource Allocation Models for Real-Time 

Data and Dynamic User Behaviour 

Effective handling of dynamic user behaviour is 

imperative for real-time vehicular communication. The 

RA models for the B5G system use advanced algorithms 

using predictive and adaptive methods. Such models use 

Reinforcement Learning (RL) and Markov Decision 

Processes. Such models allow adaptive decision-making in 

real-time using CSI and user mobility patterns.  

The RA models incorporate low-latency computation 

layers. These involve Mobile Edge Computing (MEC) for 

processing real-time data generated by the V2X 

communication endpoints. The model uses decentralised 

decision-making based on software-defined radio and 

federated learning. This reduces the reliance on central 

controllers and thus improves the processing efficiency.  

The dynamic user behaviours introduce variability in 

the resource requirements. This is due to several factors, 

including vehicle speed, traffic density, and infotainment 

service demands. RA models address these challenges by 

integrating adaptive techniques such as channel 

independence and user-centric interactive models.  

III. PROPOSED TAXONOMY FOR RA IN B5G SYSTEMS 

In the realm of V2X networks, the integration of 

millimetre/terahertz communications, cell-free Massive 

MIMO, and short packet communications represents a 

transformative leap towards enhancing the efficiency and 

safety of connected vehicles. Millimetre/terahertz 

communications leverage higher frequency bands to 

provide wider bandwidths, facilitating faster data transfer 

and lower latency.  

This technology supports critical applications such as 

high-definition mapping and real-time sensor data 

exchange.  

Simultaneously, cell-free Massive MIMO redefines 

traditional cellular networks by fostering dynamic 

collaboration among multiple access points. This approach 

enhances coverage, capacity, and the seamless handover of 

connected vehicles, particularly in complex urban 

environments.  

Short packet communications, designed for swift and 

efficient transmission of safety-critical messages, play a 

crucial role in ensuring that vital information, such as 

collision warnings and emergency braking signals, is 

relayed promptly between vehicles and infrastructure. As 

these innovations converge, they contribute synergistically 

to the evolution of V2X networks, promising a future 

where connected vehicles operate with unprecedented 

levels of safety, reliability, and real-time responsiveness. 

Mmwave has emerged in the discussion of beamforming 

as an enabler in this paper, cell-free massive MIMO has 

emerged in the discussion of small-cells massive MIMO, 

and the short packet communication has emerged in the 

discussion of distributed SDN, small-cells massive MIMO 

and channel assignment.  

As depicted in Fig. 4, a proposed taxonomy has been 

illustrated in this section using enablers that are used to 

allow efficient RA in B5G systems, the allocation 

techniques and methods, and the computation process used 

to assist RA. 

A. Enablers in B5G Systems 

Enablers of RA for B5G systems depend on on-demand 

computing apart from some generic programmable 

hardware such as SDN, as shown in Table V. On-demand 

computation depends on using cloud computing in the 

whole network and Fog/MEC for the edge users [51]. 

Because of this, enablers of the RA can be classified into 

two main parts: First, the network topology comprising 

hardware implementation such as SDN and slicing, and 

software computation such as NFV, cloud computing, Fog, 

and MEC computing. Second, the class of enablers is the 

PHY layer configuration comprising three promising 

configurations, including massive MIMO, small-cell 

configuration, and beamforming to mitigate interference 

[52].  

Each type of enabler has its advantages and challenges. 

An SDN controller is the easiest and most effective way to 

enable RA. It can be used in three configurations: the 

centralised control plane, the distributed control plane, and 

the hybrid control plane. The easiest use is centralised, 

requiring only one SDN to view complete network 

AI-Driven RA 
and 

Autonomous 
Management

DRL optimizes RA 
decisions in real-

time.

FL enhances 
privacy by 

decentralizing 
data.

Quantum 
Communication 
for Secure V2X

QKD ensures high-
security channels.

Quantum-assisted 
RA reduces 

computation time 
for ultra-low 

latency.

Terahertz (THz) 
Communication 

and 
Beamforming

THz spectrum 
enables multi-

gigabit data rates 
for V2X.

AI-controlled 
beam tracking 

adapts to vehicle 
movement.

Blockchain-
Enabled 

Network Slicing

Provides secure 
and transparent 

data management 
across slices.

Enhances RA 
efficiency for 
diverse V2X 
applications.
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operations and data flows. This will decrease the 

establishment cost below the cost of using distributed 

configuration, but with the increase in the overhead of the 

traffic data [53]. 

However, using distributed SDNs can decrease the 

traffic flow latency and the overhead on the central SDN. 

An efficient routing algorithm is required to exchange data 

between SDNs. This results in a waste of power 

consumption [54]. To overcome the wastage in RA, a 

hybrid configuration of SDNs can be used, such as 

reducing the power consumption and increasing the 

offloading, leading to an increase in throughput and 

capacity. Nevertheless, efficient routing protocols are 

essential in hybrid networks [55].   

However, using NFV permits the employment of virtual 

machines and networks to implement any function on the 

existing hardware. This renders no requirement to use 

additional hardware to modify the configuration in RA. 

The work depends on allowing virtual computation using 

the same SDN controller [28].  
 

 

Fig. 4.  Proposed taxonomy for RA in B5G systems. 

 

As alluded to earlier, the use of a hardware controller 

has an impact on infrastructure costs. By using on-demand 

computational RA, the use of cloud computing becomes 

essential [56]. It is helpful to employ cloud computing in 

large-scale networks where all traffic flow processes are 

handled in the cloud, decreasing the overhead on the 

physical network [57]. There are many techniques used in 

cloud computing to allocate the resources available in the 

network such as Global Cloud Server (GCS) [58], Local 

ISP Server (LIS) [59], Gateway Server (GWS) [60], 

Vehicular cognitive radio Node Assisted Networks’ 

resource Selection (VANS) [61], Network Assisted 

Networks’ resource Selection (NANS) [62], and fuzzy 

rule-based scheme to eliminate the inappropriate cloudlets 

before deciding an optimal cloudlet to be used. This helps 

minimise handover delay, packet loss, average queuing 

delay, and device lifetime in a network [63]. 

Slicing is a promising network topology used for future 

vehicular networks. Ye et al. [64] discussed the use of 

slicing in high mobility networks where any challenges 

impinge upon RA due to an abruptly changing 

environment, and thus the stochastic environment changes. 

They develop an online slicing scheduling strategy for RA 

in vehicular networks, leveraging Lyapunov optimisation 

to allocate power control at each time slot according to the 

current network state. This will maximise the capacity and 

guarantee the Qos requirement, such as ultra-reliable and 

low-latency vehicle communication links.  
The second main class of enablers is the PHY layer 

configuration. It comprises three main technologies: 
massive MIMO, small-cell configuration, and 
beamforming [21]. Cheng et al. [36] proposed the 
combination of small cells in virtual form and directional 
beamforming to mitigate interference between small cells 
and between small cells and macro-cells used to increase 
system capacity and reduce site cost. They employ a user 
mobility prediction model using a Q-learning algorithm to 
find the optimal user association and RA strategy, leading 
to better performance for many users. The same concept of 
small-cell configuration is used in Ref. [65] with some 
consideration on load balancing between them using 
Mobility Load Balancing (MLB) to transfer load from an 
overloaded small cell to under-loaded neighbouring small 
cells for a more load-balanced network.  
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Two-tier HetNet architecture is proposed in Ref. [66] to 

overcome the challenges of high density and mobility in 

vehicular communications. The configuration depends on 

the main macro-cell and the number of small cells with 

pre-allocated persistent resources to small cells based on 

predicted traffic using a Space-Time k-Nearest Neighbour 

(ST-knn) method to shorten the signal travelling. In 

contrast, Kumar and Kumar [67] generalized the concept 

of small cells to dense groups of femtocells that reduce the 

RA’s complexity and enhance the required Qos. It uses the 

Particle Swarm Optimisation (PSO) algorithm based on 

game theory because of its stability in forming the clusters.  

Massive MIMO and beamforming are two methods of 
allocating resources in future networks. Jamil et al. [68] 
used the Power Allocation with Antenna Selection 
(PAWAS) technique to enhance energy efficiency by 
considering the channel state and traffic density. Mardi et 
al. [69] uses efficient clustering to have resource 
management techniques to attain spectrum sharing and 
power control that relies on large-scale fading. This 
technique can be used in hybrid networks between cellular 
and DSRC to improve cellular user sum rate, the average 
packet received ratio and throughput.  

 
TABLE V. SUMMARY OF RA ENABLERS IN B5G SYSTEMS 

Ref. 
SDN 

Controller 

NFV 

Integration 

Cloud 

Computing  Slicing  
PHY 

Layer  Key Findings Complexity Computation Cost 

[54] ✔ − − − − 
Distributed SDN reduces latency but 

requires efficient routing algorithms. 
High 

The need for efficient 

routing algorithms 

[55] ✔ − − − − 
Hybrid SDN enhances throughput but 

relies on efficient routing. 
Moderate 

The need for efficient 

routing algorithms 

[53] ✔ − − − − 
Centralised SDN provides holistic 

network visibility but with increased 

traffic data overhead. 

High 
Increased traffic data 

overhead. 

[28] − ✔ - − − 
NFV reduces hardware dependency but 

requires a virtual computation layer. 
Low 

More virtual layers 
needed 

[56] − − ✔ − − 
Cloud improves network capacity but 

raises latency concerns. 
Low 

Latency concern 

[61] − − ✔ − − 

Fuzzy routing eliminates inappropriate 

cloudlets but introduces computation 

complexity. 

Moderate 
Latency concern 

when using Fuzzy 

routing 

[64] 
− − − ✔ − 

Power control in slicing enhances 
dynamic allocation but faces 

challenges with high mobility. 

Moderate 
Increase of 

complexity when high 

mobility is available 

[36] − − − ✔ − 
Mobility prediction in small cells with 

beamforming increases system 

capacity. 
Low 

The traffic load on 

each cell. Needs of 

cell-free massive 

MIMO 

[65] 
− − − 

✔ 
− 

Mobility load balancing reduces 

overload but requires efficient 
techniques. 

High 
The need for efficient 

routing algorithms 

[66] − − − − ✔ 

Mobility prediction in small cells 

decreases overload through resource 

pre-allocation. 
Moderate 

The traffic load on 

each cell. Needs of 

cell-free massive 

MIMO 

[67] − − − − ✔ 

Clustering in small cells enhances 

energy efficiency but introduces 

computation overhead. 

High 
The need for efficient 

routing algorithms 

[68] − − − − ✔ 

Power control in Massive MIMO 

enhances energy efficiency but faces 

complex computation. 

High 
Increase of 

complexity when high 

mobility is available 

[69] − − − ✔ ✔ 

Power control in Massive MIMO 

improves packet ratio and throughput 

with complex computation. 

High 
Increase of 

complexity when high 

mobility is available 

[70]  − − − − ✔ 

Power control in Massive MIMO 
reduces inter-beam interference but 

requires complex computation. 

High 
Increase of 

complexity when high 

mobility is available 

[71] − − − − 
✔ 

Massive MIMO enhances spectral 

efficiency but limits range due to 

mmWave use. 

Moderate 
Limited range of 

communication 

TABLE VI. SUMMARY OF RA TECHNIQUES 

Ref. RA technique  RA concern Algorithm  

[72] DL Network slicing LSTM 
[73] DL Network slicing CNN 

[74] ML Vehicle behaviour and mobility  DNN 

[75] Management modelling + RL  Packet scheduling decision Markov Decision Process + Q-learning 

[76] RL HetNet with online computation Q-learning  

[77] Management modelling Vehicle behaviour and mobility  Graph theory 

[78] Management modelling Vehicle behaviour and mobility  Lyapunov Optimisation 

[79] Management modelling Vehicle behaviour and mobility  Semi-Markov Decision Process 

[80] Management modelling Vehicle behaviour and mobility  The game-theoretical strategy optimisation algorithm 
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Bates [70] and Gupta and Kumar [81] summarised the 

use of massive-MIMO in fast data transmission service in 

a high-mobility wireless communication system using 

imperfect Channel State Information (CSI) and 

beamforming. They use a low-complexity beamforming 

scheme to transmit diversity in the high-mobility scenario 

with location information. This can also solve the inter-

beam interference in a massive MIMO system. Besides 

using massive-MIMO and beamforming, Huang  et al. [71] 

used millimetre-wave bands to improve safety levels and 

enhance spectral efficiency. They use Matching Theory 

and Swarm Intelligence to dynamically and efficiently pair 

vehicles and optimise transmission and reception beam 

widths for ultra-dense vehicular scenarios. This enhances 

the network’s throughput a hundred times because of the 

wide range of bandwidth used in Millimetre wave (mm-

wave). 

B. Allocation Techniques  

For future advanced wireless networks to overcome the 

challenges of employing SDN as a controller, ML and DL 

algorithms has been proposed to enhance the system 

performance and RA by managing the resources available 

in the network based on a machine learning-enabled 

architecture to cater to the sophisticated demands of 

modern vehicular infrastructures as shown in Table VI.  

Predictive RA is a promising approach to take 

advantage of the prediction of mobility and traffic load-

related user behaviour. Chen et al. [72] proposed the use 

of Long Short-Term Memory (LSTM), Convolutional 

Neural Network (CNN) [73], and Deep Neural Network 

(DNN) to manage network slicing efficiently with a 

consideration of the large amount of data required to train 

these algorithms. Chu et al. [74] used ML algorithms to 

predict user behaviour and harness the vast amount of data 

measured in vehicular networks. They use DNN as a 

hierarchical and multi-time scale RA scheme. The 

prediction process allows the RA’s decision to be made in 

a central processor, and the base stations on different 

timescales allow the knowledge to be predicted with fewer 

training samples and allows the ML algorithm to predict 

the RA for future requirements.  

Markov Decision Process (MDP) was developed in Ref. 

[75] for RA. They investigate the problem of RA for 

expected long-term performance optimisation by 

modelling the stochastic decision-making procedure as a 

discrete-time process with the help of deep Reinforcement 

Learning (RL) techniques to address the partial 

observability and the curse of high dimensionality. This 

will enhance the frequency band allocation and packet 

scheduling decisions. In Ref. [76], the dynamic Q-value 

iteration-based RL with an experience replay memory 

mechanism is proposed to allocate the resources available 

in the HetNet vehicular communication. The proposed 

deep RL-based intelligent Time Division Duplex (TDD) 

dynamically allocates radio resources online.  

As mentioned in the introduction section, Packet 

collision modelling, Throughput modelling [77], Mobility-

based access Modelling [78], Priority-based allocation, 

and Exhaustive Search techniques are used to allow RA, 

especially for mobility networks. For the LTE network and 

HetNet, modelling theories such as Graph theory, 

KarushKuhn Tucker Theory, Perron Frobenius Theory, 

Semi-Markov decision Process, Greedy algorithm, and 

Lyapunov Optimization are used to have efficient RA. 

To maximise throughput among neighbouring vehicles, 

a stochastic model was proposed by Deng et al. [79] found 

the optimal maximum contention window using the 

surrounding vehicle density. The proposed algorithm 

improves the packet delivery rate by reducing packet 

collision during transmission with an optimised contention 

window size. Advanced theories, such as a graph-based 

resource scheduling approach, are needed to perform RA 

in HetNet [82]. Tayyaba et al. [80] designed a game-

theoretical strategy optimisation algorithm based on 

regret-matching and then derives the correlated 

equilibrium solution. They also propose a heuristic power 

control algorithm for further mitigating the ICI in the 

noncooperative game-based resource allocation. 

In addition to the above, the anticipated 6G networks 

can further offer extensive ML and DL-based capabilities 

due to the availability of high computational resources. 

The advanced ML and blockchain frameworks will allow 

higher adaptability and privacy, and offer computational 

efficiency. Some of the specific ML models and 

blockchain mechanisms relevant to the RA in 6G networks 

are provided as follows.  

Predictive resource allocation with ML is seen as a 

game changer. The RA can be carried out more efficiently 

by anticipating future traffic patterns. Transformers and 

Graph Neural Networks (GNNs) can aid in developing 

context-aware RA in 6G [83]. The complex relationships 

in the data can be modelled, and some high-end variants 

like Vision Transformers (ViTs) will help analyse the 

spatial and temporal patterns in the network traffic [84]. 

These advancements are well-suited for the vehicular 

networks where the interconnection mobility patterns can 

be modelled.  

FL in 6G RA can directly rely on the network edges. 

This will improve privacy and the dynamic prediction of 

the resources. Advanced FL models such as Federated 

Averaging (FedAvg) for RA optimisation and personalised 

FL can help cater to specific local network characteristics 

without relying on data centralisation [85]. RL with Deep 

Q-Networks and Proximal Policy Optimisation (PPO) can 

further aid in making real-time autonomous decisions in 

6G environments [86]. Such models can help optimise 

frequency and power allocation by analysing the ongoing 

interactions within the network.  
Autoencoders and Variational Autoencoders (VAEs) in 

the 6G RA environment can be highly effective [87]. Such 
models can compress high-dimensional data to allow 
efficient RA by identifying latent resource demands. 
VAEs can further assist in the sparse and unlabeled data 
scenarios, a common trait of network edges. The Hybrid 
Ensemble Models, including Stacking and Boosting, can 
aggregate multiple ML algorithms [88]. Such models are 
particularly suitable for the 6G framework, where traffic 
predictions and demand forecasting from RA decisions 
benefit deeper network insights.  

In the 6G RA V2X, the Ethereum-based smart contracts 

can allow automated and decentralised RA. By relying on 
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the fundamentals of blockchain, predefined agreements for 

resource allocation can be developed. Such smart contracts 

can help facilitate real-time negotiations between the 

network nodes for resource sharing and allow quick 

adjustments according to dynamic demands [89]. The 

Hyperledger fabric for privacy-preserving RA is a 

blockchain framework that supports privacy and security 

in RA [90]. Embedding such a framework will allow 

efficient data access control. Hyperledger Fabric’s 

modular architecture will allow seamless integration with 

6G network components and aid in managing RA in a way 

that will allow confidentiality and compliance with 

privacy standards.  
The Directed Acyclic Graph (DAG) based models can 

further serve as building advancement blocks for RA V2X 
in 6G networks [91]. Models such as IOTA (a DAG-based 
blockchain model) can offer improved scaling and be 
suitable for 6G vehicular networks with critical high 
throughput and low latency [92]. Such models can further 
support microtransactions and allow real-time fine-grained 
RA adjustments in mobile environments. These can be 
carried out without extensive mining or consensus 
protocols. A summary of potential RA techniques in 6G 
V2X has been provided in Table VII.  

TABLE VII. SUMMARY OF RA TECHNIQUES IN 6G V2X 

Ref. RA 

Technique 
RA Concern Algorithm/Model 

[83] ML 

Network slicing, 

traffic prediction 

Transformers, Vision 

Transformers 

[84] ML 

Vehicular 

network, mobility 

Graph Neural 

Networks (GNNs) 

[85] ML 

Privacy-

preserving RA 

Federated Learning 
(FedAvg, Personalised 

FL) 

[86] ML 

Frequency and 

power allocation 

Deep Q-Networks 
(DQNs), Proximal 

Policy Optimization 

(PPO) 

[87] ML 

Edge computing, 

demand prediction 

Autoencoders, 

Variational 

Autoencoders (VAEs) 

[88] ML 

Traffic prediction, 

robustness 

Hybrid Ensemble 

Models (e.g., 

Stacking, Boosting) 

[89] Blockchain Automated RA 

Ethereum Smart 

Contracts 

[90] Blockchain 

Privacy-

preserving RA Hyperledger Fabric 

[91] Blockchain 
High mobility, 

low latency 
Directed Acyclic 

Graph (DAG), IOTA 

C. Computation Process  

The computation process means making the intelligent 

RA algorithms perform efficient offloading and efficient 

scheduling using the knowledge of the Channel 

Assignment (CA) [82]. The work in Ref. [93] uses genetic 

algorithms and heuristic rules to perform offloading in 

vehicular networks. The offloading algorithm not only 

determines where the tasks are performed but also 

indicates the execution order of the tasks on the cloud. 

They propose a hybrid intelligent optimisation algorithm 

to reduce the time complexity. 

The work in Ref. [94] proposes an RA scheme that 

depends on optimal Power Allocation (PA) and CA using 

a heuristic hybrid algorithm. The proposed scenario 

ensures higher HetNet performance. Cao et al. [95] aimed 

to maximise the completion ratio of time-critical tasks in 

high-mobility vehicular communication by modelling 

offloading scenarios based on the Adaptive Task 

Offloading Algorithm (ATOA). Specifically, it adaptively 

categorises all tasks into four types of pending lists by 

considering the dynamic requirements and resource 

constraints, and then tasks in each list will be cooperatively 

offloaded to different nodes based on their features. The 

work in Ref. [96] proposes an intelligent CSI feedback 

reduction using a deep neural network model. This 

combination allows optimal bandwidth allocation with 

partial channel feedback. 

D. Validation and Sensitivity Analysis of Simulation 

Tools 

The simulation tools in this study were validated by 

comparing them with state-of-the-art models and 

sensitivity analysis under several conditions. This helps in 

analysing the robustness of the proposed RA models.  

To benchmark the performance against the established 

models, the reviewed ones are the Dynamic Q-Learning 

models that help in adaptive allocation strategies in 

vehicular HetNets. GNN-based RA models make use of 

spatial and temporal relationships to optimise resources. 

FL enables RA to help reduce latency effectively and 

improve scalability. This is especially helpful in dynamic 

environments. The key indicators, such as throughput, 

latency and energy efficiencies, have been analysed along 

with packet delivery ratios. It was found that RA models 

can attain up to 15% improvements and a 20% reduction 

in latency compared to the benchmarking models.  

A sensitivity analysis was carried out to assess the 

robustness of the models. The channel variability 

involving scenarios with high Doppler shift and multi-path 

fading was used to assess the model’s stability under 

dynamic channel conditions.  

E. Statistical Analysis of Model Performance 

The manuscript primarily evaluates the performance of 

the proposed RA models qualitatively. Yes, the statistical 

analysis can help further validate the model’s performance 

under various traffic conditions. This can be a part of 

future work where metrics such as throughput, latency, 

packet delivery rates, and energy efficiency can be 

statistically analysed with methods such as ANOVA. This 

will help in offering better confidence intervals and 

strengthen the claims.  

F. Integration of FAHP and Naïve Bayes Models in 

Real-Time Multi-user Environments 

Integrating FAHP and the Naïve Bayes model in real-

world environments involves using their strengths to make 

decisions dynamically. The FAHP model has been 

employed to prioritise the allocated resources using 

multiple weighted criteria. This ensures fairness and 

efficiency in the resource distribution. Similarly, naïve 

Bayes can help in predicting user demands and in the 

classification of resource requests. These models can be 

integrated with a distributed computing framework to 
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incorporate real-time processing further. This helps in 

reducing latency by processing data closer to the user 

nodes. Multiple-user scenarios can be addressed by using 

parallel computing. The FAHP will dynamically handle 

resource prioritisation across the users, and Naïve 

Bayesian will predict continuous data streams.  

G. Assumptions on Spectral Channel Independence and 

User Interaction Dynamics 

There are several assumptions associated with spectral 

channel assumptions. It has been assumed that advanced 

interference management techniques like beamforming 

and adaptive frequency allocation are used. Independence 

is assumed to be maintained under typical conditions.  

The user interaction dynamics have been modelled 

using stochastic traffic patterns and mobility datasets. The 

probabilistic user models predict resource demands and 

interaction likelihoods.  

H. Parallels with Cellular Network Management 

Like cellular networks, the proposed models employ 

dynamic scheduling techniques for managing real-time 

traffic demands. These work by prioritising the critical 

resources and help ensure low-latency communication. 

The handoff strategies in the resource allocation 

dynamically adapt to the user mobility. This helps in 

ensuring a seamless transition between the networks in 

high-speed zones. Infection mitigation techniques such as 

frequency reuse and beamforming are utilised to maintain 

spectral channel independence.  

IV. OPEN RESEARCH AREAS IN RA FOR B5G SYSTEMS 

Currently, research areas in RA for B5G systems are yet 

to be fully explored and understood. In this section, we will 

be discussing these open areas of research. 

A. Efficient Slicing Techniques 

Efficient slicing techniques in B5G systems and 6G is 

an open area of research as it aims to address the 

challenges and opportunities of integrating different 

services and use cases in a shared network infrastructure. 

Slicing is a promising network topology for future 

networks, and it enables the efficient allocation of network 

resources to different services and use cases, with different 

quality of service requirements [97].  

The research in this area aims to develop new 

techniques and algorithms for slicing that can improve the 

performance of 6G networks in capacity, latency, and 

energy efficiency [98]. Open research topics in this area 

include, but are not limited to, online slicing scheduling, 

dynamic resource allocation, interference management in 

slicing networks such as managing of the Inter-Channel-

Interference (ICI) and Inter-Symbol-Interference (ISI) 

especially in high mobility channels, and the integration of 

slicing and other technologies such as AI, IoT, and edge 

computing. 

B. Efficient Use of ML/DL Algorithms 

The efficient use of ML and DL algorithms in 6G for 

RA is still an open area of research. With the increasing 

demand for high-speed and low-latency communications, 

6G networks must support various services and use cases 

with diverse requirements [99]. ML and DL algorithms 

can be used to optimise allocating network resources such 

as spectrum, power, and computation to different services 

and users.  

Research in this area aims to develop new ML/DL-

based algorithms and techniques for resource allocation 

that can improve the performance of 6G networks in terms 

of capacity, energy efficiency, and fairness. Some open 

research topics in this area include but are not limited to, 

the use of ML/DL for dynamic resource allocation, 

interference management, and network slicing, as the 

integration of ML/DL with other technologies such as edge 

computing and NFV [100], and the development of new 

architectures and frameworks for ML/DL-based resource 

allocation in 6G networks [101]. 

C. Virtual Backhauling 

HetNet faces two challenges: the backhauling 

management and control of small cells, which still open 

research areas. These are significant challenges and an 

active area of research for the future in the context of RA. 

Some potential questions that can be asked in this context 

are: In the classical form of backhauling between cells, 

does the core base station connect with other small cell 

base stations by downlink backhauling? Can wireless or 

wired backhauling be used? Etc. The uplink backhauling 

can also be performed between the small and core cell base 

stations. As illustrated in Fig. 5(a), the classical form of 

communication when a vehicle wants a data link is 

connecting with the small-cell base station and 

establishing a backhauling link between multiple base 

stations. If another vehicle in another small cell wants a 

data link, it must connect with its small-cell base station 

and establish a new backhauling link.  
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(a)                                 (b) 

Fig. 5. RA as a virtual backhauling: (a) overall, (b) control and 

management layer. 

However, this scenario is widely used in HetNet; it can 

be helpful when no dense network is used. The challenge 

is that new resources, such as bandwidth, data rate, and 

infrastructure, are allocated for each communication link. 

The question, however, remains about reducing the 

infrastructure required for backhauling. How to reduce the 

spectrum usage? And how do different RAT management 

systems communicate?  

Fig. 5(b) answers the above questions. Considering a 

vehicle travel from one small cell to another, it shall be 
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connected to a base station to gather control and other 

information. Another vehicle in another small cell needs 

data residing in a crowded small cell. There is no way to 

connect with its base station.  

The system establishes a virtual resource allocation 

based on cloud or SDN. This virtualisation allows the first 

vehicle to carry the data that another vehicle requires. 

When it reaches the coverage area for the targeted vehicle, 

a V2V offloading link is established to transfer the carried 

data to the destined vehicle.  

This new concept of RA management allows the use of 

virtual links for backhauling. The process starts with 

resource virtualisation. All resources required for the 

second vehicle can be considered virtual, and the whole 

backhauling process is performed virtually. This requires 

virtual resource management, the second stage of virtual 

backhauling. The virtual network controller controls the 

management. This controller can be in the form of a cloud 

controller, SDN, and/or NFV. 

Virtual backhauling and self-backhauling networks are 

considered in Refs. [102, 103]. In Ref. [102], the 

Lyapunov optimisation method performs virtual RA in 

HetNet, followed by a real-time scheduling algorithm. 

This technique needs a utility function to be optimised 

using improved PSO. The aim is to maximise the 

virtualised network’s average total utility, satisfying the 

minimum average data rate requirement, and satisfying the 

network queue stability. Unlike Ref. [102], which needs to 

optimise each vehicle’s RA, Siddig et al. [103] used slicing 

to perform virtual resource allocation of each virtual slice 

by proposing the Ener-Eff-Slice algorithm to manage and 

control the virtual RA between slices. This algorithm aims 

to save the total energy cost of deployed virtual slices. This 

technique is suitable for enhancing the data rate of each 

vehicle corresponding to its virtual slices, provided 

virtually.  

A similar study on virtual slicing has been performed in 

Ref. [104]. Compared with the static slicing, the 

simulation results reveal that the proposed virtual RA 

outweighs the utilities of the total network system across 

each tenant and outperforms the static RA by a 5% 

enhancement based on capacity, throughput, and spectral 

efficiency. Controlling the virtual RA can also be 

performed using cloud computing. In Ref. [105], cloud 

controlling aims to have on-demand and extensive 

resource-providing approaches and cloud environment 

schedules. This can reduce the computational process on 

the base station, reducing the congestion on the virtual 

control signalling. 

D. Autonomous Resource Allocation 

Self-driving, self-optimisation, and self-

controlling/management networks are types where the 

network can perform the RA process autonomously [106]. 

This implies that a vehicle can be considered autonomous 

such that RA processing is performed by itself. To emulate 

this scenario, V2V and V2I links shall be available for 

every vehicle in the network so that connectivity with a 

vehicle can be made regardless of its position. 

Autonomous driving relies on big data communication 

across the network [107]. Thus, applying traditional 

approaches to compute such massive data demands may 

underperform. Therefore, machine learning is a powerful 

tool for analysing and making data-driven decisions in 

autonomous driving [108]. 

Two challenges in autonomous RA are security and 

privacy. Autonomous RA requires a robust security system 

to ensure data transmission safety. Risk-based security 

may lead to unnecessary delays in communication or 

congestion in the network computation. An authorised 

cloud or SDN controller can be used to ensure RA security 

[109].  

Privacy is also a risk in autonomous RA. Ensuring the 

privacy of RA data means avoiding tracking a vehicle and 

providing a robust network. There is attention to using ML 

algorithms to ensure autonomous RA and efficient security 

and privacy models [110]. 

V. THE POTENTIAL OF 6G IN OVERCOMING RA 

CHALLENGES 

The transition from B5G to 6G networks can provide 

unique opportunities to address the existing challenges on 

RA in V2X networks. 6G can leverage advanced 

technologies and methods to improve RA efficiency, 

reliability, and performance.   

A. Enhanced Network Slicing 

6G provides sophisticated network slicing techniques 

that offer better customisation of resources [111]. These 

resources can be based on the diverse network 

requirements. This can improve network slicing and 

dynamic adjustment of the RA in real-time. Resultantly, 

the quality of service will improve across several vehicular 

applications.  

B. Intelligent Resource Management Using AI/ML 

Integrating advanced AL and ML methods will help 

develop intelligent resource management systems. Such 

algorithms will help analyse large amounts of data in real-

time to optimise resources and their allocation. This will 

ensure efficient utilisation and improvements in the 

network performance. Additionally, the latency and 

capacity of the networks will improve further [112].  

C. Advanced Virtualisation Techniques 

Access to advanced visualisation techniques will allow 

improved backhauling solutions and resource sharing 

across several network components. Virtual backhauling 

will help streamline the management of the small cell 

networks. This will allow dynamic resource allocation that 

can be adapted to the mobility of vehicles and changing 

network conditions [84].  

D. Enhanced Security and Privacy Protocols 

As the networks become autonomous, the importance of 

incorporating robust security and privacy measures is 

growing. 6G will incorporate advanced cryptographic 

techniques allowing data integrity and user privacy 

protection during the RA process [113].  

The potential of 6G in overcoming the RA challenges is 

presented in Table VIII.  
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TABLE VIII. THE POTENTIAL OF 6G IN OVERCOMING CHALLENGES 

Ref. RA Challenge 6G Solution 

[111] 
Inefficient Resource 

Allocation 

Enhanced network slicing for 

dynamic resource customisation 

[112] 
High Latency 

Intelligent resource management 
using AI/ML algorithms 

[84] Backhauling 

Challenges 

Advanced virtualisation 

techniques for effective 

backhauling 

[113] 
Security and Privacy 

Concerns 

Enhanced security protocols and 

cryptographic techniques 

− 
Limited Integration 

with Emerging 

Technologies 

Seamless integration of edge 
computing, IoT, and cloud 

computing 

 

VI. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

This overview article examines recent networks in B5G 

systems and 6G, discussing the proposed taxonomy of the 

advanced enablers and methods used in RA. The 

taxonomy is based on enablers, allocation techniques, and 

computations, with some open research areas also 

highlighted. It is concluded that slicing, ML, DL, and 

enablers such as network configuration and PHY layer 

topology play a critical role in managing and controlling 

available resources, especially for high-mobility networks. 

ML/DL and slicing are considered promising techniques 

for 6G networks due to their ability to meet the 

requirements of vehicles, despite some challenges in 

dealing with highly dynamic topologies and high traffic in 

the network. Interference is also a challenge that needs to 

be considered when developing efficient RA algorithms 

and techniques. 

A. Future Recommendation  

Based on the work presented in this article, some future 

recommendations are given below: 

• Using ML and DL models to perform RA can be 

sufficient, with some consideration given to high 

mobility networks with very dynamic topologies and 

traffic flow.  

• Massive MIMO and beamforming with a small-cell 

configuration are the key features of the PHY layer 

configuration in the coming 6G. This will enhance 

the throughput and increase the capacity of the 

system, with some considerations of the massive 

MIMO establishment and small-cell usage to 

overcome the interference that comes from the 

adjacent users. Beamforming here can be one of the 

solutions. 
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