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Abstract—Cognitive Radio (CR) technology enhances 
spectrum efficiency by enabling unlicensed users to utilize 
underused frequency bands opportunistically. This work 
introduces a methodology that integrates deep learning-
based feature extraction with classification techniques 
grounded in machine learning to enhance decision-making 
within Cognitive Radio Networks (CRNs). Spectral 
characteristics are derived from image representations of 
power distribution and subsequently categorized using four 
classifiers: Binary Decision Tree (BDT), Discriminant 
Analysis Classifier (DAC), K-Nearest Neighbors (KNNC), 
and Support Vector Machines (SVM). The study’s main 
contribution lies in validating the applicability of deep neural 
networks for spectral classification and assessing the 
influence of each classification model on decision-making 
outcomes. Performance is measured through total and failed 
handoffs, average bandwidth, and overall delay. Findings 
indicate that the SVM classifier achieves superior accuracy 
and operational efficiency. The SVM classifier performed 
best, recording the fewest handoffs and the lowest average 
delay. Regarding the number of handoffs, BDT, KNNC, and 
DAC increased this metric by 1.44, 1.88, and 2.88 times, 
respectively, demonstrating the greater efficiency and 
stability of the SVM classifier. SVM also achieved the best 
results for the other metrics evaluated. 
 
Keywords—machine learning, feature extraction, spectral 
handoff, spectral occupancy, cognitive radio networks, 
decision making  

I. INTRODUCTION 

According to the Federal Communications Commission, 
spectrum is severely underutilized, an estimated 80% of 
allocated spectrum is below potential usage, this means 
that frequency availability for current users and new users 
will be a challenging issue [1, 2]. To solve this problem, 
different strategies have been proposed, CR is a 
technology that has received great attention from academia 
and industry. It allows the allocation of the spectrum in a 
dynamic way; it is composed of licensed or Primary Users 
(PU) and unlicensed or Secondary Users (SU). In the 
dynamic model of CR, EDs can opportunistically access 
when spectrum is available [3]. 

To enable dynamic access, Cognitive Radio Networks 
(CRNs) operate based on a cognitive cycle comprising 
spectrum sensing, spectrum decision, spectrum mobility, 
and spectrum sharing [4]. Spectrum decision is crucial, as 
it depends on accurately and efficiently characterizing the 
PU signal. The success of decision-making depends on the 
characteristics of the network; therefore, the permanent 
work is to identify and propose intelligent learning 
strategies, which allow the analysis of spectral occupancy 
in order to estimate the characterization of the PU [5]. 

A. Scope and Contributions 

This article addresses the classification of spectral 
occupancy as a key element in decision-making within 
CRNs. To this end, we implement an approach based on 
feature extraction using deep learning and subsequent 
classification using machine learning techniques.  

Spectral features are obtained from the activations 
generated in the upper layers of the AlexNet deep neural 
network, which is used to recognize images associated 
with spectral power levels. Based on these features, four 
machine learning-based classification models are trained 
and evaluated: Binary Decision Tree (BDT), Discriminant 
Analysis Classifier (DAC), K-Nearest Neighbor Classifier 
(KNNC), and Support Vector Machines (SVM). The main 
objective is to identify the most efficient classifier for 
determining spectral occupancy based on three traffic 
levels: high, medium, and low.  

The results obtained with each technique are 
transformed into time and frequency information to 
evaluate the impact of classification on decision-making, 
allowing the construction of a zone-scoring vector for 
spectrum access. From this vector, key metrics are 
generated that quantify the performance of the decision-
making process. The metrics analyzed are the cumulative 
average number of handoffs, the cumulative average 
number of failed handoffs, the average bandwidth, and the 
cumulative average delay. These metrics are studied over 
the SU transmission time, providing a detailed evaluation 
of the effectiveness of each classifier in dynamic cognitive 
radio scenarios.  

This study validates the viability of deep learning for 
feature extraction in spectrum occupancy classification 
and highlights the importance of selecting the appropriate 
classifier to optimize decision-making in CRNs.  
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The results provide valuable information for developing 
more efficient spectrum management strategies, thus 
contributing to the advancement of next-generation 
wireless communication networks. 

B. Literature Review 

Previous research has explored various machine 
learning and deep learning applications in CRNs. This 
paper analyzes studies focused on learning algorithms that 
can be integrated into CRNs’ multiple processes. 

Deep learning is a key tool for addressing fundamental 
challenges in CRNs, including spectrum sensing and 
sharing, resource allocation, and system security. 
According to Ref. [6], applying these techniques improves 
the network’s adaptive capacity in dynamic environments, 
optimizing system efficiency and reliability. Thus, deep 
learning is emerging as a crucial element in ensuring the 
performance and security of future wireless infrastructures. 

Spectrum availability is a critical factor in CRNs. In this 
context, Swetha et al. [7] explored the use of various 
machine learning techniques, including Linear 
Discriminant Analysis (LDA), Logistic Regression (LR), 
K-Nearest Neighbors (KNNC), Naive Bayes (NB), 
Classification and Regression Trees (CRT), and Support 
Vector Machines (SVM), for Primary User (PU) 
identification. The results show an accuracy of 85%, 
suggesting the feasibility of these techniques to optimize 
spectrum sensing and improve spectrum allocation 
efficiency within CRNs. These findings reinforce the 
importance of machine learning in next-generation 
wireless environments. 

Intelligent transportation systems based on Vehicular 
Ad Hoc Networks (VANETs) have demonstrated 
outstanding potential; however, they still face challenges 
related to efficient spectrum management and network 
security. In this regard, Idris et al. [8] reviewed the impact 
of CRNs and machine learning on spectrum sensing and 
management within VANETs and on mitigating security 
issues. This study provides a detailed analysis of how these 
technologies can optimize spectrum utilization and 
strengthen threat protection in vehicular networks. 

The decision-making process in CRNs has received less 
attention than other processes despite its importance in 
spectrum management. In this regard, Ramírez et al. [9] 
examined the decision-making process within 
Decentralized Cognitive Radio Networks (DCRNs). Using 
a simulation framework grounded in precise spectrum 
occupancy data, the study assessed the performance of 
three multi-criteria decision-making methods. It 
introduced a user-driven information-sharing strategy to 
enhance coordination. The results showed a balanced 
spectrum allocation, demonstrating the relevance of these 
approaches in CRN management. 

Power allocation in cognitive radio networks is another 
critical challenge. Zhang et al. [10] proposed a neural 
network-based approach to maximize the SU secrecy rate 
while respecting power and interference constraints. This 
machine learning-based approach enables more efficient 
power allocation with lower computational complexity. 
The results indicate that the proposal can achieve a secrecy 

rate above 94%, highlighting its effectiveness in practical 
scenarios. 

Based on the studies described, the references analyzed 
are relevant to contextualize and substantiate the research 
gap addressed in this work. In particular, the research 
considered identifies current limitations in the field of 
study. It highlights the need for new approaches focused 
on classifying spectral occupancy as a key element in 
decision-making. Furthermore, the review integrates 
recent and relevant works, ensuring in-depth and up-to-
date coverage of the literature. The contributions, 
limitations, and gaps identified in the reviewed studies are 
summarized in Table I, providing a structured view of the 
motivations driving the development of this research. 

TABLE I. COMPARATIVE ANALYSIS LITERATURE REVIEW 

  Ref.        Topic       Gap     Lationship 

[6] 

Application of 
deep learning in 
CRN to improve 
efficiency, 
adaptability, and 
security in 
B5G/6G networks. 

Lack of specific 
integration of 
spectral feature 
extraction using 
DL and spectrum 
classification. 

Confirms the 
value of DL in 
CRN; reinforces 
the approach of 
using deep 
features for 
decision-making. 

[7] 

Comparison of 
ML techniques for 
primary user 
detection in CRN. 

Comparison 
focused on 
detection 
techniques, not 
on DL+ML 
integration or 
spectral 
classification. 

Supports the 
selection of ML 
classifiers (BDT, 
DAC, knNC, 
SVM) in the 
proposed model. 

[8] 

Use CR and ML to 
solve vehicular 
network spectrum 
sensing and 
security problems. 

Focus on 
VANETs, not 
general CRNs or 
spectral feature 
classification 
with DL. 

It supports ML 
use in critical 
CRN applications 
and justifies the 
need for robust 
methods such as 
those proposed. 

[9] 

Methodological 
proposal for 
decision-making 
in DCRN through 
information 
exchange. 

Does not use DL-
based feature 
extraction or 
spectrum 
classification. 

Direct 
relationship: 
contributes to the 
efficient decision-
making context 
that our approach 
seeks to improve 
with DL+ML. 

[10] 

Secure power 
allocation in 
CRNs using neural 
networks for low-
latency 
transmission. 

Power 
optimization, not 
spectrum 
classification or 
multi-user 
decision-making 
based on 
DL+ML. 

Evidence of the 
effectiveness of 
DL in critical 
CRN applications, 
supporting the use 
of DNNs in our 
feature extraction 
approach. 

C. Organization of the Document 
This paper is organized and presented in four sections 

including the introduction. The second section describes 
the methodology, presents the strategy implemented and 
describes in detail each of the stages of the work. The third 
section presents the results obtained and the respective 
quantitative analysis. Finally, the fourth section presents 
the general conclusions of the work. 

II.    METHODOLOGY 

Fig. 1 presents the diagram of the strategy implemented. 
The classification of spectral occupancy for decision-
making in cognitive wireless networks implementing 
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machine learning is carried out through four stages. The 
first stage is defined as “Input”, it is responsible for 
converting the power matrix to RGB figures. The second 
stage is defined as “Feature Extraction”, it is responsible 
for calculating the activations of the deep network learning 
layers, this is done through the Matlab Deep Learning 
toolbox. The third stage is defined as “Multiclass and 
Decision Making”, it oversees training and validating the 
four classifiers that are going to be implemented, 
additionally, establishing the operation ranking for the 
decision-making process, transforming the classification 
of the figures into time and frequency information. The 
fourth stage, defined as “Output” generates the metrics. 
Each of the stages is described in detail below.  

 

 
Fig. 1. Structure by stages of the implemented strategy.  

A. Stage 1: Input − Spectral Power Array 

Spectral occupancy has a relevant role in the decision-
making analysis for Cognitive Radio Networks, it allows 
to characterize the behavior of PUs and according to a set 
of rules to make access decisions. For this work, the input 
information corresponds to the spectral power measured 
experimentally in the Wi-Fi 5GHz bands using the energy 
detection technique, this technique estimates the signal by 
comparing the received energy with a known threshold 
resulting from the noise data [11]. 

Due to the type of classifiers to be implemented, it is 
necessary to identify a group of data from the measured 
data that allows training the models and another group of 
data that allows them to be validated. The classification of 
the input information according to the amount of data and 
the application allowed to define an input database, the 
size is shown in Table II, where the rows represent the time 

in seconds and the columns the frequency channels. Both 
databases have information on 500 frequency channels, for 
one hour for Training and 10 ms for validation.  

TABLE II. DATABASE STRUCTURE FOR THE AVAILABILITY MATRIX 

Availability Matrix Rows Columns 
Training 5,928 500 

Validation 988 500 

 
After the construction of the database, the information 

is converted into figures using an RGB chromatic model. 
The conversion is carried out by implementing a linearity 
relationship through a conversion range, where the limits 
are obtained by identifying the highest and lowest power 
level. In addition, the limits are taken as the basis for a per-
unit adjustment of the other values. Fig. 2 illustrates the 
power matrix representation using the RGB chromatic 
model, where green tones indicate low traffic levels and 
red tones represent high traffic intensity. The origin is a 
reference point corresponding to a threshold level 
calibrated for the model’s input. In this study, the threshold 
was set at −79 dBm. 

 

 
Fig. 2. Representation of the power matrix in RGB chromatic model. 

B. Stage 2: Feature Extraction 

Feature extraction is the process of converting raw data 
into a structured set of numerical features that can be used 
for analysis or modeling. This process can be carried out 
either manually or automatically. Manual feature 
extraction involves identifying and defining relevant 
characteristics based on domain knowledge tailored to the 
specific problem. In contrast, automatic feature extraction, 
a method that significantly reduces human effort, 
leverages specialized algorithms to extract meaningful 
patterns or attributes directly from signals or images [12]. 
Deep learning algorithms are widely applied in object 
extraction, classification, and recognition tasks. 
Convolutional Neural Networks (CNNs) stand out as a 
powerful deep learning approach that automatically learns 
relevant features from data. However, CNNs typically 
require large datasets to effectively identify and combine 
features suitable for accurate extraction and classification 
[13]. The most common approach is to implement pre-
trained networks.  

In this work, the deep convolutional neural network 
AlexNet is implemented, which was pre-trained with over 
a million images. Fig. 3 illustrates the network architecture, 
composed of eight layers: Five convolutional layers and 
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three fully connected layers. The output of the last layer 
produces a probability distribution over 1,000 classes [14].  

The main objective is to use AlexNet to extract, 
specifically from the fc7 layer, a representative set of 
features from the images collected in Stage 1. These 
features are then used to train and validate four supervised 
classification techniques. 

 

 
Fig. 3. AlexNet convolutional neural network architecture. 

C. Stage 3: Multiclass and Decision Making 

A correct decision-making process depends on the 
estimation of the behavior of the PU; this work 
characterizes the PU through the classification of the 
figures that represent the power matrix.  

1) Multi-class 
As a supervised learning technique, classification is a 

statistical tool, which through a set of training data allows 
you to define classification rules to establish class 
covariates and labels. Classification rules are used for class 
predication of new objects whose covariates are available 
[15]. There are various classification strategies, and the 
challenges grow exponentially, there is no one technique 
that is the best, each classifier has a considerable number 
of advantages and disadvantages. This paper implements 
and analyzes four machine learning classification 
techniques: BDT, DAC, KNNC, and SVM.  

For this work it is required that the classifier be able to 
identify three types of classes or traffic levels. Many of the 
classification techniques are originally designed to solve 
binary problems (two classes). However, for various 
scenarios, classification problems involve more than two 
classes. The BDT, DAC, KNNC and SVM techniques can 
work under multi-class scenarios.  

The BDT, DAC, KNNC, and SVM classifiers were 
selected based on their complementarity in terms of 
performance with different data types [16].  

BDT is a rule-based method that facilitates decision 
interpretability [17, 18], while DAC is an efficient linear 
model when the data present well-defined structures [19], 
[20]. KNNC, on the other hand, is an instance-based 
classifier that does not assume a specific distribution, 
making it useful in data sets with complex patterns [21]. 
Finally, SVM is widely used for its ability to handle high-
dimensional data and its robustness against overfitting 
through kernel functions [22, 23].  

This combination of classifiers allows for evaluating the 
performance of rule-based approaches, statistical models, 
proximity methods, and optimal margin techniques, 
providing a comprehensive comparative analysis to select 
the most appropriate model for the problem at hand. 

The objective is that each figure in RGB is classified 
according to three levels of traffic: high traffic, medium 

traffic and low traffic, each of these levels and their 
respective description is presented in Table III. Below is 
an overview of the four machine learning classification 
techniques used. 

TABLE III. DESCRIPTION OF TRAFFIC LEVELS 

Traffic Level Description 

High 
This scenario is characterized by limited spectral 
opportunities due to a high concentration of 
licensed users 

Low 
A scenario with abundant spectral opportunities, 
where the number of licensed users is low or 
approaching zero. 

Middle 

A scenario with moderate spectral opportunities, 
where the number of licensed users is at an 
intermediate level, allows both SU and PU to 
coexist and operate within the same spectral 
environment. 

 
a) Binary decision tree − BDT 

 This classification technique is based on recursive 
partitioning, where the dataset is progressively divided 
into increasingly homogeneous subsets. At each step, the 
algorithm selects the most informative attribute and an 
associated threshold to split the data, aiming to maximize 
the uniformity of class labels within each resulting group. 
The classification of a sample is achieved by tracing a path 
from the root node, which plays a crucial role as the 
starting point, to a leaf node, where a specific class label is 
assigned (Fig. 4). This splitting process continues at each 
node until further divisions no longer yield improvements 
in classification accuracy. One of the key advantages of the 
decision tree classifier lies in its interpretability: The 
resulting series of decision rules is straightforward to 
follow and offers insights into the logic and structure of the 
modeled system [17, 18]. 

 

 
Fig. 4. BDT structure. 

b) Discriminant analysis classifier − DAC 
Discriminant Analysis is a classification approach 

where the categories or groups are predefined, and the 
objective is to assign new observations to one of these 
known groups. The method seeks to identify a linear 
combination of input features that maximizes the 
separation between different classes while minimizing the 
variation within each class (Fig. 5). In addition to its 
classification capabilities, discriminant analysis is often 
applied as a dimensionality reduction technique during 
data preprocessing, particularly in machine learning and 
pattern recognition tasks. By projecting high-dimensional 
data into a lower-dimensional space, it enhances class 
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separability and facilitates the modeling of inter-group 
differences [19, 20]. 

 

 
Fig. 5. DAC structure. 

c) Nearest neighbors K classifier − KNNC 
 Classifier, a supervised learning algorithm, is known 

for its ease of implementation. Its simplicity and efficiency 
are additional advantages. It operates by identifying the 
data points in the training set that are closest to a given 
input. The classification or prediction is then made based 
on the majority class among the nearest neighbors or, in 
the case of regression, by averaging their values (Fig. 6).  

Fig. 6 represents the classification process. The green 
dot must be classified by observing its nearest neighbors 
within a defined radius. Since most of the closest 
neighbors are red triangles, the green dot would be 
classified in that category. 

KNNC can be applied to both classification tasks 
involving discrete labels and regression problems 
involving continuous outputs. Its core principle relies on 
comparing the input sample to previously seen instances 
and assigning a label based on the most similar—or nearest 
—examples encountered during training [21]. 

 

 
Fig. 6. KNNC structure. 

d) Vector support machines – SVM 
 Based on the principle of identifying the optimal 

hyperplane that maximally separates two classes in a 
binary classification task (Fig. 7) [24]. 

Fig. 7 represents a classifier that separates three classes 
using hyperplanes. Each dashed line shows possible 
decision boundaries. The SVM algorithm constructs 
multiple hyperplanes to maximize the margin between 
each pair of classes, thus achieving the best possible 
separation in the feature space. 

The algorithm aims to maximize the margin—the 
distance between the hyperplane and the nearest data 
points from each class—to improve generalization 
performance. In its standard form, SVM is inherently 
designed for binary classification and does not natively 
handle multi-class problems. However, multi-class 
classification can be achieved by decomposing the original 
task into multiple binary classification subproblems and 

applying the same margin-maximizing strategy in each 
case [22, 23]. 

 

 
Fig. 7. SVM structure. 

e) Decision-making 
Once the classifier identifies the figures corresponding 

to high, medium, and low traffic levels, a spectrum access 
decision must be made. To guide this process, a “Ranking” 
vector is constructed by assigning scores to each traffic 
zone to identify channels offering the highest number of 
spectral opportunities. Channels with the highest scores 
associated with low traffic occupy the top positions in the 
Ranking vector and are prioritized for SU data 
transmission. If a selected channel is found to be occupied, 
the system proceeds to the next best-rated option. The 
Ranking vector uses temporal and frequency information 
from figures with low and medium traffic. Data from high-
traffic classifications are excluded, as such zones represent 
areas with limited spectral availability and are, therefore, 
unsuitable for efficient spectrum use. 

D. Stage 4: Output − Evaluation Metrics 

To evaluate the decision-making process through the 
four machine learning classification techniques, four 
performance metrics are established. Table IV provides 
each metric's name, description, and classification type. 
The classification indicates whether the metric is a benefit 
type (where higher values are preferable) or a cost type 
(where lower values are more desirable). 

TABLE IV. PERFORMANCE METRICS 

Name Description Guy 

Cumulative average 
handoff number 

It is the total number of handoffs 
performed 

Cost 

Cumulative average 
number of failed 
handoffs 

It is the handoff number that the 
SU could not materialize 
because it found the respective 
spectral opportunities occupied 

Cost 

Average bandwidth 
This is the average bandwidth 
used by the SU 

Benefit 

Cumulative average 
delay 

It is the total average time 
experienced by the SU 

Cost 

E. Model Training and Validation Characteristics 

The model training and validation process was carried 
out using cross-validation, a technique widely used in 
machine and deep learning classification problems. 

A total of 500 traffic figures were used for the training 
and validation of each classifier, of which 70% were used 
for training (350 figures) and 30% for validation (150 
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figures). It is important to clarify that the 500 figures were 
used only for cross-validation of the classifiers.  

Prior to this process, the input database was analyzed 
statistically to analyze the information and filter outliers, 
thus ensuring the quality of the data used in training.  

Regarding the classification techniques, the classifiers 
were selected based on their complementarity in terms of 
performance across different data types. This combination 
allowed for evaluating the performance of rule-based 
approaches, statistical models, proximity methods, and 
optimal margin techniques, thus providing a 
comprehensive comparative analysis.  

It is worth noting that the classifiers were implemented 
using the functions available in the Matlab-R2021b 
toolbox, which allowed for efficient integration of the 
techniques without the need to program them from scratch. 
This choice guarantees the robustness and efficiency of the 
applied methodology by leveraging optimized and 
validated tools within the Matlab-R2021b environment. 

III. RESULTS 

This section presents and discusses the results obtained 
from simulations. The experiments used MathWorks 
Matlab-R2021b as the simulation environment, running on 
a 64-bit Microsoft Windows 10 operating system. 

A. Simulation Parameters 

Table V presents the simulation parameters and 
respective settings used to evaluate spectral traffic 
classifiers in CRN using deep learning and machine 
learning techniques. 

TABLE V. SIMULATION PARAMETERS AND SETTINGS 

Parameter Setting 
Simulation time 9 minutes 
Deep Network AlexNet 

Multiclass 
classification 
strategy 

*Binary Decision Tree (BDT) 
*Discriminant Analysis Classifier (DAC) 
*K-Nearest Neighbors (KNNC) 
*Support Vector Machines (SVM) 

Type Traffic Wi-Fi 5GHz 
Threshold −79 dBm 

In this research, two comparative analyses are 
performed. The first analyzes the training and validation 
process of each of the classification techniques, using the 

confusion matrix as an evaluation tool. To ensure a fair 
comparison, all classifiers are evaluated under the same 
scenario, corresponding to the same information in the 
spectral power matrix.  

The second analysis focuses on spectral mobility, 
evaluated by classifying traffic levels. This analysis allows 
the calculation of the evaluation metrics for each classifier: 
Cumulative Average Handoff Number, Cumulative 
Average Number of Failed Handoffs, Average Bandwidth, 
and Cumulative Average Delay.  

Spectral mobility is associated with the channel changes 
that an SU must perform. A search algorithm is 
implemented for its analysis, which is described in detail 
in Ref. [25]. This algorithm performs column hops in the 
spectral matrix until it finds an available channel in the 
availability matrix. Column and row hops, search time, and 
availability are stored to quantify the spectral handoff and 
failed handoff metrics. 

An assertive decision-making process directly impacts 
the Bandwidth and Delay metrics, as the total number of 
handoffs performed influences both and failed during the 
transmission time. The methodology and mathematical 
model used to calculate these metrics are described in 
detail in Ref. [25]. This research generates the availability 
matrix from a threshold criterion defined in Refs. [26, 27]. 
According to the data used, the transmission time 
corresponds to nine minutes (9 m). 

The authors developed the simulation tool, which is 
registered with the National Copyright Office of the 
Colombian Ministry of the Interior. The Universidad 
Distrital Francisco José de Caldas holds the property rights 
to this work. The publication associated with the simulator 
is presented in Ref. [28]. 

B. Algorithm Performance 

The confusion matrix was used as a performance metric. 
Figs. 8−11 show the confusion matrix obtained for the 
BDT, DAC, KNNC and SVM classifiers. From the 
analysis of the results, it is identified that the best 
prediction is for the high and medium traffic levels, with a 
correct classification of 100% for the two traffics with the 
four techniques, except for BDT in high traffic, where a 
correct classification of 90% is presented. For all four 
techniques, low traffic has a correct ranking of 68% for 
KNNC and SVM and 76% for BDT and DAC. 

 

 
Fig. 8. Confusion matrix for BDT.  
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Fig. 9. Confusion matrix for DAC. 

 
Fig. 10. Confusion matrix for KNNC. 

 
Fig. 11. Confusion matrix for SVM. 

C. Evaluation Metrics Decision Making Process 

As results, the four-performance metrics obtained for 
the decision model using feature extraction are presented. 
Figs. 12−14 presents respectively, for the four classifiers, 
the number of cumulative average handoffs, the number of 
cumulative average failed handoffs, and the average 
bandwidth during a 9 m transmission.  

Figs. 12−13, being cost metrics, show that the SVM 
classifier presents the best performance with the lowest 
number of cumulative average handoffs and cumulative 
average failed handoffs. The second-best classifier is BDT 
followed by KNNC, finally the lowest performance is 
obtained by DAC. 

 
Fig. 12. Cumulative number of total handoffs. 
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Fig. 13. Cumulative number of failed handoffs. 

Fig. 14, as benefit metrics, shows that the KNNC and 
DAC classifiers present the worst performance with the 
highest average bandwidth during the 9 ms of transmission. 

The SVM during the range of 0 m–6 m presents the best 
performance with the highest average bandwidth, for the 
remaining time range BDT obtained the best performance. 

 

 

Fig. 14. Average bandwidth. 

Fig. 15 shows the average delay during a transmission 
of 9000 kB for the four classifiers. As it is a cumulative 
cost metric, it is observed that the SVM classifier presents 
the best performance with the lowest total average time 

experienced by the SU, the second-best classifier is BDT 
followed by KNNC, finally the lowest performance is 
obtained by DAC.

 

Fig. 15. Average delay. 

D. Analysis of Results and Discussion 

According to the results obtained, the respective 
analysis of results and their respective discussion are 
presented below. 

1) Analysis of results 

Table VI summarizes the cumulative metrics recorded 
over 9 ms. The values for the number of failed handoffs 
and total handoffs represent the overall counts during this 
interval. In the case of delay, the reported value 
corresponds to the average total transmission time 
experienced by the Secondary User (SU) while 
transmitting 9,000 kB of data. 
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TABLE VI. TOTAL COST METRICS FOR CLASSIFIERS 

Sorter 
Total 
handoffs 

Failed handoffs 
Average 
Delay 

BDT 4345 2056 681.08 
DAC 8718 4164 1353.20 
KNNC 5693 2654 893.18 
SVM 3025 1431 479.07 

 
According to the results obtained in Table VI, Fig. 16 is 

generated. The figure shows that the SVM classifier 
showed the best overall performance across all three-cost 
metrics. With 3,025 handoffs, SVM maintains the lowest 
number among the classifiers, suggesting an efficient and 
conservative strategy for managing connection changes. In 
comparison, BDT increases the number of handoffs by 
1.44 times, KNNC by 1.88 t, and DAC reaches the highest 
value, with a 2.88-fold increase compared to SVM. 

 This same pattern is evident in failed handoffs, where 
SVM again has the fewest (1,431), while BDT, KNNC, 
and DAC show increases of 1.44 s, 1.85 s, and 2.91 s, 
respectively. These results indicate that SVM reduces the 
number of handoffs and improves their effectiveness by 
minimizing the number of failed handoffs. 

Regarding average delay, SVM is positioned as the most 
efficient classifier with a value of 479.07 ms. In contrast, 
BDT shows a 1.42-fold increase, KNNC a 1.86-fold 
increase, and DAC achieves the highest value with a 2.82-
fold increase compared to SVM. This advantage in terms 
of latency reinforces SVM’s superiority in making fast and 
effective decisions during the handoff process, which is 
critical for maintaining quality of service in mobile 
networks.  

Overall, the results position SVM as the most efficient 
classifier for the scenarios proposed in this research.

 

 

Fig. 16. Comparison of the performance of the classifiers in terms of cost metrics. 

2) Discussion 
The results show that the SVM classifier significantly 

improved the efficiency of the CRN by reducing both the 
total number of handoffs and the number of failed handoffs. 
This reduction in the metrics associated with operating 
costs suggests that the decision-making process was 
improved, thus promoting more stable communication for 
the SUs by reducing channel changes and the interference 
generated.  

Regarding the key quality of service indicators, 
Bandwidth and Delay reflect the CRN’s reliability level. 
An increased available bandwidth was observed, 
indicating that the SUs could more efficiently exploit 
spectral opportunities, maximizing adequate transfer 
capacity without affecting primary users. On the other 
hand, Delay, associated with the spectral handoff process, 
tends to impact system performance when it increases 
negatively. In this context, the decrease recorded in this 
metric represents a substantial improvement in the overall 
network performance. 

E. Real-World Applications 

CRNs improve the use of the radio spectrum, driving 
economic and social development. They facilitate access 
to broadband internet in underserved communities, enable 
e-health solutions in the healthcare sector, and deploy 

smart sensors for autonomous monitoring in production 
environments. 

IV. CONCLUSION 

CR provides various solutions through dynamic 
spectrum utilization, making it a technology of significant 
interest in academic and industrial domains. This study 
focuses on spectral occupancy classification to support 
decision-making, employing feature extraction techniques 
in combination with machine learning algorithms. Feature 
extraction is performed through the activation layers of a 
convolutional neural network previously trained. With the 
characteristics obtained, four machine learning classifiers 
(BDT, DAC, KNNC, and SVM) are trained, the objective 
of the classification is to identify traffic levels that allow 
estimating the characterization of the PU to carry out a 
correct decision-making process. To evaluate the intake 
process, three cost metrics and one benefit metric were 
used, for the metrics the analysis of results showed that the 
SVM classifier presents the best performance, followed by 
KNNC and DAC, the lowest performance with the poorest 
performance indicators is obtained by BDT. 
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