
Enhancing the Performance of Optimization
Algorithms for Offloading Tasks in Mobile-Edge

Computing Networks

Yohanes Armenian Putra 1 and Hilal Hudan Nuha 2,*
1 Telkom Indonesia, Indonesia

2 School of Computing, Telkom University, Bandung, Indonesia
Email: yohanesar@student.telkomuniversity.ac.id (Y.A.P.); hilalnuha@ieee.org (H.H.N.)

*Corresponding author

Abstract—In the rapidly evolving field of Mobile-Edge
Computing (MEC), the demand for efficient Deep
Reinforcement Learning (DRL) algorithms is critical due to
the constraints of computational resources and the need for
real-time processing. This paper introduces Optimized
Nadam, an enhanced variant of the Nadam optimizer,
specifically designed to address these challenges. By
eliminating the computationally intensive product term,
Optimized Nadam significantly reduces computational
overhead while ensuring robust performance across varying
load conditions. Experimental results demonstrate that
Optimized Nadam achieves substantial reductions in Total
Time Consumed, outperforming standard Nadam by up to
37.6% under typical load scenarios. Furthermore, the
algorithm consistently exhibits a lower Average Time Per
Channel, indicating superior convergence speed. Optimized
Nadam maintains a high Normalized Computation Rate in
dynamic environments with fluctuating load conditions,
closely aligning with Nadam, thus showcasing its resilience
and adaptability. The observed reduction in training loss
across all test scenarios underscores Optimized Nadam’s
efficiency in achieving rapid and stable convergence. These
findings position Optimized Nadam as a viable alternative to
traditional optimization algorithms such as Adam and
Nadam, particularly in resource-constrained MEC
deployments where computational efficiency and real-time
processing are paramount. 

Keywords—deep reinforcement learning, mobile-edge
computing, Nadam, optimization algorithms, optimized
Nadam

I. INTRODUCTION

Mobile-Edge Computing (MEC) has emerged as a
crucial paradigm in modern network architectures,
enabling low-latency and high-bandwidth services by
offloading computational tasks from mobile devices to
edge servers [1, 2]. MEC’s ability to bring computation
closer to the data source helps reduce delay, which is
critical for real-time applications such as autonomous
driving, augmented reality, and smart cities [3, 4].

Manuscript received October 9, 2024; revised December 31, 2024;
accepted March 4, 2025; published June 13, 2025.

However, the dynamic nature of these applications
presents significant challenges in optimizing offloading
decisions, particularly in resource-constrained
environments.

Recent advancements in Deep Reinforcement Learning
(DRL) have shown promise in addressing these challenges,
as DRL can effectively handle complex environments with
varying network conditions [5, 6]. The Nadam optimizer,
which integrates Nesterov momentum into the Adam
algorithm [7], has been widely used in DRL due to its
robustness and convergence properties. The Adam
algorithm, introduced by Kingma and Ba, is known for its
adaptive learning rate and has become a standard in
training deep learning models [8]. However, the
computational complexity associated with Nadam,
particularly in resource-constrained environments like
MEC, poses challenges. The overhead introduced by the 𝑢
product term in Nadam increases both time and
computational power required for training models [9].
Here, 𝑢 represents the momentum term, which is defined
mathematically as follows:

𝑢௧ = 𝛽ଵ𝑚௧ + (1 − 𝛽ଵ)𝑔௧ (1)

TABLE I. LIST OF NOTATIONS

Symbol Description
𝑢௧ Momentum term at time step 𝑡
𝑚௧ First moment estimate at time step 𝑡
𝑔௧ Gradient at time step 𝑡
𝛽ଵ Exponential decay rate for the first moment estimates
𝛽ଶ Exponential decay rate for the second moment estimates
𝑣௧ Second moment estimate at time step 𝑡

𝑚௧ is the first moment estimate, 𝑔௧ is the gradient at time
step and 𝛽ଵ is the exponential decay rate for the first
moment estimates. Table I provides a list of necessary
symbols to clarify the notations used throughout this paper.
To address these issues, this paper introduces Optimized
Nadam, an optimized variant of Nadam that eliminates the

Journal of Communications, vol. 20, no. 3, 2025

324doi:10.12720/jcm.20.3.324-330

u product component. This modification aims to reduce
computational overhead while maintaining performance,
thus making it more suitable for MEC environments.
Optimized Nadam seeks to enhance the efficiency of DRL
applications in MEC by streamlining the optimization
process, ultimately contributing to improved real-time
decision-making capabilities in dynamic network
scenarios.

II. SYSTEM MODEL AND METHODS

The core of this research lies in modifying the Nadam
optimizer by removing the u product term, which is
traditionally used for bias correction in the momentum
update equation. The original Nadam algorithm updates
parameters. 𝜃௧ାଵ using the following equations:

𝑚௧ = 𝛽ଵ. 𝑚௧ିଵ + (1 − 𝛽ଵ). 𝑔௧ , (2)

𝑣௧ = 𝛽ଶ. 𝑣௧ିଵ + (1 − 𝛽ଶ). 𝑔௧
ଶ , (3)

𝑚ෝ௧ =
𝑚௧

1 − 𝛽ଵ
௧ , (4)

𝑣ො௧ =
𝑣௧

1 − 𝛽ଶ
௧ , (5)

𝜃௧ାଵ = 𝜃௧ − 𝛼.
𝑚ෝ ௧

ඥ𝑣ො௧ + 𝜖
 , (6)

where 𝑚௧ and 𝑣௧ are the first and second moment
estimates, and 𝛽ଵ, 𝛽ଶ are decay rates [9, 10]. In Optimized
Nadam, the u product term, which affects the bias
correction, is removed, simplifying the update rule and
reducing computational complexity. This modification is
particularly beneficial in MEC environments, where
computational resources are limited and efficiency is
paramount [8, 11].

The u product term is removed from the Nadam
optimizer by directly modifying the momentum update
equation. In the original Nadam, the momentum term u_t
is defined as in Eq. (1). By eliminating this term, the
update rule becomes more straightforward, reducing the
number of computations required during each iteration.
This simplification leads to lower overhead, particularly in
environments where computational resources are
constrained.

A. System Workflow and Flowchart

The workflow of the system implemented is shown in
Fig. 1. It outlines the key stages in optimizing offloading
decisions in MEC using DRL.

The workflow begins with Data Loading, where input
data, including channel gains and other network
parameters, is processed to train the DRL model. Data
Processing involves normalization and batching for
efficient learning.

The Model Initialization (MemoryDNN) phase sets up
the MemoryDNN architecture. Optimizer Configuration
configures the optimization algorithms, including
Optimized Nadam, for training. The Model Training

process involves iterative training using the preprocessed
data and configured algorithms.

The Offloading Decision Process (DROO Algorithm)
uses DRL to determine the optimal offloading strategy
based on real-time network conditions. This decision feeds
into the Resource Allocation Optimization, where network
resources are dynamically allocated.

Memory Management ensures effective memory use,
while Model Evaluation assesses performance. The Model
Saving step preserves the trained model, and Validation
Testing ensures it generalizes well to unseen data.

Fig. 1. System workflow for MEC offloading optimization [12].

B. System Design

The system design is illustrated in Fig. 2, showing the
components and their interactions within the MEC
environment.

Key components include:
1) Channel Gain Input (ℎ௧): Wireless channel gain

for each time frame.
2) Deep Neural Network (DNN): Processes input

data, generating relaxed offloading actions.
3) Quantization: Converts DNN-generated actions

into discrete binary actions.
4) Convex Optimization Solver: Computes Q-values

for possible actions.
5) Replay Memory: Stores past experiences for

model improvement.
6) Training Samples and Batch Sampling:

Randomly selects samples for training.
7) Offloading Policy Update: Updates policy based

on training results.
The data used in this research is sourced from real-time

network monitoring systems that provide online streams of
channel gain and other relevant parameters. The
characteristics of the data include:

Journal of Communications, vol. 20, no. 3, 2025

325

 Channel Gain (ℎ௧): This represents the wireless
channel conditions at each time frame, which is
critical for making informed offloading decisions.
The channel gain data is typically collected in real-
time from network sensors or simulation
environments that model wireless communication.

 Network Parameters: Additional features such as
latency, bandwidth, and user demand are also
collected to provide a comprehensive view of the
network state. These parameters are essential for
training the DRL model to optimize offloading
strategies effectively.

Fig. 2. System design for DRL-Based offloading in MEC [12].

The data is continuously streamed and compiled into a
structured format suitable for analysis. Each data point
includes timestamps, channel gain values, and associated
network parameters, allowing for dynamic updates and
real-time decision-making.

The flow of inputs through these components is crucial
for the system's functionality. The channel gain input feeds
directly into the DNN, which processes this information to
generate potential offloading actions. These actions are
then quantized and evaluated by the convex optimization
solver, which determines the best course of action based
on the computed 𝑄-values. The results are stored in replay
memory, allowing continuous learning and adaptation of
the offloading policy.

C. Implementation of Deep Reinforcement Learning

The implementation of DRL in this research follows a
systematic approach, which includes the following steps:

1) Data Acquisition: The dataset used in this research is

sourced from the DROO GitHub repository. This
dataset has already undergone data cleaning and
preprocessing, ensuring that it is free from
inconsistencies and noise. The data includes relevant
features such as channel gain and other network
parameters, which are essential for training the DRL
model.

2) Model Initialization: The DRL model is initialized
with a Deep Neural Network (DNN) architecture. The
parameters of the DNN are set randomly at the
beginning to allow for effective learning during
training.

3) Training Process: The model is trained iteratively
using the preprocessed dataset. During each iteration,
the model learns to optimize offloading decisions
based on the input features, adjusting its parameters to
minimize the loss function.

4) Offloading Decision Making: The trained model
utilizes the Online DROO Algorithm to make real-
time offloading decisions based on the current
network conditions. This involves generating relaxed
offloading actions, quantizing them into discrete
actions, and selecting the optimal action based on
computed Q-values.

5) Model Evaluation: After training, the model's
performance is evaluated using metrics such as Total
Time Consumed, Average Time Per Channel, and
Training Loss. This evaluation helps in assessing the
effectiveness of the DRL approach in optimizing
offloading tasks in Mobile-Edge Computing
environments.

6) Continuous Learning: The model incorporates a
mechanism for continuous learning, where it updates
its knowledge based on new data and experiences
gathered during operation. This adaptability is crucial
for maintaining performance in dynamic network
conditions.

D. Online DROO Algorithm

To evaluate the effectiveness of Optimized Nadam in a
DRL context, we implemented an Online DROO
Algorithm designed for offloading decisions in MEC. The
algorithm dynamically adjusts offloading based on real-
time conditions. The steps are outlined below:

Journal of Communications, vol. 20, no. 3, 2025

326

Algorithm 1 Online DROO Algorithm for Offloading
Decision
1: Input: Wireless channel gain ℎ௧ at each time frame t, number

of quantized actions K
2: Output: Offloading allocation 𝑥௧

∗ for each time
frame t

3: Initialize the DNN with random parameters 𝜃ଵ and empty
memory;

4: Set iteration number M and training interval δ;
5: for t = 1, 2, . . . , M do
6: Generate a relaxed offloading action 𝑥෤௧ = 𝑓ఏ(ℎ௧);
7: Quantize 𝑥෤௧ into K binary actions {𝑥௞} = 𝑔௄(𝑥෤௧);
8: Compute 𝑄 × (ℎ௧, 𝑥௞)for all [𝑥௞] by solving (P2);
9: Select best action 𝑥௧

∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑄 × (ℎ௧, 𝑥௞);
10: Update memory by adding (ℎ௧, 𝑥௧

∗);
11: if t mod δ = 0 then
12: Uniformly sample a batch of dataset

{(ℎఛ, 𝑥ఛ
∗)} 𝜖 𝑇(𝜏) from memory;

13: Train DNN with {(ℎఛ, 𝑥ఛ
∗)} 𝜖 𝑇(𝜏) and update 𝜃௧ using

other DRL algorithm;
14: end if
15: end for

1) Explanation of the online DROO algorithm

The Online DROO Algorithm optimizes offloading
decisions in Mobile-Edge Computing (MEC) using Deep
Reinforcement Learning (DRL). The algorithm iteratively
learns from real-time network conditions to make optimal
offloading decisions. Here’s a brief overview of the key
steps:

1) Input: The algorithm takes the wireless channel gain
ht at each time frame and the number of quantized
actions K, which define the offloading decision space.

2) Output: The output is the optimal offloading
allocation 𝑥௧

∗ for each time frame, determining
whether tasks should be processed locally or
offloaded to the edge server.

3) Initialization: The Deep Neural Network (DNN) is
initialized with random parameters 𝜃ଵ , and the
memory is set to empty. The DNN approximates Q-
values to guide the decision-making process.

4) Iteration Loop: The algorithm runs for M iterations,
during which it:

 Generates a relaxed offloading action 𝑥෤௧ based on
ℎ௧.

 Quantizes 𝑥෤௧ into K binary actions.
 Computes 𝑄 ∗ (ℎ௧ , 𝑥௞) for each action.
 Selects the best action 𝑥௧

∗ that maximizes the Q-
value.

 Updates memory with the state-action pair (ℎ௧ , 𝑥௧
∗).

 Trains the DNN every δ iteration using samples
from memory to adapt to network changes.

5) Completion: After M iterations, the DNN has learned
an optimal offloading policy that dynamically adapts
to real-time conditions.

This algorithm enables real-time, dynamic offloading
decisions in MEC, improving performance and reducing
computational overhead by using an optimized version of
the Nadam algorithm (Optimized Nadam). The iterative
training process and use of quantized actions make the
algorithm both flexible and robust, suitable for deployment
in diverse MEC environments.

III. PERFORMANCE EVALUATION

The performance of Optimized Nadam was evaluated
through simulations under various load conditions. The
experiments focused on Total Time Consumed, Average
Time Per Channel, and Training Loss, comparing
Optimized Nadam with Adam, Adadelta, Adagrad,
Adamax, Nadam, and Ftrl.

A. Normal Load Conditions

Under normal load conditions, Optimized Nadam
showed a significant reduction in Total Time Consumed
compared to Nadam, especially in scenarios wth 10,000
and 5,000 iterations. The reduction in total time is
attributed to the removal of the uproduct term, which
streamlines the computation process. The results are
presented in Table II and visually depicted in Fig. 3.

Fig. 3. Total time consumed by algorithms under normal load.

Journal of Communications, vol. 20, no. 3, 2025

327

TABLE II. TOTAL TIME CONSUMED BY ALGORITHMS UNDER NORMAL

LOAD (IN SECONDS)

Algorithms/ Iteration 10,000 5,000 4,000 2,000

Adam 255.975 144.652 205.283 98.278
Adadelta 311.818 174.661 208.503 110.094
Adagrad 353.660 181.412 207.054 110.296
Adamax 261.482 134.820 181.488 91.778

Ftrl 331.055 189.276 227.085 117.891
Nadam 250.474 144.584 173.379 94.206

Optimized Nadam 260.100 138.481 108.251 62.008

Table II clearly shows that Optimized Nadam

consistently reduced the total computation time as
compared to the standard Nadam and Adam algorithms,
particularly under lower iteration counts. For instance,
with 4,000 iterations, Optimized Nadam completed the
task in 108.251 seconds, a marked improvement over
Nadam’s 173.379 seconds and Adam’s 205.283 seconds.
This demonstrates the efficiency gained by modifying the

optimizer, which is especially critical in resource-
constrained MEC environments.

In terms of Average Time Per Channel, Optimized
Nadam consistently outperformed the other algorithms,
particularly in high iteration scenarios. The absence of the
uproduct term in Optimized Nadam allows it to achieve
faster convergence, resulting in lower average time per
channel. The detailed data is shown in Table II, and the
corresponding bar chart is displayed in Fig. 4.

Table III highlights that Optimized Nadam consistently
achieves a lower average time per channel across various
iterations. For example, at 4,000 iterations, Optimized
Nadam had an average time per channel of 0.0271 seconds,
significantly lower than Nadam’s 0.0433 seconds and
Adam’s 0.0513 seconds. This reduction in time per
channel not only demonstrates the efficacy of the
Optimized Nadam algorithm but also underscores its
suitability for real-time applications where every
millisecond counts.

Fig. 4. Average time per channel for algorithms under normal load.

Fig. 5. Normalized computation rate under alternate load.

Journal of Communications, vol. 20, no. 3, 2025

328

TABLE III. AVERAGE TIME PER CHANNEL FOR ALGORITHMS UNDER

NORMAL LOAD (IN SECOND)

Algorithms/ Iteration 10,000 5,000 4,000 2,000

Adam 0.0256 0.0289 0.0513 0.0491
Adadelta 0.0312 0.0349 0.0521 0.0550
Adagrad 0.0354 0.0363 0.0518 0.0551
Adamax 0.0261 0.0270 0.0454 0.0459

Ftrl 0.0331 0.0379 0.0568 0.0589
Nadam 0.0250 0.0289 0.0433 0.0471

Optimized Nadam 0.0260 0.0277 0.0271 0.0310

In summary, both the Total Time Consumed and

Average Time Per Channel metrics indicate that
Optimized Nadam provides a substantial performance
boost over the other algorithms, particularly in scenarios
involving lower iteration counts, which are more common
in practical MEC environments.

B. Alternate Load Conditions

Optimized Nadam demonstrated robust performance by
maintaining a stable Normalized Computation Rate in
alternate load conditions, where the network load
fluctuates. As shown in Fig. 5, Optimized Nadam closely

matched Nadam and outperformed Adam in most cases,
highlighting its adaptability in dynamic environments.

The analysis of training loss further substantiates the
effectiveness of Optimized Nadam. As illustrated in Fig. 6,
the training loss decreases rapidly and remains stable,
suggesting that removing the u product term does not
hinder the optimizer’s ability to minimize loss. This trend
is evident across all iterations tested, where Optimized
Nadam consistently demonstrates lower or comparable
loss values compared to Nadam and Adam, reinforcing its
efficiency in handling dynamic load conditions.

TABLE IV. NORMALIZED COMPUTATION RATE UNDER ALTERNATE

LOAD

Algorithms/ Iteration 10.000 5.000 4.000 2.000
Adam 0.9992 0.9988 0.9985 0.9967

Adadelta 0.9351 0.8957 0.9267 0.9042
Adagrad 0.9800 0.9753 0.9707 0.9526
Adamax 0.9818 0.9953 0.9957 0.9885

Ftrl 0.9224 0.9418 0.9269 0.9408
Nadam 0.9992 0.9992 0.9984 0.9941

Optimized Nadam 0.9970 0.9979 0.9969 0.9955

Fig. 6. Training loss under alternate load conditions.

IV. DISCUSSION

The experiments highlight the effectiveness of
Optimized Nadam in Mobile-Edge Computing (MEC)
environments, particularly under varying load conditions.
This section summarizes key findings and discusses their
implications for MEC deployments.

A. Reduction in Computational Complexity

Optimized Nadam successfully reduces the
computational complexity associated with the original
Nadam algorithm, primarily by eliminating the u product
term. As shown in Tables II and II, this modification
significantly reduces Total Time Consumed and Average
Time Per Channel across all iteration scenarios. For
example, at 4,000 iterations, Optimized Nadam completed

the task 37.6% faster than Nadam, demonstrating its
efficiency. This enhanced convergence speed is
particularly crucial for real-time applications in MEC
environments.

B. Robustness under Fluctuating Load Conditions

Optimized Nadam also demonstrated strong
performance under fluctuating load conditions,
maintaining stable Normalized Computation Rates that
closely matched those of Nadam, as shown in Table III.
For instance, at 10,000 iterations, Optimized Nadam
achieved a computation rate of 0.9970, only slightly lower
than Nadam’s 0.9992, indicating robust performance even
in dynamic environments. This stability ensures that MEC
systems can consistently deliver low-latency services even
when network conditions vary.

Journal of Communications, vol. 20, no. 3, 2025

329

C. Training Loss and Convergence

The algorithm’s ability to minimize training loss was
another key area of improvement. As seen in Figure 6,
Optimized Nadam exhibited a rapid and stable decrease in
training loss, often outperforming both Nadam and Adam.
This suggests that the simplifications introduced by
Optimized Nadam do not compromise its optimization
capabilities; rather, they enhance its ability to achieve
faster and more stable convergence, which is particularly
valuable in resource-constrained MEC environments.

D. Implications for MEC Deployments

The consistent performance improvements provided by
Optimized Nadam make it a strong candidate for real-
world MEC applications, where computational efficiency
and rapid response times are critical. Its ability to reduce
overhead while maintaining high performance makes it
suitable for large-scale deployments, where scalability and
efficiency are paramount. Additionally, its robustness
under fluctuating load conditions ensures consistent
service levels, supporting a wide range of applications
from low-latency communication to high-throughput data
processing.

V. CONCLUSION

Optimized Nadam is an optimized variant of the Nadam
algorithm, aimed at reducing computational complexity
while maintaining performance, specifically for Mobile-
Edge Computing (MEC) environments. Through extensive
evaluations, Optimized Nadam demonstrated its ability to
outperform traditional optimizers like Adam and Nadam
regarding time efficiency and stability. Optimized Nadam
achieved significant reductions in both Total Time
Consumed and Average Time Per Channel under various
load conditions, while maintaining a high Normalized
Computation Rate even in dynamic network environments.
The removal of the u product term streamlined the
computation process without negatively affecting the
optimizer’s performance, making it highly suitable for
real-time, resource-constrained MEC applications.

The analysis of training loss further underscored the
effectiveness of Optimized Nadam, showcasing rapid
convergence and stable loss minimization across different
scenarios. The algorithm’s adaptability under fluctuating
load conditions highlights its robustness, ensuring
consistent service levels and reduced latency, critical
factors in MEC deployments.

A. Future Directions

Future research could further enhance Optimized
Nadam by integrating adaptive mechanisms that
dynamically adjust its parameters in response to real-time
network conditions. This would improve its adaptability in
highly dynamic MEC environments. Additionally,
exploring the application of Optimized Nadam in other
deep learning contexts, such as large-scale data centers or
distributed AI systems, could extend its utility and provide
further insights into its versatility. In conclusion,
Optimized Nadam presents a compelling solution for

optimizing Deep Reinforcement Learning (DRL) models
in MEC environments, offering a well-balanced approach
to improving both computational efficiency and
performance. Its promising results lay a strong foundation
for future work in both MEC-specific scenarios and
broader deep-learning applications.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

YAP develops the program and runs the experiments;
HHN develops the theoretical methods; both authors had
approved the final version.

FUNDING

The financial support of the Indonesia’s DRTPM,
DITJEN DIKTIRISTEK, KEMDIKBUDRISTEK through
grant 106/E5/PG.02.00.PL/2024, 043/SP2H/RT-MONO/
LL4/2024, and 077/LIT07/PPMLIT/ 2024 is hereby
acknowledged and appreciated.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp.
450–465, 2018. doi: 10.1109/JIOT.2017.2750180

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] X. Wang, J. Li, Z. L. Ning, Q. Song, L. Guo, S. Guo, and M. S.
Obaidat, “Wireless powered mobile edge computing networks: A
survey,” ACM Comput. Surv.. 2023. doi: 10.1145/3579992

[4] J. Z. K. H. Y. Mao, C. You, and K. B. Letaief, “Mobile edge
computing: Survey and research outlook,” IEEE Commun. Surv.
Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[5] X. Zhang, D. Wu, and D. Niyato, “Droo: Deep reinforcement
learning-based online offloading in mobile-edge computing with
proportional resource allocation,” IEEE Trans. Wireless Commun.,
vol. 19, no. 10, pp. 6884–6899, 2020.

[6] Z. Akhavan et al., “Deep reinforcement learning for online latency
aware workload offloading in mobile edge computing,” in Proc.
GLOBECOM 2022-2022 IEEE Global Communications
Conference, 2022, pp. 2218–2223.

[7] T. Dozat, “Incorporating Nesterov momentum into Adam,” in Proc.
Int. Conf. Learn. Represent., 2016, pp. 1–4.

[8] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, pp. 2121–2159, 2011.

[11] Y. Fan and X. Cai, “A deep reinforcement approach for
computation offloading in MEC dynamic networks,” EURASIP J.
Adv. Signal Process., vol. 2024, no. 1, p. 48, 2024. doi:
10.1186/s13634-024-01142-2

[12] L. Huang, S. Bi, and Y. J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, 2020. doi: 10.1109/TMC.2019.2928811

Copyright © 2025 by the authors. This is an open access article
distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0).

Journal of Communications, vol. 20, no. 3, 2025

330

