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Abstract—In the rapidly evolving field of Mobile-Edge 
Computing (MEC), the demand for efficient Deep 
Reinforcement Learning (DRL) algorithms is critical due to 
the constraints of computational resources and the need for 
real-time processing. This paper introduces Optimized 
Nadam, an enhanced variant of the Nadam optimizer, 
specifically designed to address these challenges. By 
eliminating the computationally intensive product term, 
Optimized Nadam significantly reduces computational 
overhead while ensuring robust performance across varying 
load conditions. Experimental results demonstrate that 
Optimized Nadam achieves substantial reductions in Total 
Time Consumed, outperforming standard Nadam by up to 
37.6% under typical load scenarios. Furthermore, the 
algorithm consistently exhibits a lower Average Time Per 
Channel, indicating superior convergence speed. Optimized 
Nadam maintains a high Normalized Computation Rate in 
dynamic environments with fluctuating load conditions, 
closely aligning with Nadam, thus showcasing its resilience 
and adaptability. The observed reduction in training loss 
across all test scenarios underscores Optimized Nadam’s 
efficiency in achieving rapid and stable convergence. These 
findings position Optimized Nadam as a viable alternative to 
traditional optimization algorithms such as Adam and 
Nadam, particularly in resource-constrained MEC 
deployments where computational efficiency and real-time 
processing are paramount.  
 
Keywords—deep reinforcement learning, mobile-edge 
computing, Nadam, optimization algorithms, optimized 
Nadam  
 

I. INTRODUCTION 

Mobile-Edge Computing (MEC) has emerged as a 
crucial paradigm in modern network architectures, 
enabling low-latency and high-bandwidth services by 
offloading computational tasks from mobile devices to 
edge servers [1, 2]. MEC’s ability to bring computation 
closer to the data source helps reduce delay, which is 
critical for real-time applications such as autonomous 
driving, augmented reality, and smart cities [3, 4]. 
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However, the dynamic nature of these applications 
presents significant challenges in optimizing offloading 
decisions, particularly in resource-constrained 
environments. 

Recent advancements in Deep Reinforcement Learning 
(DRL) have shown promise in addressing these challenges, 
as DRL can effectively handle complex environments with 
varying network conditions [5, 6]. The Nadam optimizer, 
which integrates Nesterov momentum into the Adam 
algorithm [7], has been widely used in DRL due to its 
robustness and convergence properties. The Adam 
algorithm, introduced by Kingma and Ba, is known for its 
adaptive learning rate and has become a standard in 
training deep learning models [8]. However, the 
computational complexity associated with Nadam, 
particularly in resource-constrained environments like 
MEC, poses challenges. The overhead introduced by the 𝑢 
product term in Nadam increases both time and 
computational power required for training models [9]. 
Here, 𝑢 represents the momentum term, which is defined 
mathematically as follows: 

 
𝑢௧ =  𝛽ଵ𝑚௧ +  (1 −  𝛽ଵ)𝑔௧                       (1) 

TABLE I. LIST OF NOTATIONS 

Symbol Description 
𝑢௧ Momentum term at time step 𝑡 
𝑚௧ First moment estimate at time step 𝑡 
𝑔௧ Gradient at time step 𝑡 
𝛽ଵ Exponential decay rate for the first moment estimates 
𝛽ଶ Exponential decay rate for the second moment estimates 
𝑣௧ Second moment estimate at time step 𝑡 

 
𝑚௧  is the first moment estimate, 𝑔௧ is the gradient at time 
step and 𝛽ଵ  is the exponential decay rate for the first 
moment estimates. Table I provides a list of necessary 
symbols to clarify the notations used throughout this paper. 
To address these issues, this paper introduces Optimized 
Nadam, an optimized variant of Nadam that eliminates the 
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u product component. This modification aims to reduce 
computational overhead while maintaining performance, 
thus making it more suitable for MEC environments. 
Optimized Nadam seeks to enhance the efficiency of DRL 
applications in MEC by streamlining the optimization 
process, ultimately contributing to improved real-time 
decision-making capabilities in dynamic network 
scenarios. 

II. SYSTEM MODEL AND METHODS 

The core of this research lies in modifying the Nadam 
optimizer by removing the u product term, which is 
traditionally used for bias correction in the momentum 
update equation. The original Nadam algorithm updates 
parameters. 𝜃௧ାଵ using the following equations: 

𝑚௧ = 𝛽ଵ. 𝑚௧ିଵ + (1 − 𝛽ଵ). 𝑔௧  , (2) 

𝑣௧ = 𝛽ଶ. 𝑣௧ିଵ + (1 − 𝛽ଶ). 𝑔௧
ଶ , (3) 

𝑚ෝ௧ =
𝑚௧

1 − 𝛽ଵ
௧  , (4) 

𝑣ො௧ =
𝑣௧

1 − 𝛽ଶ
௧  , (5) 

𝜃௧ାଵ = 𝜃௧ − 𝛼.
𝑚ෝ ௧

ඥ𝑣ො௧ + 𝜖
 , (6) 

where 𝑚௧  and 𝑣௧  are the first and second moment 
estimates, and 𝛽ଵ, 𝛽ଶ are decay rates [9, 10]. In Optimized 
Nadam, the u product term, which affects the bias 
correction, is removed, simplifying the update rule and 
reducing computational complexity. This modification is 
particularly beneficial in MEC environments, where 
computational resources are limited and efficiency is 
paramount [8, 11]. 

The u product term is removed from the Nadam 
optimizer by directly modifying the momentum update 
equation. In the original Nadam, the momentum term u_t 
is defined as in Eq. (1). By eliminating this term, the 
update rule becomes more straightforward, reducing the 
number of computations required during each iteration. 
This simplification leads to lower overhead, particularly in 
environments where computational resources are 
constrained. 

A. System Workflow and Flowchart 

The workflow of the system implemented is shown in 
Fig. 1. It outlines the key stages in optimizing offloading 
decisions in MEC using DRL. 

The workflow begins with Data Loading, where input 
data, including channel gains and other network 
parameters, is processed to train the DRL model. Data 
Processing involves normalization and batching for 
efficient learning. 

The Model Initialization (MemoryDNN) phase sets up 
the MemoryDNN architecture. Optimizer Configuration 
configures the optimization algorithms, including 
Optimized Nadam, for training. The Model Training 

process involves iterative training using the preprocessed 
data and configured algorithms.  

The Offloading Decision Process (DROO Algorithm) 
uses DRL to determine the optimal offloading strategy 
based on real-time network conditions. This decision feeds 
into the Resource Allocation Optimization, where network 
resources are dynamically allocated. 

Memory Management ensures effective memory use, 
while Model Evaluation assesses performance. The Model 
Saving step preserves the trained model, and Validation 
Testing ensures it generalizes well to unseen data. 

 

 
Fig. 1. System workflow for MEC offloading optimization [12]. 

B. System Design 

The system design is illustrated in Fig. 2, showing the 
components and their interactions within the MEC 
environment. 

Key components include: 
1) Channel Gain Input (ℎ௧): Wireless channel gain 

for each time frame. 
2) Deep Neural Network (DNN): Processes input 

data, generating relaxed offloading actions. 
3) Quantization: Converts DNN-generated actions 

into discrete binary actions. 
4) Convex Optimization Solver: Computes Q-values 

for possible actions. 
5) Replay Memory: Stores past experiences for 

model improvement. 
6) Training Samples and Batch Sampling: 

Randomly selects samples for training. 
7) Offloading Policy Update: Updates policy based 

on training results. 
The data used in this research is sourced from real-time 

network monitoring systems that provide online streams of 
channel gain and other relevant parameters. The 
characteristics of the data include: 
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 Channel Gain (ℎ௧ ): This represents the wireless 
channel conditions at each time frame, which is 
critical for making informed offloading decisions. 
The channel gain data is typically collected in real-
time from network sensors or simulation 
environments that model wireless communication. 

 Network Parameters: Additional features such as 
latency, bandwidth, and user demand are also 
collected to provide a comprehensive view of the 
network state. These parameters are essential for 
training the DRL model to optimize offloading 
strategies effectively. 

 

 
Fig. 2. System design for DRL-Based offloading in MEC [12]. 

The data is continuously streamed and compiled into a 
structured format suitable for analysis. Each data point 
includes timestamps, channel gain values, and associated 
network parameters, allowing for dynamic updates and 
real-time decision-making. 

The flow of inputs through these components is crucial 
for the system's functionality. The channel gain input feeds 
directly into the DNN, which processes this information to 
generate potential offloading actions. These actions are 
then quantized and evaluated by the convex optimization 
solver, which determines the best course of action based 
on the computed 𝑄-values. The results are stored in replay 
memory, allowing continuous learning and adaptation of 
the offloading policy. 

C. Implementation of Deep Reinforcement Learning 

The implementation of DRL in this research follows a 
systematic approach, which includes the following steps: 
 
1) Data Acquisition: The dataset used in this research is 

sourced from the DROO GitHub repository. This 
dataset has already undergone data cleaning and 
preprocessing, ensuring that it is free from 
inconsistencies and noise. The data includes relevant 
features such as channel gain and other network 
parameters, which are essential for training the DRL 
model. 

2) Model Initialization: The DRL model is initialized 
with a Deep Neural Network (DNN) architecture. The 
parameters of the DNN are set randomly at the 
beginning to allow for effective learning during 
training. 

3) Training Process: The model is trained iteratively 
using the preprocessed dataset. During each iteration, 
the model learns to optimize offloading decisions 
based on the input features, adjusting its parameters to 
minimize the loss function. 

4) Offloading Decision Making: The trained model 
utilizes the Online DROO Algorithm to make real-
time offloading decisions based on the current 
network conditions. This involves generating relaxed 
offloading actions, quantizing them into discrete 
actions, and selecting the optimal action based on 
computed Q-values. 

5) Model Evaluation: After training, the model's 
performance is evaluated using metrics such as Total 
Time Consumed, Average Time Per Channel, and 
Training Loss. This evaluation helps in assessing the 
effectiveness of the DRL approach in optimizing 
offloading tasks in Mobile-Edge Computing 
environments. 

6) Continuous Learning: The model incorporates a 
mechanism for continuous learning, where it updates 
its knowledge based on new data and experiences 
gathered during operation. This adaptability is crucial 
for maintaining performance in dynamic network 
conditions. 

D. Online DROO Algorithm 

To evaluate the effectiveness of Optimized Nadam in a 
DRL context, we implemented an Online DROO 
Algorithm designed for offloading decisions in MEC. The 
algorithm dynamically adjusts offloading based on real-
time conditions. The steps are outlined below: 
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Algorithm 1 Online DROO Algorithm for Offloading 
Decision 
1: Input: Wireless channel gain ℎ௧ at each time frame t, number 

of quantized actions K 
2: Output: Offloading allocation 𝑥௧

∗ for each time 
frame t 

3: Initialize the DNN with random parameters 𝜃ଵ  and empty 
memory; 

4: Set iteration number M and training interval δ; 
5: for t = 1, 2, . . . , M do 
6: Generate a relaxed offloading action 𝑥௧ = 𝑓ఏ(ℎ௧); 
7: Quantize 𝑥௧ into K binary actions {𝑥} = 𝑔(𝑥௧); 
8: Compute 𝑄 × (ℎ௧, 𝑥)for all [𝑥] by solving (P2); 
9: Select best action 𝑥௧

∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑄 × (ℎ௧, 𝑥); 
10: Update memory by adding (ℎ௧, 𝑥௧

∗); 
11: if t mod δ = 0 then 
12: Uniformly sample a batch of dataset 

{(ℎఛ, 𝑥ఛ
∗)} 𝜖 𝑇(𝜏) from memory; 

13: Train DNN with {(ℎఛ, 𝑥ఛ
∗)} 𝜖 𝑇(𝜏) and update 𝜃௧ using 

other DRL algorithm; 
14: end if 
15: end for 

1) Explanation of the online DROO algorithm 

The Online DROO Algorithm optimizes offloading 
decisions in Mobile-Edge Computing (MEC) using Deep 
Reinforcement Learning (DRL). The algorithm iteratively 
learns from real-time network conditions to make optimal 
offloading decisions. Here’s a brief overview of the key 
steps: 

1) Input: The algorithm takes the wireless channel gain 
ht at each time frame and the number of quantized 
actions K, which define the offloading decision space. 

2) Output: The output is the optimal offloading 
allocation 𝑥௧

∗ for each time frame, determining 
whether tasks should be processed locally or 
offloaded to the edge server. 

3) Initialization: The Deep Neural Network (DNN) is 
initialized with random parameters 𝜃ଵ , and the 
memory is set to empty. The DNN approximates Q-
values to guide the decision-making process. 

4) Iteration Loop: The algorithm runs for M iterations, 
during which it: 

 Generates a relaxed offloading action 𝑥௧ based on 
ℎ௧. 

 Quantizes 𝑥௧ into K binary actions. 
 Computes 𝑄 ∗ (ℎ௧ , 𝑥) for each action. 
 Selects the best action 𝑥௧

∗  that maximizes the Q-
value. 

 Updates memory with the state-action pair (ℎ௧ , 𝑥௧
∗). 

 Trains the DNN every δ iteration using samples 
from memory to adapt to network changes. 

5) Completion: After M iterations, the DNN has learned 
an optimal offloading policy that dynamically adapts 
to real-time conditions. 

This algorithm enables real-time, dynamic offloading 
decisions in MEC, improving performance and reducing 
computational overhead by using an optimized version of 
the Nadam algorithm (Optimized Nadam). The iterative 
training process and use of quantized actions make the 
algorithm both flexible and robust, suitable for deployment 
in diverse MEC environments. 

III. PERFORMANCE EVALUATION 

The performance of Optimized Nadam was evaluated 
through simulations under various load conditions. The 
experiments focused on Total Time Consumed, Average 
Time Per Channel, and Training Loss, comparing 
Optimized Nadam with Adam, Adadelta, Adagrad, 
Adamax, Nadam, and Ftrl.  

A. Normal Load Conditions 

Under normal load conditions, Optimized Nadam 
showed a significant reduction in Total Time Consumed 
compared to Nadam, especially in scenarios wth 10,000 
and 5,000 iterations. The reduction in total time is 
attributed to the removal of the uproduct term, which 
streamlines the computation process. The results are 
presented in Table II and visually depicted in Fig. 3. 

 
Fig. 3. Total time consumed by algorithms under normal load. 
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TABLE II. TOTAL TIME CONSUMED BY ALGORITHMS UNDER NORMAL 

LOAD (IN SECONDS) 

Algorithms/ Iteration 10,000 5,000 4,000 2,000 

Adam 255.975 144.652 205.283 98.278 
Adadelta 311.818 174.661 208.503 110.094 
Adagrad 353.660 181.412 207.054 110.296 
Adamax 261.482 134.820 181.488 91.778 

Ftrl 331.055 189.276 227.085 117.891 
Nadam 250.474 144.584 173.379 94.206 

Optimized Nadam 260.100 138.481 108.251 62.008 

 
Table II clearly shows that Optimized Nadam 

consistently reduced the total computation time as 
compared to the standard Nadam and Adam algorithms, 
particularly under lower iteration counts. For instance, 
with 4,000 iterations, Optimized Nadam completed the 
task in 108.251 seconds, a marked improvement over 
Nadam’s 173.379 seconds and Adam’s 205.283 seconds. 
This demonstrates the efficiency gained by modifying the 

optimizer, which is especially critical in resource-
constrained MEC environments. 

In terms of Average Time Per Channel, Optimized 
Nadam consistently outperformed the other algorithms, 
particularly in high iteration scenarios. The absence of the 
uproduct term in Optimized Nadam allows it to achieve 
faster convergence, resulting in lower average time per 
channel. The detailed data is shown in Table II, and the 
corresponding bar chart is displayed in Fig. 4. 

Table III highlights that Optimized Nadam consistently 
achieves a lower average time per channel across various 
iterations. For example, at 4,000 iterations, Optimized 
Nadam had an average time per channel of 0.0271 seconds, 
significantly lower than Nadam’s 0.0433 seconds and 
Adam’s 0.0513 seconds. This reduction in time per 
channel not only demonstrates the efficacy of the 
Optimized Nadam algorithm but also underscores its 
suitability for real-time applications where every 
millisecond counts. 

 
Fig. 4. Average time per channel for algorithms under normal load. 

 
Fig. 5. Normalized computation rate under alternate load. 
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TABLE III. AVERAGE TIME PER CHANNEL FOR ALGORITHMS UNDER 

NORMAL LOAD (IN SECOND) 

Algorithms/ Iteration 10,000 5,000 4,000 2,000 

Adam 0.0256 0.0289 0.0513 0.0491 
Adadelta 0.0312 0.0349 0.0521 0.0550 
Adagrad 0.0354 0.0363 0.0518 0.0551 
Adamax 0.0261 0.0270 0.0454 0.0459 

Ftrl 0.0331 0.0379 0.0568 0.0589 
Nadam 0.0250 0.0289 0.0433 0.0471 

Optimized Nadam 0.0260 0.0277 0.0271 0.0310 

 
In summary, both the Total Time Consumed and 

Average Time Per Channel metrics indicate that 
Optimized Nadam provides a substantial performance 
boost over the other algorithms, particularly in scenarios 
involving lower iteration counts, which are more common 
in practical MEC environments. 

B. Alternate Load Conditions 

Optimized Nadam demonstrated robust performance by 
maintaining a stable Normalized Computation Rate in 
alternate load conditions, where the network load 
fluctuates. As shown in Fig. 5, Optimized Nadam closely 

matched Nadam and outperformed Adam in most cases, 
highlighting its adaptability in dynamic environments. 

The analysis of training loss further substantiates the 
effectiveness of Optimized Nadam. As illustrated in Fig. 6, 
the training loss decreases rapidly and remains stable, 
suggesting that removing the u product term does not 
hinder the optimizer’s ability to minimize loss. This trend 
is evident across all iterations tested, where Optimized 
Nadam consistently demonstrates lower or comparable 
loss values compared to Nadam and Adam, reinforcing its 
efficiency in handling dynamic load conditions. 

TABLE IV. NORMALIZED COMPUTATION RATE UNDER ALTERNATE 

LOAD 

Algorithms/ Iteration 10.000 5.000 4.000 2.000 
Adam 0.9992 0.9988 0.9985 0.9967 

Adadelta 0.9351 0.8957 0.9267 0.9042 
Adagrad 0.9800 0.9753 0.9707 0.9526 
Adamax 0.9818 0.9953 0.9957 0.9885 

Ftrl 0.9224 0.9418 0.9269 0.9408 
Nadam 0.9992 0.9992 0.9984 0.9941 

Optimized Nadam 0.9970 0.9979 0.9969 0.9955 

 
Fig. 6. Training loss under alternate load conditions. 

IV. DISCUSSION 

The experiments highlight the effectiveness of 
Optimized Nadam in Mobile-Edge Computing (MEC) 
environments, particularly under varying load conditions. 
This section summarizes key findings and discusses their 
implications for MEC deployments.  

A. Reduction in Computational Complexity 

Optimized Nadam successfully reduces the 
computational complexity associated with the original 
Nadam algorithm, primarily by eliminating the u product 
term. As shown in Tables II and II, this modification 
significantly reduces Total Time Consumed and Average 
Time Per Channel across all iteration scenarios. For 
example, at 4,000 iterations, Optimized Nadam completed 

the task 37.6% faster than Nadam, demonstrating its 
efficiency. This enhanced convergence speed is 
particularly crucial for real-time applications in MEC 
environments. 

B. Robustness under Fluctuating Load Conditions 

Optimized Nadam also demonstrated strong 
performance under fluctuating load conditions, 
maintaining stable Normalized Computation Rates that 
closely matched those of Nadam, as shown in Table III. 
For instance, at 10,000 iterations, Optimized Nadam 
achieved a computation rate of 0.9970, only slightly lower 
than Nadam’s 0.9992, indicating robust performance even 
in dynamic environments. This stability ensures that MEC 
systems can consistently deliver low-latency services even 
when network conditions vary. 

Journal of Communications, vol. 20, no. 3, 2025

329



C. Training Loss and Convergence 

The algorithm’s ability to minimize training loss was 
another key area of improvement. As seen in Figure 6, 
Optimized Nadam exhibited a rapid and stable decrease in 
training loss, often outperforming both Nadam and Adam. 
This suggests that the simplifications introduced by 
Optimized Nadam do not compromise its optimization 
capabilities; rather, they enhance its ability to achieve 
faster and more stable convergence, which is particularly 
valuable in resource-constrained MEC environments. 

D. Implications for MEC Deployments 

The consistent performance improvements provided by 
Optimized Nadam make it a strong candidate for real-
world MEC applications, where computational efficiency 
and rapid response times are critical. Its ability to reduce 
overhead while maintaining high performance makes it 
suitable for large-scale deployments, where scalability and 
efficiency are paramount. Additionally, its robustness 
under fluctuating load conditions ensures consistent 
service levels, supporting a wide range of applications 
from low-latency communication to high-throughput data 
processing. 

V. CONCLUSION 

Optimized Nadam is an optimized variant of the Nadam 
algorithm, aimed at reducing computational complexity 
while maintaining performance, specifically for Mobile-
Edge Computing (MEC) environments. Through extensive 
evaluations, Optimized Nadam demonstrated its ability to 
outperform traditional optimizers like Adam and Nadam 
regarding time efficiency and stability. Optimized Nadam 
achieved significant reductions in both Total Time 
Consumed and Average Time Per Channel under various 
load conditions, while maintaining a high Normalized 
Computation Rate even in dynamic network environments. 
The removal of the u product term streamlined the 
computation process without negatively affecting the 
optimizer’s performance, making it highly suitable for 
real-time, resource-constrained MEC applications. 

The analysis of training loss further underscored the 
effectiveness of Optimized Nadam, showcasing rapid 
convergence and stable loss minimization across different 
scenarios. The algorithm’s adaptability under fluctuating 
load conditions highlights its robustness, ensuring 
consistent service levels and reduced latency, critical 
factors in MEC deployments. 

A. Future Directions 

Future research could further enhance Optimized 
Nadam by integrating adaptive mechanisms that 
dynamically adjust its parameters in response to real-time 
network conditions. This would improve its adaptability in 
highly dynamic MEC environments. Additionally, 
exploring the application of Optimized Nadam in other 
deep learning contexts, such as large-scale data centers or 
distributed AI systems, could extend its utility and provide 
further insights into its versatility. In conclusion, 
Optimized Nadam presents a compelling solution for 

optimizing Deep Reinforcement Learning (DRL) models 
in MEC environments, offering a well-balanced approach 
to improving both computational efficiency and 
performance. Its promising results lay a strong foundation 
for future work in both MEC-specific scenarios and 
broader deep-learning applications. 
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