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Abstract—Cognitive radio is a technology that allows a more 

efficient spectrum use. Currently, there are several proposals 

for the spectral mobility of secondary users. However, very 

few of them are proactive. The advantage of proactive models 

is that they allow a reduction in the level of interference 

between primary and secondary users due to the prediction 

of the arrival of the primary. This work presents the 

comparative evaluation of two predictive spectral decision 

models, Naïve Bayes, and Logistic Regression, analyzing the 

level of interference they generate and the level of quality in 

the prediction. The evaluation is done through five metrics in 

low and high traffic scenarios: failed handoffs, interference 

handoffs, bandwidth, delay and throughput; in two types of 

scenarios: low traffic and high traffic. The main 

contributions of this work are the use of real spectral 

occupancy data captured in previous measurement 

campaigns and the robust evaluation carried out through five 

metrics, among which the interference measured from the 

moment in which the primary and secondary users coexist in 

the same channel, and the analysis under a radio 

environment with many and few primary users. The results 

show that the Naïve Bayes model has a 20% better 

performance than the logistic regression model; this together 

with its low processing level makes it an excellent candidate 

for the selection of selecting opportunities in cognitive radio 

networks. 
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I. INTRODUCTION 

Cognitive radio Networks (CRN) are one of the most 

promising innovations in the telecommunications field [1]. 

This concept is based on the ability of communication 

devices to “learn” and adapt to the radio environment, 

optimizing the use of the spectrum and improving the 

efficiency of data transmission [2, 3]. A cognitive radio 

network is an intelligent communication system that can 

perceive the radio environment, understand the channel 

conditions and adjust its operating parameters in real-time 

[4, 5]. Its main objective is to improve the radio spectrum's 

use a limited and scarce resource, often underutilized due 

to the lack of flexibility in traditional networks [6, 7]. 

The spectrum decision is the core of a Cognitive Radio 

Networks (CRN); efficiently and without causing any type 

of interference, it establishes through a set of techniques 

the process to select the most appropriate spectral 

opportunity according to the requirements of the 

Secondary User (SU) and the conditions of the radio 

environment [8, 9]. An incorrect decision-making process 

affects network parameters such as the Handoffs; however, 

despite its relevance it is not as explored a function as 

spectrum detection [10, 11]. Currently, the research that 

has been developed focuses more on reactive spectral 

decision models (non-predictive) even though proactive 

(predictive) models allow for a reduction in the level of 

interference between Primary User (PU) and Secondary 

User (SU) [12]. In addition, the research works with 

random spectral information data, presents only one or two 

evaluation metrics, and does not analyze how the level of 

spectral traffic can affect the decision-making of the 

proposed models [13]. 

Predictive spectral mobility models are crucial in 

cognitive radio networks, as they allow them efficiently 

predict and manage how the spectrum moves over time and 

space, ensuring that secondary users access frequencies 

without interfering with primary users [14]. Since 

spectrum is a limited and dynamic resource, these models 

allow for an intelligent and adaptive allocation of available 

frequencies, optimizing spectrum utilization and 

improving network efficiency [15]. Furthermore, spectral 

mobility models anticipate traffic patterns and congestion, 

facilitating more effective network management, 

especially in high-demand environments with constantly 

changing channel conditions. Thus, spectral mobility 

models are essential to ensure harmonious and efficient 

coexistence between different types of users in a cognitive 

environment [16]. 

By predicting spectrum usage patterns and the presence 

of primary users at different times and locations, these 

models help secondary devices to proactively adapt, 

avoiding interference and maximizing network 

performance [17]. Furthermore, the ability to predict 

spectral mobility optimizes the use of limited resources, 

improves the quality of service for users, and reduces 

channel congestion, which is crucial in highly dynamic 

environments with variable demand. Ultimately, 

predictive spectral mobility models enable smarter and 
 

Manuscript received February 5, 2025; revised March 11, 2025, accepted 

March 28, 2025; published May 23, 2025. 

Journal of Communications, vol. 20, no. 3, 2025

282doi:10.12720/jcm.20.3.282-290

mailto:cahernandezs@udistrital.edu.co
mailto:fhmartinezs@udistrital.edu.co
mailto:dagiralr@udistrital.edu.co
https://orcid.org/0000-0001-9409-8341
https://orcid.org/0000-0001-9983-4555
https://orcid.org/0000-0002-7258-3909


more efficient spectrum management, which is key to the 

success of cognitive radio networks [18].  

In Ref. [19], a Multi-User Proactive application was 

proposed as proactive optimal resource allocation 

framework for spectrum management in cognitive radio 

networks, was proposed. A machine learning and 

mathematical optimization-based approach was used to 

predict spectrum availability and dynamically allocate it to 

secondary users compared to traditional approaches, 

PORA improved spectrum usage efficiency, reducing 

interference and improving network performance. 

In Ref. [20], a deep learning-based approach was 

proposed for proactive beam handoff in multi-user 6G 

networks. A deep neural network was trained to predict 

connectivity changes and optimize beam handoff, 

improving link continuity in dynamic environments. The 

model was able to reduce latency and improve handoff 

efficiency compared to conventional methods, optimizing 

stability and quality of service in 6G networks. 

In Ref. [21], a hybrid spectrum-handoff mechanism was 

presented for cognitive radio ad hoc networks, allowing 

better spectrum management in dynamic environments. A 

reactive and proactive approach for spectrum handoff was 

combined using machine learning-based prediction and 

optimization models. The hybrid method reduced 

spectrum handoff latency and improved communication 

continuity compared to traditional techniques. 

In Ref. [22], a proactive scheme based on fuzzy logic 

was proposed for backup channel selection in spectrum 

handoff in cognitive radio networks. A fuzzy inference 

system was employed to evaluate metrics such as channel 

quality and interference, optimizing the assignment of 

backup channels before an interruption occurs. The 

approach improved the efficiency of spectrum handoff, 

reducing the communication failure rate and improving the 

quality of service compared to conventional methods. 

In Ref. [23], an efficient proactive handoff scheme 

based on Artificial Neural Networks (ANN) was proposed 

for cognitive radio networks. An ANN was trained to 

predict spectrum availability and perform channel handoff 

in advance, optimizing service continuity. The ANN-based 

approach reduced handoff time, minimized interference, 

and improved communication stability compared to 

traditional methods. 

Current proposals mostly focus on reactive models 

evaluated from random data with a single metric, which 

are easier to develop than predictive models. This 

generates a higher level of interference and does not allow 

their performance to be measured reliably. 

The objective of this research is to comparatively 

evaluate the performance of two predictive spectral 

decision models: Naïve Bayes and Logistic Regression, 

which were selected for having a low level of processing 

and a high performance in terms of prediction. The 

validation of the two models was carried out quantitatively 

through a simulation tool developed with real spectral 

occupancy data captured in a previous measurement 

campaign; based on five evaluation metrics: (1) Failed 

Handoff (FH), (2) Interference Handoff (IH), (3) 

Bandwidth (BW), (4) Delay (D) and (5) throughput (T); 

for a low-traffic scenario and a high-traffic scenario. 

II. METHODOLOGY 

In the evaluation of the performance of the Naive Bayes 

and Logistic Regression algorithms, five evaluation 

metrics were measured: (1) Failed Handoff (FH), (2) 

Interference Handoff (IH), (3) Bandwidth (BW), (4) Delay 

(D) and (5) Throughput (T), for two levels of traffic: High 

(HT) and Low (LT). The results were obtained using a 

previously developed simulation tool, which utilizes 

experimental spectral occupancy data collected during a 

measurement campaign conducted earlier in Bogotá. This 

simulation tool progressively reconstructs the spectrum 

occupancy behavior using experimental data traces 

captured in the Global System for Mobile communications 

(GSM) band. This allows the simulation to incorporate an 

approximation of the real behavior of the Primary User 

(PU), enabling a more accurate validation of the actual 

performance of each algorithm. The spectral occupancy 

data corresponds to two months of observations gathered 

in Bogotá D.C., Colombia [24−27]. 

The developed simulation tool follows this procedure if 

an SU intends to transmit for φ minutes. First, it updates 

the value of the DCs based on information from the 

previous Instant of Time (TS), referred to as τ0, when the 

SU requests the spectral resource. Second, it ranks the 

spectral opportunities based on the score each opportunity 

receives, according to the decision-making algorithm 

being evaluated. Third, it selects the spectral opportunity 

ranked first and assigns it to the SU to begin transmission. 

Fourth, at this moment, τ1, it checks the database (trace of 

captured and processed data) to verify whether the selected 

spectral opportunity is available. (It should be noted that 

decision-making algorithms only know APs, not real-time 

availability of spectral opportunities.) If available, the 

handoff metric is incremented by one, and the fifth step is 

carried out. If unavailable, the FH evaluation metric is 

increased by one, the next spectral opportunity in the 

ranking is selected, and the fourth step is repeated. Fifth, 

at each TS, the simulation tool checks the database to 

ensure that the spectral opportunity currently used by the 

ED is still available. Sixth, when τk, the moment the 

selected spectral opportunity is needed by a PU (i.e., when 

it is no longer available according to the database), if Δτ = 

τk – τ1 is less than 60 seconds, the next spectral 

opportunity in the ranking is selected, and the fourth step 

is repeated. If Δτ is greater than 60 seconds, τ0 is updated 

with the current time, and the process returns to the first 

step. Seventh, the communication is considered lost if no 

channel is available for ζ seconds. 

One of the key factors in choosing a prediction model is 

the potential to incorporate multiple features or criteria that 

could enhance the accuracy of the prediction. This is 

because during the training of the prediction model, factors 

such as the Probability of Availability (PA) and the 

average Time of Availability (TA), among other metrics, 

can be considered, which can help improve the accuracy 

of the forecast. In the current literature, it is possible to find 

works related to predicting spectral occupancy in cognitive 
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radio networks, through prediction models such as 

artificial neural networks, autoregressive time series, 

decision trees, hidden Markov models and deep learning, 

among the most prominent. However, the computational 

load is high compared to other models offering similar 

performance with lower computational cost, which is why 

Naïve Bayes and Logistic Regression were selected. 

A. Naïve Bayes 

Referencing the Naive Bayes theorem, it can be deduced 

that the independent variables or predictors in this specific 

case would be the Probability of Availability (PA) and the 

mean Time of Availability (TA), while the dependent 

variable, or class, would be channel availability. Based on 

this, the Naive Bayes prediction model effectively predicts 

multiple classes and assumes independence between them. 

In simpler terms, a Naive Bayes classifier assumes that 

the presence of a particular feature is unrelated to the 

presence of any other feature. Even if these features are 

dependent on each other or influenced by the presence of 

other features, each property is treated independently. One 

of the main advantages of this model is its ability to 

perform effectively on very large datasets. 

Bayes’ theorem provides a way to calculate the 

posterior probability P (c | x) of P (c), P (x), and P (x | c) 

((see Eq. (1)).  

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
        

(1)
 

where: 

P(c|x) is the subsequent probability of the class (c, 

objective) given predictor (x, attributes). 

P(c) It is the previous probability of class. 

P(x|c) The probability of the predictor given the class 

P(x) is the predictor's prior probability. 

Based on Eq. (1) and considering the independent 

variables PA and TA, as explained in the previous sections, 

along with the dependent variable or class, which in this 

case is channel availability (denoted as either occupied or 

available), Eq. (1−3) are provided. 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)

=
𝑃(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)𝑝(𝑇𝐴|𝑜𝑐𝑢𝑝𝑝𝑖𝑒𝑑)𝑝(𝑃𝐴|𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

 

(2) 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)

=
𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)𝑝(𝑇𝐴|𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)𝑝(𝑃𝐴|𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
     

(3) 

where “evidence” would be given by Eq (4). 

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

= 𝑃(𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)𝑝(𝑇𝐴│𝑜𝑐𝑢𝑝𝑝𝑖𝑒𝑑)𝑝(𝑃𝐴│𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)
+ 𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)𝑝(𝑇𝐴|𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)𝑝(𝑃𝐴|𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)  

(4) 

B. Logistic Regression 

 The primary benefit of logistic regression is its ability 

to simultaneously incorporate multiple explanatory 

variables. While this may appear straightforward, it is 

crucial because understanding the effect of these 

explanatory variables on the response variable is highly 

valuable. Examining the explanatory variables 

individually, without considering the covariance between 

them, could lead to misleading conclusions.  

Logistic regression models the probability of an 

outcome based on individual characteristics, as 

represented by Eq. (5). 

 

log (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑚𝑥𝑚     (5) 

 

In this context, π represents the probability of an event, 

βi are the regression coefficients corresponding to the 

reference group, and xi are the explanatory variables. At 

this point, it's essential to highlight an important concept: 

the reference group, denoted by β0, consists of individuals 

exhibiting the reference level for each variable x1... m. 

For this specific study, the signal-to-noise plus 

Interference Ratio (SINR), availability, and mean 

Availability Time (TA) were defined as explanatory 

variables, as they are interrelated and must be used 

together in the prediction of channel availability. As a 

result, Eq. (5) is modified into Eq. (6). 

log (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1𝑃𝐷1 + 𝛽2𝑇𝐸𝐷

+ 𝛽3𝑃𝑆𝐼𝑁𝑅      

(6)
 

C. Traffic Scenarios 

An analysis is carried out prior to the power matrix 

captured in the GSM band based on the probability of 

availability; from this analysis, a frequency range is 

determined where the availability of the power matrix is 

high, for the analysis of the models to be equitable, a 

previous adjustment to this frequency range is required. To 

adjust the frequency range, a strategy is implemented that 

involves all the channels of the power matrix; it consists of 

generating a set of matrices for different levels of 

probability of availability, to generate the two traffic 

scenarios, high and low. 

The methodology takes the measured power matrix, and, 

several availability matrices are obtained by modifying the 

threshold level. For a threshold value of −80dBm the 

availability increased to 70% and it was considered as a 

low traffic scenario, i.e. when the number of spectral 

opportunities is much higher than the number of PUs in the 

network. On the contrary, when the threshold value was 

set to −105dBm, the availability was reduced to 30%. It 

was considered as a high traffic scenario, i.e. when the 

number of spectral opportunities is much lower than the 

number of PUs in the network. 

D. Evaluation Metrics 

The performance evaluation of the prediction 

algorithms was conducted using five metrics, as outlined 

in Table I. This table includes the acronym, definition, 

description, and type of evaluation metrics. The type of 

evaluation refers to whether the metric is a benefit (the 

higher, the better) or a cost (the lower, the better). The term 

“average” in the evaluation metrics indicates that the 

results represent the average values obtained from multiple 

experiments.  

In order to facilitate the comparative analysis of each 

algorithm, the relative values (in percentage) of each 

evaluation metric were calculated.
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TABLE I. ADDITIONAL METRICS FOR PREDICTIVE MODEL EVALUATION 

Acronym Name Description 
Evaluation metric 

type 

FH Failed handoff  
It refers to the number of handoffs the SU could not execute because 

the corresponding target spectral opportunities were occupied. 
Cost 

IH Interference handoff 
It represents the total number of reactive handoffs made once the PU 

arrives, during the SU’s transmission period. 
Cost 

BW Bandwidth 
It indicates the average bandwidth the SU uses during the 9 minutes of 

its transmission. 
Benefit 

D Delay 
It refers to the average time the SU experiences transmitting a specific 

amount of information. 
Cost 

T Throughput  
It represents the effective data rate transmitted by the SU during the 9 

minutes of communication. 
Benefit 

III. RESULTS 

Figs 1−5 illustrate the results for each of the evaluation 

metrics FH, IH, BW, D, and T. Each figure displays the 

outcomes of the two predictive spectral decision models, 

Naive Bayes and Logistic Regression, over a 9-minute 

transmission, with HT and LT traces, in a GSM network. 

Additionally, Tables II and III present the comparative 

percentage values of the evaluation metrics for each 

predictive model, using HT and LT traces, in a GSM 

network.  

 
(a) 

 
(b) 

Fig. 1. FH of Predictive Models in GSM for HT and LT, (a). GSM HT, (b). GSM LT. 
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(a) 

 
(b) 

Fig. 2. IH of predictive models in GSM for HT and LT, (a). GSM HT, (b). GSM LT. 

 
(a) 

 
(b) 

Fig. 3. BW of predictive models in GSM for HT and LT, (a). GSM HT, (b). GSM LT. 
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Fig. 4. D of predictive models in GSM for HT and LT, (a). GSM HT, (b). GSM LT. 

 
Fig. 5. T of predictive models in GSM for HT and LT, (a). GSM HT, (b). GSM LT. 
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TABLE II. RELATIVE VALUES OF THE METRICS FOR PREDICTIVE MODELS IN GSM WITH HT 

Evaluation Metrics Logistic Regression Naïve Bayes 

FH 100% 88% 

IF 100% 53% 
BW 100% 94% 

D 100% 87% 

T 100% 89% 
Score 100% 88% 

TABLE III. RELATIVE VALUES OF THE METRICS FOR PREDICTIVE MODELS IN GSM WITH LT 

Evaluation Metrics Logistic Regression Naïve Bayes 

FH 100% 32% 

IH 100% 25% 

BW 100% 96% 
D 100% 90% 

T 100% 97% 

Score 100% 32% 

 

Finally, to determine whether the results are statistically 

significant, a t-student test was performed, which yielded 

a P-value of 0.04621, thus rejecting the null hypothesis. 

Because the P-value is less than 0.05, it can be said that 

the results are statistically significant and not a result of 

chance.   

IV. DISCUSSION 

The main results achieved in the research project are the 

design and development of a predictive module that 

reduces the level of interference between SUs and PUs; (2) 

the determination of four carefully selected decision 

criteria to choose the best spectral opportunity; (3) all the 

algorithms developed worked with the same four criteria, 

and each decision criterion is calculated from the 

occupancy data. 

Two techniques were implemented evaluate the 

predictive models, logistic regression and naive Bayes. 

The results for the HT traffic level, are presented in Table 

I. As they are prediction techniques, one additional metric 

is included: IH. For the Naive score analysis, Bayes 

presents the highest score, 94.9%, with a difference of less 

than 1% compared to Logistic Regression. For the metrics 

associated with the prediction, Logistic Regression 

presents the highest relative values for perfect handoffs 

and anticipated handoffs, with a difference of 10.95 % and 

1.04 % concerning Naive Bayes, for handoffs with Naive 

Bayes interference presents the highest relative values with 

a difference of 31.88 %. For the other metrics, the average 

difference is 9.72%, except for D, where the difference is 

0.02%. 

The results of the level of LT traffic, are presented in 

Table II. As they are prediction techniques, one additional 

metric is is included: IH. For the score analysis, Naive 

Bayes presents the highest score with 99.0%, with a 

difference of 18.61% compared to Logistic Regression. 

For the metrics associated with the prediction, Logistic 

Regression presents the highest relative values for perfect 

handoffs and anticipated handoffs, with a difference of 

3.33 % and 4.6 % concerning Naive Bayes, for handoffs 

with Interference. Naive Bayes presents the highest 

relative values with a difference of 81.4 %. For the other 

metrics, the average difference is 0.46%, except for FH, 

where the difference is 73.68%. 

From the diversity of results obtained, it is possible to 

determine some interesting relationships between them. 

For example, the total handoffs are equal to the failed 

handoffs (those that could not be made), plus perfect 

handoffs (those that were made at the exact moment before 

the primary user arrived), plus anticipated handoffs (those 

that were made long before the primary user arrived), plus 

interference handoffs (those made after the primary user 

arrived). Although the ideal is to have as many perfect 

handoffs as possible, the two most relevant metrics are the 

total handoffs, since the greater the handoffs, the lower the 

quality of communication, and the handoffs with 

interference, since they more directly affect the quality of 

service of communication between users.  

The present research presents results achieved with real 

spectral occupancy data, based on five evaluation metrics: 

failed handoffs, interference handoffs, bandwidth, delay 

and throughput, in low and high traffic scenarios. This 

represents a significant contribution because in the current 

literature, most related works present results based on 

random spectral occupancy data, for a single evaluation 

metric and for a single type of traffic, which is generally 

not characterized. Due to the above, it is difficult to 

perform fair comparative evaluations, firstly, by the use of 

real spectral occupancy data captured in measurement 

campaigns; secondly, because they do not generate the 

diversity of evaluation metrics presented in this work, 

generally, they are restricted to bit error rates or probability 

of error, and not applied to communications systems as in 

this case; thirdly, because the type of traffic or the 

frequency band, which for this work is GSM, is not 

characterized; and finally, because the level of traffic or 

spectral occupancy is not characterized to analyze the 

behavior in high or low traffic as if it is done in this work, 

focused on cognitive radio networks.  

In the current literature, it is possible to find works 

related to predicting spectral occupancy in cognitive radio 

networks through prediction models such as artificial 

neural networks, autoregressive time series, Bayesian 

models, hidden Markov models, and deep learning, among 

the most prominent. In the case of artificial neural 
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networks, the performance evaluation is carried out 

through the prediction of spectral occupancy directly, 

obtaining a 10% error, which in the case of this work is 

below 10%, as can be seen from Tables II and III, where 

the only values with an average error greater than 10% are 

IH and FH. Autoregressive models evaluate performance 

based on the probability of error, and similarly, hidden 

Markov models are based on the probability of error as a 

function of the useful cycle. One of the works found 

presents a Bayesian model that calculates the performance 

of the prediction in terms of the bit error rate, and finally, 

within the most recent works, a model based on deep 

learning is presented, which uses cooperation between 

users to raise the level of accuracy in prediction. Based on 

the probability of error as a function of the range of 

cooperation [22].  

V. CONCLUSIONS 

This study compared the performance of two predictive 

spectral decision models, Naïve Bayes and Logistic 

Regression, using real spectral occupancy data from the 

GSM band. The evaluation was based on five metrics: 

failed handoffs, interference handoffs, bandwidth, delay, 

and throughput, in both low-traffic and high-traffic 

scenarios. 

The performance in low-traffic scenarios is notably 

better than in high-traffic situations. This is because, in 

low-traffic environments, there is a broader range of 

spectral opportunities, which enables predictive spectral 

decision models to select different frequency channels, 

often with similar qualities. This helps prevent any 

degradation in communication quality due to interference 

or unnecessary handoffs. 

While both models show similar performance in high-

traffic scenarios, Naïve Bayes offers a notable advantage 

over Logistic Regression in low-traffic situations, with an 

approximate 20% improvement. Its lower processing 

demands make Naïve Bayes an excellent choice for 

spectral opportunity selection in cognitive radio networks. 

The results achieved in the development of this work 

describe an excellent predictive behavior of the Logistic 

Regression algorithm, which would allow the 

development of an effective proactive strategy to carry out 

the spectral mobility of secondary users, allowing a better 

level of quality of service in the communications of 

secondary users, in cognitive radio networks.  

VI. FUTURE WORK 

As future work, it is proposed to create a pilot network 

that implements the two models analyzed in this research 

and compare them with seasonal time series such as 

SARIMA and deep learning models, currently widely used, 

such as long short-term Memory (LSTM). 
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