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Abstract—Understanding environmental conditions in 

different locations is crucial for addressing air-pollution 

issues. While wireless sensor networks offer the capability to 

monitor environmental quality locally, they face challenges 

related to power supply. This study introduces a low-power 

Wireless Sensor Network (WSN) employing distributed 

compressed sensing for a time-series environmental 

monitoring system. The proposed method achieves data 

compression at individual sensor nodes, mitigating power 

consumption during data transmission. Conversely, data 

restoration occurs on a server equipped with ample 

computing resources. This study investigates the power-

saving impact of the proposed approach and identifies the 

optimal compression ratio. Experimental findings reveal a 

coefficient of determination of 0.9 or higher at a compression 

ratio of 90%. Our results indicate that the distributed 

compressed sensing-based WSN proposed in this study is 

effective for time-series environmental monitoring systems, 

offering valuable insights for future research endeavors. 
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I. INTRODUCTION 

In recent years, the evaluation of environmental 

qualities has been grounded in observations of the natural 

environment. Wireless Sensor Networks (WSN) 

frequently serve as tools for measuring these qualities, 

encompassing various data types such as time-series Co2 

concentration and atmospheric pollution. Despite their 

versatility, WSNs, predominantly reliant on battery power, 

confront challenges due to limited power resources. 

Consequently, numerous studies have focused on 

enhancing power efficiency in WSNs [1−9], employing 

strategies such as Receiver-Initiated Medium Access 

Control (RI-MAC) to adjust data transmission  timing  [5, 

6] and compressed sensing to reduce data transmission 

costs [5−11]. Compressed sensing, commonly used in 

fields such as magnetic resonance imaging, compresses 

and restores data, offering potential applications in WSNs 

[10, 11].  

 While RI-MAC and compressed sensing contribute to 

power conservation, only minimal attention has been paid 

to the correlation between original measurement data and 

restored data in a time series. The accuracy of restoration 

process, which involves thinning out or linearly 

interpolating transmitted data cannot be guaranteed, 

posing a risk of errors in environmental values. Several 

studies investigate the consequences of decreasing data 

transmission frequency on power savings and the 

influence of reduced data transmission frequency on 

prediction accuracy [12, 13]. 

 Advanced theories, such as distributed compressed 

sensing, have been explored [14−18]. In this theory, 

multiple sensor nodes measure target data, and the original 

data is recovered using fewer samples, leveraging the 

correlation among data measured by multiple nodes. 

Distributed compressed sensing technique is adapted to 

WSN, video coding, etc. [20, 21]. While distributed 

compressed sensing holds promise for maintaining the 

correlation between original and restored data in a time 

series, discussions on this aspect are lacking in WSNs 

using compressed sensing. Additionally, the accuracy and 

power consumption of restored data vary across WSN 

applications, underscoring the importance of integrating 

these factors a compression ratio aligned with application 

requirements. 

 This study introduces a power-saving method 

employing distributed compressed sensing in a time-series 

environmental monitoring system with WSNs. The 

proposed method enhances power consumption efficiency 

while considering the accuracy of restored data derived 

from raw observations. We assess the efficacy of 

distributed compressed sensing in WSNs, evaluating the 

accuracy of restored data concerning the number of sensor 

nodes and restoration parameters. Furthermore, we 

determine the optimal compression ratio, considering both 

power reduction and restored data accuracy. This endeavor 

successfully achieves the measurement and collection of 
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time-series environmental data while optimizing power 

consumption. Our research attempts to make local-scale 

environmental monitoring practical, which will contribute 

to solving environmental problems and predicting natural 

disasters. The remaining sections are organized as follows: 

Section II presents the related works. The proposed 

method is presented in Section III. Section IV describes the 

experimental model configuration. Section V presents 

experimental results. Section VI provides discussions and 

concluding remarks. 

II. RELATED WORKS 

A. Receiver-Initiated Medium Access Control (RI-MAC) 

RI-MAC, a technique wherein a receiving node 

transmits a beacon and, upon receiving the beacon, the 

sending node with data transmits it [5, 6]. In the event of a 

packet collision preventing successful data reception the 

receiving node transmits and alternate beacon containing a 

back-off region. This region assigns a random wait time to 

each sending node, minimizing the likelihood of collision 

upon retransmission. This mechanism effectively 

mitigates packet collision recurrence. Subsequently, if a 

receiving node’s transmitted beacon goes 

unacknowledged, the node enters a sleep period. This 

approach optimizes throughput and minimizes power 

consumption by regulating transmission and reception, 

retransmission processing, and sleep timing. However, it 

may not be inherently compatible with time-series data. 

B. Power Saving in Time-Series Environment Data 

Measurement  

Bhandari et al. [12] and Engmann et al. [13] explored 

systems for measuring or predicting time-series 

environmental data with WSNs. These studies delve into 

the consequences of decreasing data transmission 

frequency on power savings and the influence of reduced 

data transmission frequency on prediction accuracy. The 

server complements the data, thinned due to reduced 

transmission, through a completion process (e.g., linear or 

spline interpolation). Nevertheless, as these methods 

solely thin out transmitted data or linearly interpolate 

thinned data, errors in environmental values are feasible 

compared to the actual data. 

C. Compressed Sensing 

Compressed Sensing (CS) is a technique that reduces 

data volume by applying a random matrix, known an 

observation matrix, to data acquired on the sensor side and 

subsequently restoring the data on the server side [7−11].  

The random matrix must adhere to the Restricted Isometry 

Property (RIP), a condition typically satisfied by matrices 

with elements following a normal or Bernoulli distribution 

[14]. As only the matrix product calculation occurs on the 

sensor side, computational load and power consumption 

remain low. The restoration algorithm, which is 

computationally intensive, is executed on the server side, 

benefiting from ample computational resources. 

Consequently, the processing is tailored to the capabilities 

of each resource. The restoration algorithm addresses a 

problem with a non-uniquely determined solution. 

However, if the original data can be expressed as sparse 

data, the problem transforms into an L1-norm 

minimization problem [7]. A change-of-basis matrix, 

incorporating elements such as the Discrete Cosine 

Transformation (DCT) matrix and Discrete Wavelet 

Transformation (DWT) matrix, is utilized to represent this 

sparsity. 

D. Compressed Sensing Based WSN 

In WSN, transmitted data often contains various 

redundancies. To address this, a WSN system based on CS 

is introduced [9]. This CS based WSN method aims to 

diminish information volume, communication load, and 

power consumption by organizing the WSN into three 

layers: the sending layer (comprising sensor nodes), the 

processing layer (an intermediate layer for temporary data 

storage), and the application layer (responsible for 

processing and analyzing acquired data). Additionally, the 

compression algorithm is anticipated to offer encryption 

benefits, rendering it applicable to home-WSN devices. 

However, leveraging the correlation of information 

obtained by sensor nodes poses challenges. 

 To tackle the energy limitation issue in large 

underwater WSNs (UWSNs) for extended environmental 

monitoring, a solution is presented in [22, 23].  Wang et al. 

[22] proposes an energy-efficient data collection scheme 

utilizing CS in UWSNs, specifically designed for 

environmental monitoring over fading channels. The 

model introduced in Ref. [22] establishes a compressed 

sensing-based UWSNs data collection approach, 

capitalizing on the spatial sparsity of underwater 

environmental data to reduce the required number of 

sensor nodes. 

III. PROPOSED METHOD 

A. Proposed WSN 

This study introduces a WSN system for environmental 

monitoring, employing distributed CS. The WSN 

comprises multiple sensor nodes designed to measure 

temperature, atmospheric pressure, and CO2 concentration. 

The structure of the proposed WSN system is illustrated in 

Fig. 1. Each sensor node includes a microcomputer 

(Arduino UNO), a temperature-humidity-pressure sensor 

(AE-BME280), a CO2 sensor (MH-Z19C), and a wireless 

communication module (XBee). In scenarios where 

several sensor nodes are utilized to measure indoor 

environmental qualities, a correlation between the values 

recorded by each sensor node is likely. Consequently, the 

adaptation of distributed CS to WSN focused on indoor 

environment monitoring is deemed highly effective. The 

proposed method follows the outlined flow. 

• Each sensor node observes time-series data. 

• Using a compression algorithm, each sensor node 

compresses the data and transmits it to the server. 

• After transmitting data, sensor nodes enter a sleep 

mode. 

• The server receives data from each sensor node. 

•  Using the restoration algorithm, the server 

reconstructs the compressed data. 
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• The server employs moving averages to correct for 

errors. 

 

 
Fig. 1. Proposed WSN system structure. 

 

This approach aims to enhance the efficiency of 

environmental monitoring by utilizing distributed CS in a 

WSN context.  

Reducing power consumption during data transmission 

can be achieved by compressing the data subsequent to 

each sensor node’s data measurement. Data compression, 

involving the product of the observation matrix and data, 

demands minimal computational load and power 

consumption, rendering it feasible for implementation at 

each sensor node with low loads. Upon data transmission, 

the server receives data from each sensor node and 

proceeds to restore the compressed data utilizing a 

restoration algorithm, specifically employing a -weighted 

L1 norm minimization problem.  

The restoration algorithm, is a being computationally 

intensive and power-consuming, presupposes a 

computationally resourceful server. Leveraging the 

commonality of data acquired by multiple sensor nodes, 

the restoration algorithm simultaneously restores multiple 

compressed data, enabling the process to be executed with 

fewer samples. Additionally, the restored data undergoes 

processing through a moving average to rectify potential 

errors. In the experimental set up, the average value is 

derived by summing the 10 data points preceding and 

following the relevant value, subsequently replacing the 

relevant value with the obtained average. 

This study uniquely performs compression and 

restoration processes on the empirically observed data, 

enabling the determination of the accuracy of the restored 

data. The evaluation of restored data accuracy, using the 

coefficient of determination, serves as a focal point for 

assessing the practicality and efficacy of the proposed 

method. 

B. Compressed Process 

If the number of sensor nodes is J, the data observed at 

the j-th sensor node is 𝑥𝑗 ∈ 𝑹
𝑛 . The m× n  observation 

matrix used for compression is 𝜙𝑗 . Additionally, the 

sensor data 𝑦𝑗 ∈ 𝑹
𝑚 after compression can be expressed 

as follows: 

𝑦𝑗 = 𝜙𝑗𝑥𝑗 ∈ 𝑹
𝑚 

Typically, the observation matrix in distributed CS is a 

random matrix. Ideally, a random matrix following a 

normal or Bernoulli distribution is preferred. The choice of 

the random matrix is flexible, as long as the default 

transformation matrix Ψ  and the observation matrix Φ 

used in the restoration maintain an incoherent relationship. 

Commonly utilized random matrices include: 

1) Gaussian Random Matrix (GRM) 

• A gaussian random matrix where each element of the 

m× n  matrix independently follows a normal 

distribution with a mean of 0 and variance of  
1

𝑚
. 

2) Discrete Fourier Transformation Matrix (DFTM) 

• A matrix with rows randomly selected from the 

discrete Fourier transformation matrix. 

These random matrices are selected based on their 

ability to maintain an incoherent relationship with the 

default transformation matrix, ensuring effective 

performance in distributed CS applications. As an example 

of observation matrix, a sparse random matrix composed 

of 0 or 1 is used. An example of the relationship between 

the observation matrix and sensor data is shown in Fig. 2. 

C. Restoration Process  

Distributed CS, premised on the assumption that data 

from multiple sensors exhibit correlations, is a 

methodology designed to leverage this correlation for the 

restoration of compressed data [16−18]. This approach is 

rooted in the concept of joint sparsity, wherein the sparsity 

is not attributed to individual signals but rather to the entire 

set of interrelated data. Three Joint Sparsity Models 

(JSMs) have been proposed in prior research [16]. Our 

experiment primarily focuses on JSM-1, deemed practical 

for environmental variables such as temperature. 

In JSM-1, each dataset comprises a common component 

zc and an innovation component zj, with the original data 

being the sum of these two components. In other words, 

the original data xj at the j-th sensor node is expressed as 

follows: xj = zc + zj.  

The restoration process involves solving a -weighted 

L1 norm minimization problem to compute Z = (zc, z1, 
z2, ..., zj). If Y represents the data post-compression and  

is the observation matrix, then Z = (zc, z1, z2, ..., zj) can be 

determined by solving the equation under the constraint Y 

= Z. In this contest,  the respective weight, c, must be 

duly considered. 

Fig. 2. Example of relationship between observation matrix and sensor 

data. 
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𝐙 = argmin 𝛾𝑐‖𝑧𝑐‖1 + ∑ 𝛾𝑗‖𝑧‖1
𝐽
𝑗=1              (1) 

 

Our study investigates the impact on restoration 

accuracy with variations in the number of sensor nodes and 

explores the accuracy variations corresponding to changes 

in the value of c. Additionally, we determine the optimal 

compression ratio by formulating an objective function 

that takes into account both the reduced power ratio and 

restoration accuracy. 

IV. EXPERIMENT 

In our experiment, we employed sensor nodes equipped 

with the proposed method to observe data on indoor 

temperature, atmospheric pressure, and CO2 concentration 

Specifically, indoor temperature and atmospheric pressure 

were measured by three sensor nodes, while CO2 

concentration was measured by two sensor nodes. 

Additionally, a sensor node without the proposed method 

(denoted as “w/o compression algorithm”) was included in 

the setup, measuring indoor temperature, atmospheric 

pressure, and CO2 concentration. Each sensor node 

conducted measurement of environmental values at 20 s 

intervals. The sensor node implementing the compression 

algorithm retained data from 10 measurements and 

compressed it based on the  specified compression ratio. 

For instance, with a compression ratio of 50%, five 

compressed data points were transmitted after 10 

measurements. By contrast, the method under comparison 

(sensor node without CS) transmitted measured data every 

20s.  The compression of the time-series data for 10 

measurements were performed to maintain the correlation 

between the time series, facilitating subsequent data 

recovery. The parameters of the sensor nodes are detailed 

in Table I. 

TABLE I. SENSOR NODE PARAMETERS 

Parameter           Unit Value 

Operating Voltage V 5.00 

Consumed Current in Active 

Mode 
mA 16.26 

Consumed Current in Sleep 

Mode 
mA 0.0657 

A Packet Size byte 127 

Data Rate kbps 9.6 

 

In this study, the compression algorithm employs a 

random matrix as the observation matrix, where each 

element adheres to a standard normal distribution with a  

mean of 0 and a variance of 1. For instance, when the 

compression ratio is set at 30 %, the data is compressed by 

an 7 × 10  observation matrix. Additionally, the 

compression algorithm in this study utilizes a DCT matrix 

as the basis transformation matrix.  

Let 𝜙𝑘[𝑖]  be the DCT basis. DCT basis for the 𝑖 -th 

column and  𝑘-th line is defined as follows: 

𝜙𝑘[𝑖] =

{
 
 

 
 

1

√𝑁
        (𝑘 = 0)

√
2

𝑁
𝑐𝑜𝑠

(2𝑖 + 1)𝑘𝜋

2𝑁
     (𝑘 = 1,2, . . . , 𝑁 − 1),

 

where N is the number of lines. The sparse data can be 

reconstructed by solving a -weighted L1 norm 

optimization problem. The values of 1, 2, and 3 in the -

weighted L1 norm minimization problem are fixed at 1.0, 

and the value of c is varied from 0.1 to 2.0 to assess the 

accuracy of the recovery. Additionally, the accuracy is 

evaluated by altering the number of sensor nodes in the 

WSN that measure temperature and atmospheric pressure, 

ranging  from one to three, and by adjusting the number of 

sensor nodes  measuring CO2 concentration from one to 

two. 

The accuracy is verified using the coefficient of 

determination. A higher the coefficient of determination 

indicates that the restored data closely aligns with the 

original data. The coefficient of determination (R2) is 

calculated using the following equation:  

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)
2𝑛

𝑖=1

 ,                        (2) 

where y𝑖 (i=1, 2, 3, …, n) be the original data, 𝑦𝑖̂ be the 

restored data and 𝑦𝑖̅ be the average of original data. The 

coefficient of determination between measurements 

obtained at sensor nodes equipped with the compression 

algorithm and those from the sensor node without the 

compression algorithm (considered as correct values) is 

determined using Eq. (2). This coefficient signifies the 

degree to which the estimated results align with the actual 

data, with a value closer to 1 indicating a better fit of the 

restored results to the actual data. 

Each sensor node captures environmental values, 

retaining a portion of the measured time-series data and 

compressing them using a defined observation matrix. The 

sensors transmit the compressed data, effectively reducing 

power costs during transmission by minimizing the 

amount of transmitted data. On the receiving end, the 

receiver node restores the received data by solving a 

weighted L1 norm minimization problem on the server 

side. 

To assess accuracy, we established sensor nodes 

implementing the compression algorithm and sensor nodes 

without the compression algorithm at each observation 

point, as illustrated in Fig. 3. The values from sensor nodes 

without the compression algorithm were considered as the 

ground truth, and accuracy was evaluated using the 

coefficient of determination. 

 

Fig. 3. Developed sensor. 
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V. RESULTS 

A. Result and Discussion About c  

In the parameters related to temperature and 

atmospheric pressure, 1, 2 and 3 are fixed at 1.0.  For the 

parameters related to CO2, 1 and 2 are set to 1.0, while 

the value of c is varied from 0.1 to 2.0. The accuracy of 

temperature, atmospheric pressure, and CO2 data when c 

= 0.1 and c = 1.0 is depicted in Fig. 4. The figure illustrates 

the coefficient of determination on the vertical axis and the 

compression ratio (ranging from 80% to 99%) on the 

horizontal axis. The number of sensor nodes is 3 for 

temperature and atmospheric pressure data and 2 for CO2 

data, with the average coefficient of determination of the 

recovered data for each sensor node being presented. 

 

 
Fig. 4. Coefficient as a function of compression ratio when changing c. 

 For temperature data, c = 1.0 demonstrates stability 

and accuracy, with a coefficient of determination close to 

1 below a 90% compression ratio. Conversely, c = 0.1 

resulted in a coefficient of determination of approximately 

0.8.  In the case of atmospheric pressure data, the accuracy 

of c = 1.0 is more consistently stable than that of c = 0.1, 

albeit with a marginal difference. For CO2 data, both c = 

0.1 and 1.0 exhibit instability at compression ratios above 

90 %, but c = 1.0  displays stable accuracy at compression 

ratios below 90%. Notably, across all data types, setting c 

= 1.0 consistently results in a coefficient of determination 

of 0.9 or higher, even at an 80% compression ratio. 

B. Result When Changing the Sensor Node Number 

In the proposed WSN, c is fixed at 1.0, and the number 

of sensor nodes in each WSN is varied. The average 

accuracy of each sensor node is depicted in Fig. 5, with the 

coefficient of determination on the vertical axis and the 

compression ratio (ranging from 80% to 99%) on the 

horizontal axis. 

For temperature data, the accuracy stabilizes at high 

compression ratios of 97 % or higher when there are many 

sensor nodes.  However, no substantial difference is noted 

in the later compression ratios. 

 

 
Fig. 5. Coefficient as a function of compression ratio when changing 

the node number. 

In the case of atmospheric pressure and CO2 data, 

distributed CS by multiple sensor nodes proves effective 

at compression ratios of 90% or higher. 

C. Result Regarding the Optimal Compression Ratio 

Building on the presented outcomes, we contemplate 

deducing the optimal compression ratio by assessing the 

interplay between the power-saving effect and the 

accuracy of restored data. The objective function is 

formulated as follows, with the power-saving effect 

(power reduction ratio) denoted as E (0 ≤ 𝐸 < 1) and the 

restoration accuracy as R (𝑅 ≤ 1). 

f = αE + (1 − 𝛼)𝑅 (0 ≤ 𝛼 ≤ 1)           (3) 

The power-saving effect is directly proportional to the 

compression ratio. Power consumption P is calculated 

using the following equation, where I (mA) represents the 

current, N (bit) is the data size and D is the data rate. This 

power consumption is per node. 

P =
𝐼𝑁

𝐷
                                          (4) 

The power saving effect refers to the percentage of 

power reduction during data transmission. Power 

consumption by the compression algorithm on the sensor 

side is not considered due to its negligible impact. The 

compression ratio that maximizes the function f can be 

determined as the optimal compression ratio. This is 

achieved by increasing  when aiming to enhance the 

power-saving effect and decreasing  when prioritizing 

the accuracy of restored data. 

 Fig. 6 shows the value of f when  = 0.5. The figure 

presents the value of f on the vertical axis and the 

compression ratio (ranging from 80% to 99%) on the 

horizontal axis. 

Fig. 6 shows the compression ratio at which f reaches 

the maximum values. This compression ratio can be 

deemed as the optimal compression ratio. 
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Fig. 6. Value f as a function of compression ratio of the temperature, air 

pressure, and CO2. 

D. Power-Saving Efficiency 

Table II provides an overview of the power 

consumption of the sensor nodes during a 12 h operation. 

The measured power consumption results demonstrate that 

implementing the proposed method leads to reduced 

power consumption. For instance, at a compression ratio 

of 70%, the power consumption of the sensor node 

implementing the compression algorithm is 78% of that of 

the sensor node without it. These findings indicate that 

despite the compression algorithm contributing to 

increased power consumption, the overall effect of 

compression results in significant power savings. 

TABLE II. SENSOR NODE PARAMETERS 

Compression ratio Energy Consumption for a Sending 

Node 

0 % (without CS) 5.40 (Wh) 

30% 4.26 (Wh) 

50% 4.24 (Wh) 

70% 4.20 (Wh) 

 

E. Performance Comparison 

Several studies regarding time-series environment data 

measurement with WSNs [12, 13] delve into the 

consequences of decreasing the data transmission 

frequency on power savings and the influence of reduced 

data transmission frequency on prediction accuracy. The 

server complements the data, thinned due to reduced 

transmission, through a completion process (e.g., linear or 

spline interpolations). An improvement in the reduction 

ratio of the transmission numbers leads to lower power 

consumption, and a coefficient of determination closer to 

1 indicates a smaller error than the original environmental 

value. In other words, if the coefficient of determination 

remains close to 1 even with a higher reduction in the 

number of transmissions, the power is saved, and the 

values are kept close to the original data. 

Fig. 7 shows the coefficient of determination as a 

function of the transmission-number reduction rate. The 

solid line shows the coefficient of determination for the 

method using the compression algorithm (proposed 

method), and the dashed line shows the coefficient of 

determination for the method using spline interpolation 

(conventional method). From this figure, the proposed 

method maintains a higher coefficient of determination 

than the method with spline interpolation, even when the 

transmission reduction rate is increased. This result shows 

the effectiveness of the proposed method. 

 

 

Fig. 7. Performance comparison between the proposed and 

conventional methods. Please provide higher resolution figure. 

 

VI. DISCUSSION AND CONCLUSION 

We examine how adjusting parameters impacts data 

accuracy in environmental monitoring. Changing the 

weight parameter c in the -weighted L1 norm 

minimization problem enhances temperature, atmospheric 

pressure, and CO2 data stability when c is around 1.0 or 

higher. However, excessively small values of c may 

compromise local handling, reducing accuracy. 

Results regarding sensor nodes show significantly 

improved accuracy with two or more sensors, slightly 

better with a larger number. This underscores the 

effectiveness of distributed compressive sensing in time-

series environmental monitoring. 

We also consider optimal distributed compression 

sensing parameters to balance power-saving and data 

accuracy. Using =0.5, the temperature and atmospheric 

pressure data compression ratio ranges from 90% to 96%, 

and for CO2 data, it is 90%. This suggests a well-balanced 

approach to considering power-saving effects and data 

accuracy at =0.5. 

In conclusion, this study proposed power-saving 

methods using distributed CS in time-series environmental 

monitoring WSN, achieving high accuracy in restored data. 

The results indicate that the proposed method can obtain 

reliable restored data with significant power-saving effects 

at high compression ratios. Additionally, the study derived 

the optimal compression ratio based on the nature of WSN 

and observed data. Using a large  prioritizes, power 

consumption, while a small  prioritizes data accuracy, 

enabling the derivation of the optimal compression ratio 

for specific data and applications. Additionally, the 
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proposed method maintains a better concordance rate 

between the original and restored data than the 

conventional method (with spline interpolation) with 

reduced transmission numbers. The obtained results 

underscore the effectiveness of the proposed distributed 

compressed sensing-used WSN for power savings in time-

series environmental monitoring systems, offering 

valuable insights for future research endeavors. 
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