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Abstract—Passive Intermodulation (PIM) distortion which 

results from passive components such as antennas, 

connecters, etc. poses significant challenges in wireless 

communications by limiting cell coverage and data rates. In 

Carrier Aggregated (CA) Long-Term Evolution (LTE)   

system, PIM is manifested as self-interreference when 

intermodulation products of the transmitted signal leak to 

the receiver. The primary goal of this paper is to develop a 

new behavioral model for passive nonlinearities enabling 

PIM distortion in LTE systems to be predicted. The analysis 

employs a Threshold-Decomposition-based Piecewise Linear 

(TD-PWL) model to represent a passive nonlinearity and 

predict PIM in CA-LTE system. Simulation results show that 

the proposed model accurately predicts PIM and highlight its 

superior numerical stability and accuracy over polynomial-

based models. These results position the PWL model as a 

promising choice in the design of PIM cancellation schemes. 
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I. INTRODUCTION 

Modern mobile communication systems require large 

link budgets due to the need for larger coverage areas and 

capacity. The large link budgets mean that high linearity 

requirements in the transmit signal path are required as 

nonlinearity results in degradation of overall system 

performance. Nonlinear distortion can result from 

nonlinear active circuits such as mixers or amplifiers, or 

from passive devices such as filters, antennas, connectors 

and transmission lines. Active nonlinear distortion is 

usually manifested as intermodulation products that have 

significant power levels and hence, can easily be 

characterized and then removed using filtering or 

linearization techniques. Unfortunately, Passive 

Intermodulation (PIM) distortion results in weak 

intermodulation products and may only grow to significant 

levels as passive components age or corrode. Hence, PIM 

is very difficult to diagnose, troubleshoot and model [1].  

In general, there are two sources of PIM. The first is 

related to current flowing in junctions with different 

materials such as metal-to metal or metal to insulator 

contacts. The second is related to nonlinear passive 

 

 
 

materials where the current response of the material to an 

applied voltage has nonlinear characteristics. The first 

category includes loose or oxidized joints while the second 

includes conductive properties of the material [2].  

Although the PIM phenomena existed in early cellular 

systems (1G and 2G), it has become more significant with 

modern cellular systems such as 3 to 5G systems [3]. This 

is because the increased density and diversity of base 

station towers which utilize antenna sharing made PIM 

more significant. In such configurations, passive 

components generate significant amounts of PIM, 

especially if these are poorly installed or affected by 

weather.  

PIM is notably evident in modern wideband systems 

that employ multichannel transmission such as CA-LTE 

systems. In such system, the transmitted signal which 

consists of aggregated carriers, is subject to passive 

nonlinearities in the duplexing stage. The passive 

nonlinearity produces intermodulation products which 

may lie in the receive band. If these IM components leak 

to the receiver due to imperfect duplexing, they can cause 

significant interference at the receiver. This interreference 

being substantially stronger than the desired weak received 

signal may cause complete blocking of the received or 

limit the capacity of the communication system and 

compromise it throughput [4]. Experimental studies 

showed that the download speed may drop by 20% when 

PIM levels increase by 20 dB (for example from −125 

dBm to −105 dBm) [6]. 

An illustration of this phenomenon is demonstrated in 

Fig. 1, which shows a diagram for PIM generation process 

in CA system. The transmitted signal which consists of CA 

channels is subjected to a passive nonlinearity represented 

by the PIM source. A simple example of this scenario is 

PIM interference in an CA-LTE base station system as 

shown in Fig. 2. The transmit band of LTE systems ranges 

from 1930 MHz to 1990 MHz while the receive band 

ranges from 1850 MHz to 1910 MHz. If the transmitted 

signal consists of two signals centered at 𝑓1=1940 MHz 

and 𝑓2=1980 MHz, then their third-order intermodulation 

products generated by the passive nonlinearity will be 

centered at 2𝑓2 − 𝑓1=1900 MHz which will fall into the 

receive band [1]. If these intermodulation products leak to 

the receiver through the duplexer, significant interference 
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will be introduced which leads to significant receiver 

desensitization [1]. 

The obvious solution to the receiver desensitization 

problem in such a system is to reduce the transmit power 

or relax the receiver sensitivity, however, this will severely 

compromise the uplink coverage [4]. A straightforward 

alternative to this is using high-quality materials, however, 

using high quality materials is usually costly and hence, 

unreliable from a quality assurance standpoint of the 

manufacturing process. Other solutions include 

developing guidelines for minimization of PIM such as 

minimizing loose contacts, minimizing thermal variations, 

minimizing cable lengths, etc. but these usually result in 

increased cost and power requirements [7].  

 

 
Fig. 1. PIM generation in a wireless transceiver. 

 
Fig. 2. Output spectrum of a passive nonlinearity for a two CA channels 

input. 

 

The alternative to the above measures is to use PIM 

cancelation schemes where PIM components are cancelled 

either in the analog or digital domains [8]. PIM 

cancellation is based on developing a nonlinear model for 

the passive nonlinearity. The model is then used to 

reconstruct a PIM signal from the input signals at the 

transmitter which can then be used to cancel the PIM 

components at the receiver. 

Nonlinear models are based on either physical or 

behavioral models. Physical models are usually very 

sophisticated and not easy to validate if the physical 

mechanisms are not fully understood  [9]. This is because 

the PIM phenomena seems to result from multiple physical 

nonlinear mechanisms such as thermal, mechanical or 

charge trapping. Identifying and discriminating these 

mechanisms is difficult, thereby complicating the 

modeling process [2]. In contrast, behavioral models have 

been more attractive as they are usually based on fitting 

measured characteristics to simple mathematical models 

inspired by the physical phenomena. 

Significant research has been undertaken on developing 

behavioral models for passive nonlinearities. The most 

popular models have been the polynomial-based models. 

In [10], it was shown using measurements that the 

polynomial model can adequately describe the frequency 

mixing process that results from passive nonlinearities in 

a transmission line. However, as was shown in [11], the 

polynomial model is not well suited for modelling PIM-

producing components such as coaxial connections. The 

main reason for that is that the slope of PIM characteristics 

is not constant with respect to the input power which 

renders the polynomial model incapable for addressing 

this phenomenon [12]. Furthermore, the polynomial-based 

models lack numerical stability especially with hard 

nonlinearities as will be seen in the next sections. 

Zhang et al. [13] presented a composite exponential 

model to characterize PIM which considers the correlation 

between the PIM products and their dependence on carrier 

power. They validated the model using measurements on 

a microwave filter. Zhang et al. [14] used segmented 

polynomial model to accurately model PIM. The model, 

which was verified by measurements, captured the 

dependence of PIM on carrier power and was shown to 

require a smaller number of parameters than the traditional 

polynomial model. Kozlov et al. [15] developed a 

memoryless nonlinear polynomial model for prediction of 

high-order intermodulation distortion in multi-carrier 

systems. The model was based on extraction of parameters 

from two tone measurements on a microstrip transmission 

line with distributed nonlinearity. They showed that 

models based on two-tone measurements tend to 

underestimate crossband interference when the input to the 

model consists of two modulated signals. Conversely, in 

the case of three modulated signals, it was shown that these 

models tend to overestimate PIM [16]. 

In essence, behavioral models consider the dependence 

of PIM on power, frequency bandwidth, signal modulation 

temperature and perhaps other factors. Nevertheless, they 

are complicated by the difficulty of validating them in 

specific situations. Furthermore, the accuracy of these 

behavioral models depends on the ability to identify the 

physical mechanisms by which PIM occurs [17]. 

This paper aims to develop a new behavioral model for 

predicting PIM with the objective of enhancing the 

accuracy of available models. A PWL model based on the 

concept of TD is proposed to model a passive nonlinearity 

and to accurately predict PIM. The model is based on 

segmentation of the nonlinear characteristics which results 

in a more numerically stable model with a high dynamic 

range than the traditional polynomial model. The model is 

used to predict PIM in a carrier aggregated LTE system 

where it is shown that it accurately predicts PIM 

components which results from a passive nonlinearity in a 

CA-LTE system. 
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II. MODELING OF A PIM SOURCE 

The PIM source in Fig. 1 refers to passive Radio 

Frequency (RF) and microwave components such as 

coaxial connectors in the duplexing stage. These 

components exhibit nonlinear characteristics due to their 

low-quality commercial materials and fabrication flaws. 

The nonlinear characteristics of such passive devices 

usually produce intermodulation power that deviate from 

the conventional 3dB/dB slopes of intermodulation power 

produced by active nonlinearities. This phenomenon was 

studied in [18] where PIM generated by electro-thermally 

induced nonlinearities of a resistive element was analyzed. 

The analysis showed that third order intermodulation 

products of nonlinearities that result from decreasing-

resistance produce less than 3 dB/dB regrowth, while those 

of increasing-resistance produce greater than 3 dB/dB 

regrowth.  

The deviation of passive nonlinear characteristics from 

the 3dB/dB regrowth means that traditional nonlinear 

models for active devices (such as the Rapp model and the 

Saleh model) cannot be used to model passive 

nonlinearities [19]. Therefore, an often-utilized model for 

such passive nonlinearity is the hyperbolic tangent model 

which is given by the following I/V characteristics: 

𝐼(𝑡) = 𝑔0[1 + 𝑘1 tanh(𝑘2𝑉(𝑡))]                     (1) 

where 𝑔0 , 𝑘1 , 𝑘2  are model parameters which can be 

determined from the material properties of the PIM source. 

Fig. 3 shows the I/V characteristics of the hyperbolic 

tangent model in Eq. (1).  

 
Fig. 3. Nonlinear characteristics generated using the hyperbolic tangent 

model in Eq. (1). 

 

The hyperbolic tangent model was shown in [19] to 

follow measured PIM characteristics of coaxial connecter 

over an input power range of 30−70 dB by the proper 

selection of the two independent parameters 𝑘1  and 𝑘2 . 

Moreover, this model is deemed suitable for modeling a 

passive nonlinearity for many reasons. Firstly, the 

magnetization model used to characterize nonlinearity in a 

coaxial structure follow the hyperbolic tangent 

characteristics [20, 21]. Secondly, a passive nonlinearity 

which result from multiple sources (such as multiple 

coaxial connectors) follows a hyperbolic tangent 

characteristic as demonstrated in [11]. Finally, the 

hyperbolic tangent function has an intriguing property that 

its derivative is also a hyperbolic tangent function. As a 

result, its second derivative becomes proportional to the 

linear combination of the first order and the third order of 

the input which are direct measures of the nonlinear 

behavior [22]. 

In the following sections, the PIM source in Fig. 1 is 

assumed to follow the hyperbolic tangent characteristics in 

Eq. (1). Subsequently, a TD-PWL behavioral model is 

developed by fitting a TD-PWL model to the hyperbolic 

tangent characteristics. The behavioral model is then used 

to predict PIM power in accordance with the scenario 

shown in Fig. 2. 

III.   THE TD-PWL BEHAVIORAL MODEL  

A. Model Development 

In this section, we propose using a PWL model to model 

a passive nonlinearity that follows hyperbolic tangent 

characteristics. The rationale for using the PWL 

approximation for modeling passive nonlinearities stems 

from the fact that the PWL model is suitable for 

approximating hyperbolic tangent characteristics as shown 

in [23]. 

The proposed TD-PWL model represents the passive 

nonlinear characteristics as linear combination of the 

segmented input as 

𝑦(𝑡) = 𝐹(𝑥(𝑡)) = ∑ 𝑎𝑖𝑋𝑖(𝑡)𝐾
𝑖=1                    (2) 

Here 𝐹(·) represents the passive nonlinearity, {𝑎𝑖} are 

the model coefficients and 𝑋𝑖(𝑡)
  

represents the i-th 

segment of the input signal which are obtained using the 

TD operator. The TD operator is simply a soft limiter 

operator of the form [24]: 

𝑋𝑖(𝑡) = {

𝜆𝑖+1 − 𝜆𝑖 |𝑥(𝑡)| > 𝜆𝑖+1

𝑥(𝑡) − 𝜆𝑖 𝜆𝑖 ≤ |𝑥(𝑡)| ≤ 𝜆𝑖+1

0 |𝑥(𝑡)| < 𝜆𝑖

               (3) 

where, { }i is a set of thresholds. The TD-PWL model 

output can be written in matrix form as 

 𝐘 = Ψ𝑋𝐚                                     (4) 

where, 𝒂 = [𝑎1  𝑎2,  … . , 𝑎𝐾]
𝑇

 is a K×1 vector which 

represents the coefficients of the PWL model, 𝐘 is a M×1 

vector which represents the output signal and Ψ𝑋 is a M×K 

matrix whose columns are the decomposed segments of 

the input:  

ΨX = [𝑋1(𝑡)   𝑋2(𝑡) … 𝑋𝐾(𝑡)]                     (5)
 

The model coefficients can then be extracted through 

linear regression using Least Squares (LS) optimization as 

 𝒂 = Ψ𝑋
+𝐘                                     (6) 

where Y is the measured output vector and Ψ𝑋
+ =

(Ψ𝑋
𝐻Ψ𝑋)−1Ψ𝑋  is the Moore-Penrose pseudo inverse of Ψ𝑋 

and H indicates the Hermitian transpose.  
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Fig. 4 shows a PWL fit to the nonlinear characteristics 

of the hyperbolic tangent function for K=3 and K=5. By 

visual inspection, it is clear that the PWL model provides 

a good fit to the hyperbolic tangent characteristics for 𝐾 ≥
5.  

  
(a) 

 
(b) 

Fig. 4. TD-PWL fit to the hyperbolic tangent nonlinear characteristics: 

Solid: hyperbolic tangent model and dashed: PWL model; (a) K=3 and 

(b) K=5. 

B. Remarks 

The correlation between the columns of the regressor 

matrix is characterized by the condition number of the 

matrix [1]. High correlation (and hence, a high condition 

number) of the regressor matrix means that the model 

output will exhibit large deviation in the output for small 

variations in the input. On the other hand, a high condition 

number of the regressor matrix results in the inability of 

the model to predict nonlinear distortion when the input 

consists of complex signals that have high Peak to Average 

Ratios (PAR) such as digitally modulated signals of finite 

bandwidth. 

The TD-PWL model is essentially a linear combination 

of threshold decomposed segments of the input signal 

where the continuity at the boundaries of the segments is 

ensured by the properties of the TD operator. This results 

in a regression matrix ΨX with low correlation among its 

columns regardless of the model order. Hence, the 

condition number of the matrix does not increase 

significantly with increasing the model order. This gives 

the PWL an advantage over the polynomial model which 

has a regressor matrix in the form of a Vandermonde 

matrix which is given by [12]: 

Φ𝑋 = [

1 𝑥 𝑥2

1 𝑥 𝑥2    …  
𝑥𝑛

𝑥𝑛
. . .
1 𝑥 𝑥2   …   

.
𝑥𝑛

]                       (7) 

 

Note that the Vandermonde matrix consists of highly 

correlated monomials indicating high condition number, 

especially if the model order is high.  

Consequently, the PWL model offers an advantage over 

the polynomial model when the nonlinearity is hard as 

hard nonlinearities require a high model order to achieve 

acceptable modeling accuracy. Furthermore, the low 

condition number of the regressor matrix of the PWL 

model will also make it more suited than the polynomial 

model for predicting nonlinear distortion when the input 

signal has high PAR.  

Fig. 5 depicts the Mean Squared Error (MSE) between 

the behavioral model output (𝑃𝑜𝑚𝑜𝑑𝑒𝑙
) and the hyperbolic 

tangent characteristics ( 𝑃𝑜𝑡𝑎𝑛ℎ
) versus the number of 

coefficients. The MSE is defined as: 

𝑀𝑆𝐸 = |𝑃𝑜𝑚𝑜𝑑𝑒𝑙
− 𝑃𝑜𝑡𝑎𝑛ℎ

|
2
                   (8) 

The plot reveals that the MSE of the polynomial model 

fluctuates with varying coefficient numbers, indicating no 

fidelity improvement with increased model order. 

Conversely, the PWL model displays a smooth decrease in 

MSE with increasing the number of model coefficients, 

suggesting its suitability for modeling hard nonlinearities 

that necessitate higher orders [25]. 

 
Fig. 5. MSE vs. number of coefficients (N or K): (red): PWL and (blue): 

polynomial model. 

Additionally, prior research demonstrates the 

inadequacy of the polynomial model in modeling PIM-

producing components like coaxial connections [11]. 

Polynomial models establish an n-th order proportion 

between input power and the n-th intermodulation product, 
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which conflicts with measured PIM characteristics which 

typically exhibit slopes smaller than ‘n’ [26]. Though 

higher-order polynomials can address this issue, they lead 

to an unstable model, emphasizing the suitability of the 

PWL model’s for modeling passive nonlinearities. 

C. PIM Cancellation Using the PWL Model 

The PWL model can be incorporated into a PIM 

cancellation loop within a CA-LTE base station, as shown 

in Fig. 6, [26, 27]. For simplicity, the active nonlinearities 

of the LNA and the PA are neglected in this model. In this 

system, the transmitted signal consists of the sum of two 

aggregated carriers 𝑥1(𝑡) and 𝑥2(𝑡) centered at 𝑓1 and 𝑓2. 

Assuming offline parameter estimation, where the uplink 

received signal (denoted by 𝑟0(𝑡)) is absent, the available 

signal at the receiver consists of only the leaked signal 

from the transmitter 𝑥(𝑡) after being processed by the PIM 

source. Therefore:  

𝑟(𝑡) = 𝐹(𝑥(𝑡))                                 (9) 

where, 𝐹(·) represents the passive nonlinearity. The PIM 

estimation block produces the model coefficients by 

comparing the transmitted signal to the output of the 

passive nonlinearity at the receiver. The model 

coefficients can be developed using Eq. (6) where the 

vector Y consists of the samples of 𝑟(𝑡) and Ψ𝑋 consists 

of threshold-decomposed segments of the transmitted 

signal 𝑥(𝑡).  After training the system, the model 

coefficients 𝐚 produced by the PIM estimation block can 

be used to produce a cancelling signal as 

𝑧𝑐(𝑡) = 𝐵𝑃𝐹{∑ 𝑎𝑖𝑋𝑖(𝑡)𝐾
𝑖=1 }                     (10) 

where BPF indicates a bandpass filter centered at the PIM 

frequencies. The cancelling signal is then fed to the 

receiver at online operation to cancel the PIM 

interreference. In this case, the received signal is 

𝑟(𝑡) = 𝑟0(𝑡) + 𝐹(𝑥(𝑡))                     (11) 

And hence, the signal at the receiver chain is  

𝑟𝑐(𝑡) = 𝑟(𝑡) − 𝑧𝑐(𝑡) = 𝑟0(𝑡)                      (12) 

which consists of only the uplink received signal without 

PIM. 

 

 
Fig. 6.  PIM cancellation scheme in a CA-LTE system. 

The PIM cancellation scheme can be implemented 

adaptively where PIM cancelation is done continuously 

during online operation of the radio transceiver [28]. 

IV. SIMULATION RESULTS 

In this section, simulation results of the above concepts 

are presented and discussed. The objective of the 

simulations is to show that the PWL model is well suited 

for modeling PIM in CA-LTE systems and that it 

outperforms the polynomial model.  

The passive nonlinearity was generated using the 

hyperbolic tangent characteristics with parameters 𝑘1 =
6 × 10−4 , 𝑘2 = 3 × 10−2  and g0=1. Then a polynomial 

model and a TD-PWL model were developed for these 

nonlinear characteristics using LS optimization. Table I 

shows the coefficients of both models for N=13 and K=13.  

The capability of the PWL model to predict PIM in an 

LTE system is defined as the input power range of an 

OFDM signal for which the model provides a good 

estimate of PIM distortion. For this purpose, the two 

models (PWL and polynomial) were fed with two CA 

OFDM signal with 20 MHz bandwidth and a frequency 

separation of 120 MHz. The power spectral density (PSD) 

of the output of the nonlinear model was computed using 

the periodogram of the output of the model is expressed as 

[29]: 

𝑝𝑥𝑤,𝑀(𝜔) =
1

𝑀
|∑ 𝑦𝑤(𝑛)𝑒−𝑗𝜔𝑛𝑀 − 1

𝑛=0 |
2

           (13) 

where 𝑦𝑤(𝑛) = 𝑦(𝑛)𝑤(𝑛)  is the windowed signal and 
𝑤(𝑛) is the window function and M is the signal size. A 
Hanning window was used in the simulations as it provides 
better prediction capability of PIM as was shown in [29]. 

Fig. 7 shows the Power Spectral Density (PSD) at the 

output of a PIM source characterized by the hyperbolic 

tangent model when the input consists of two-OFDM 

signals. The figure shows the PIM components that appear 

at the intermodulation frequencies. 

 
Fig. 7. Power spectral density at the output of the PIM source (modeled 

by a hyperbolic tangent characteristics) for an input that consists of two-

OFDM signals. 

In a wide band system, the instability of the polynomial 

model is manifested as overestimation of the PIM power 

when the transmitted signal consists of two OFDM signals 

as shown in Fig. 8 (a). The figure shows that the 

polynomial model fails to predict PIM and produces an 

output that overestimates the PIM components. The reason 
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for this is that the OFDM signals have a high PAR which 

tend to drive the model beyond the power limit on which 

the model was extracted. In contrast, Fig. 8(b) shows that 

the PWL model provides a stable estimation of the PIM 

products even when the model is driven beyond its input 

power limit.  

 
TABLE I. PWL AND POLYNOMIAL MODEL COEFFICIENTS FOR THE 

HYPERBOLIC TANGENT NONLINEARITY 

PWL Coefficients 
Polynomial Model 

Coefficients 

 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

1.45563 

1.43757 

1.40262 

1.35217 

1.28853 

1.21463 

1.13305 

1.04682 

0.95845 

0.87069 

0.78492 

0.70286 

0.62436 

b1 

b3 

b5 

b7 

b9 

b11 

b13 

− 

− 

− 

− 

− 

− 

1.0303 

−3.6048×10-04 

1.4993×10-07 

−4.4793×10-11 

−1.1546×10-13 

6.4532×10-16 

−1.7754×10-18 

− 

− 

− 

− 

− 

− 

 

 

 
(a) 

 
(b) 

Fig. 8. The PSD at the output of a passive nonlinearity; (hyperbolic 

tangent characteristics) (solid); and behavioural model (dashed)); (a) 

polynomial model and (b) the PWL model. 

Figs. 9 (a) and (b) show the power of the PIM 

components (3rd to 7th order products) predicted by both 

model vs. the input power. It is clear that the PWL model 

provides excellent match to the nonlinear output of the 

passive nonlinearity over the full range of the input power 

(30 dB in this case). Conversely, the polynomial model can 

only model the passive nonlinearity over half the range of 

the input power only (about 18 dB). These results indicate 

that the PWL model is more efficient than polynomial-

base models with regards to model stability and accuracy 

as well as low complexity given the small number of 

coefficients needed to model a passive nonlinearity. 

 
(a) 

 
(b) 

Fig. 9. PIM power vs. input power (hyperbolic tangent characteristics) 

(solid); and behavioural model (dashed)); (a): Polynomial model with 

N=15 and (b) PWL model with K=15. 

V. CONCLUSION  

A new approach for behavioral modeling PIM in 

wireless communication systems has been presented. The 

model is based on TD-PWL approximation of a passive 

nonlinearity.  The proposed TD-PWL model was used to 

fit the passive nonlinearity characteristics represented by a 

hyperbolic tangent I/V characteristic which are commonly 

used to model passive nonlinearities. It has been shown 

that the TD-PWL is more numerically stable and is more 

economical in terms of the number of parameters than 

polynomial models, especially for hard nonlinearities 

which require high model orders. Given the stability and 

numerical effectiveness of the model, it has been shown 

that it can efficiently be used to predict PIM as well as to 

design efficient PIM cancellation schemes in CA-LTE 
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systems. The proposed model was verified by simulations 

where it has been shown that PWL model is more effective 

for modeling PIM in CA-LTE system than the traditional 

polynomial models in terms of modeling accuracy. The 

model can be extended to account for memory effects of 

passive nonlinearities but this is left for future research. 
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