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 Abstract—Frequency Hopping (FH) spread spectrum system 

is extensively used in military and civilian fields due to its 

robustness against interference and efficiency in confronting 

radio jamming. Channel estimation is a crucial part of the 

FH system. However, signal processing-based channel 

estimation methods have some constraints, such as high 

computational complexity, sensitivity to noise level, and 

excessive overhead. To alleviate these issues, we propose a 

Machine Learning (ML) model for precisely estimating 

Narrow Band (NB) multipath fading channel parameters for 

a Slow Frequency Hopping (SFH) spread spectrum system. 

In the proposed model, we employed a Neural Network (NN) 

with three layers consisting of an input layer that interprets 

the signal's fundamental patterns, a hidden layer to extract 

the correlation found in the time scene, and an output layer 

that utilizes a linear activation function to provide the 

flexibility required to address the dynamic relationship 

between channel gain and time delay. Without prior 

experience, leveraging a synthetic dataset rich in complex 

temporal variations and channel gain nuances, the NN 

architecture, characterized by multiple dense layers, 

effectively captures complex temporal relationships. 

Following rigorous training and validation utilizing the 

Mean-Square Error (MSE) loss function, the model 

significantly reduced loss, emphasizing its proficiency for an 

accurate delay and gain estimation. A computer simulation 

comparison between the performance of the proposed model 

and previous classical models was included in this paper. 

Based on simulation results, the proposed ML-based 

estimator model significantly outperforms many classical 

subspace-based methods in terms of MSE, the performance 

improvement appears over several Signal-to-Noise Ratios 

(SNR). Furthermore, the proposed model provided a 

reasonable tradeoff between complexity and performance. 

 
Keywords—frequency hopping, time-delay estimation, 

channel gain, A Narrow Band (NB) multipath channel, 

rectified linear unit, hidden layer, machine learning, deep 

learning, neural networks, loss function. 

I.  INTRODUCTION 

    

Multiple strategies have been proposed to address 

impairments in rapidly varying radio channels. These 

strategies include channel coding and interleaving, 

adaptive modulation, antenna diversity, Fixed Channel 

Allocation (FCA), Adaptive Frequency Allocation (AFA), 

dynamic channel allocation (DCA), Cell Splitting, 

Resource Reuse (TDMA / FDMA), Discontinued 

Transmission (DTX), Power Control (PC), smart antennas, 

Direct Sequence (DS) and Frequency Hopping (FH) 

spectrum spreading [1, 2]. FH communication systems are 

widely utilized in anti-jamming communication primarily 

because of their capability to resist interception and 

interference [3]. As the electromagnetic environment 

becomes increasingly complicated, the FH communication 

systems’ transmitters adapt by adopting more flexible 

frequency hopping patterns to manage interference 

effectively. Fast Frequency Hopping (FFH) systems are 

characterized by a frequency change rate that is notably 

higher than the information rate; this rapid variation in 

frequencies sustains the system's resilience against 

interference and fading, contributing to heightened 

robustness in dynamic communication environments. 

On the other hand, Slow Frequency Hopping (SFH) 

systems operate with a frequency change rate that is 

intentionally comparable to or slower than the information 

rate. This frequency-changing approach was designed to 

Maximize the frequency diversity of the communication 

system, ensuring a strategic balance between adapting to 

channel conditions and maintaining reliable 

communication. These distinctions in frequency hopping 

rates allow system designers to adjust their approach based 

on specific requirements, environmental factors, and the 

desired trade-offs between the information transfer rate 

and the system’s capacity to moderate interference. The 

FH system model is generally considered a Narrow-Band 

(NB) system; the narrow-band characteristic simplifies the 

modeling and analysis of the FH system, making it easier 

to handle in terms of signal processing and system design 

considerations  [4].   

Time-delay estimation becomes significant in an SFH 

system when a high data rate signal is transmitted over a 

frequency-selective fading channel. Blind channel 

estimation for FH systems refers to estimating the channel 

 

Manuscript received November 8, 2023; revised January 21, 2024; accepted 

February 6, 2024  

Journal of Communications, vol. 19, no. 3, 2024

143doi:10.12720/jcm.19.3.143-151

; published March 8, 2024.

mailto:first.%20qasaymeh@ttu.edu.jo
mailto:ali.qatawneh@ttu.edu.jo
mailto:a.aljaafreh@ttu.edu.jo


gain and time delays without requiring any prior 

knowledge of pilot symbols or training sequences. 

Accurate channel estimation generally leads to optimal 

signal detection at the receiver. This mission can be 

challenging due to the active nature of FH systems and the 

need for explicitly transmitted reference signals [5]. 

A Modified Discrete-Time Wigner-Ville Distribution 

(MDTWVD)-based blind parameter estimation technique 

was presented to capture the time-varying characteristics 

of the FH system in [6], where a low-order Chebyshev 

polynomial was employed as a kernel function to reduce 

cross-term. In [7], a blind channel parameter estimation 

scheme based on time-frequency diagram modification for 

FH signals was introduced. The technique involves 

transforming the observed signal into a time-frequency 

domain. Subsequently, an adaptive threshold-based 

energy detection technique was employed to modify the 

time-frequency diagram. The parameters of the frequency-

hopping signals were then obtained from the modified 

spectrogram. 

Subspace methods to estimate the channel parameters 

were examined using Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) [8]. An 

invariance structure can be extracted via the ESPRIT 

algorithm from the receiving FH signal. To address this 

issue, Hande et al. [9] suggested an algorithm that is like 

ESPRIT but exploits multiple invariances than ESPRIT. 

Exploiting multiple invariances results in a better estimate 

of the delays in an FH system. 

The challenge of estimating multipath time delay 

parameters via the Propagator Method (PM) was tackled 

in references [10, 11]. Rank Revealing QR (RRQR) 

Factorization in [12] was employed to estimate the channel 

parameters in two approaches. The first approach 

combined the RRQR with the multiple signal 

classification (MUSIC) algorithm, as in [13]. In the second 

approach, the RR was incorporated with the eigenvalue 

decomposition of the projection matrix, as presented in 

[14]. The proposed method in [14] utilizes the null space 

obtained by the Rank-Revealing LU (RRLU) factorization. 

This factorization method offers precise information about 

numerical null space and rank. The proposed method 

decreased the computational complexity compared to 

RRQR methods while maintaining similar performance 

levels. The exploration of a noise space-based method for 

estimating multipath SFH channels, specifically focusing 

on efficient multipath time delays, was proposed in [15]. 

Furthermore, an algorithm for blind channel estimation 

was developed for SFH systems in [16] using RRQR 

factorization. The developed algorithm significantly 

improved performance compared to a Least Square 

incorporate with ESPRIT (LS-ESPRIT) and another 

method Total Least Square incorporate with ESPRIT 

(TLS-ESPRIT) estimators. Additionally, there was 

potential value in assessing the estimator performance 

through metrics such as Symbol Error Rate (SER).   

Machine Learning (ML) has recently shown great 

potential in wireless communication systems [17−22]. ML 

can be employed as an End-to-End (E2E) system or to 

enhance the performance of a specific communication 

functional component such as modulation, channel 

estimations, signal detection, or channel coding. In the 

E2E system, the source and the receiver in the 

communication system can be replaced with Deep Neural 

Networks (DNNs) to achieve optimal overall system 

efficiency [17]. For example, ML approaches, such as 

neural networks, can be trained in channel estimation to 

learn the mapping between received FH signals and 

channel characteristics. Training datasets with known 

channel conditions can be used to train the model for blind 

estimation. ML methods were gaining attention for their 

ability to adapt to intricate and dynamic channel 

conditions [17]. 

An intelligent reception approach for FH sequences is 

introduced in [18], utilizing a combination of time-

frequency analysis and Deep Learning (DL) to achieve 

intelligent estimations of frequency-hopping sequences. 

The approach involves the design of a hybrid network 

module, integrating a Convolutional Neural Network 

(CNN) with a Gated Recurrent Unit (GRU). Within this 

module, incorporating a Residual Network (ResNet) and 

squeeze-and-extraction can enhance the feature extraction 

and expression capabilities of the CNN network. 

   A hybrid Convolutional Neural Network (HCNN) 

system was introduced in [21], aiming to classify FH 

Spread Spectrum (FHSS) signals in the presence of an 

additive white Gaussian Noise (AWGN) and background 

signals. The HCNN system involves the fusion of both 

handcrafted and deep features. The CNN functions as a 

deep feature extractor, converting the Intermediate 

Frequency (IF) signal to a Time-Frequency Representation 

(TFR), which was then utilized as a Two-Dimensional (2D) 

input image. Concurrently, handcrafted features of the 

FHSS signal, such as hop frequency and hop duration, can 

be estimated from the TFR. The classification task was 

accomplished using a Three-Layer fully Connected 

Network (TLFCN) with a determined network structure. 

Furthermore, ML algorithms have been employed to 

enhance the efficiency of FH in wireless communication 

systems, optimizing frequency assignments based on real-

time data and improving overall spectral utilization [22]. 

Although classical signal processing methods could 

successfully address the problem of estimating channel 

and signal parameters in FH-based communications, these 

methods still have some restrictions, especially in complex 

wireless environments such as 5g and beyond. Among 

these limitations are introducing excessive overhead in 

pilot-aided methods, the need for prior knowledge of 

channels as in blind estimation methods, and the lack of 

computational scalability when dealing with massive 

Multiple-Input and Multiple-Output (MIMO) systems.  

Different channel estimation schemes based on Deep 

Neural Networks (DNN) were introduced in [23−27] to 

address issues observed in traditional channel estimation 

schemes. In [23], a deep learning algorithm for channel 

estimation using known channel parameters at pilot 

positions. The time-frequency response was treated as a 

two-dimensional image, and then deep learning techniques 

such as Image Restoration (IR) and image Super-

Resolution (SR) were employed. Channel parameters at 
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pilot positions were assumed to be images with low 

resolution. The proposed scheme presented comparable 

performance to Minimum Mean Square Error (MMSE) 

based classical estimation schemes. The proposed channel 

estimation scheme presented in [24] could dynamically 

predict Channel State Information (CSI) of time-selective 

fading channels without any previous knowledge about 

channel statistics or models. Yang et al. [25] suggested a 

deep learning channel estimation scheme for a 

communication system operating under time-frequency 

selective fading channels. The proposed scheme can 

utilize the previous channel estimated to predict the 

characteristics of channel fluctuations. Moreover, to 

increase the channel estimation accuracy, the DNN 

implicitly learns the time correlation of the time-varying 

channels from the preceding channel estimate. Channel 

estimation can be challenging in high mobility due to 

channel fast time fluctuation and non-stationary properties. 

To deal with this challenge and to obtain channel response 

features, a channel estimation scheme utilizing a 

Convolutional Neural Network (CNN) was proposed [26]. 

Under Weibull fading channel conditions, a deep learning 

channel estimation scheme was introduced in [27] for 

Orthogonal Frequency Division Multiplexing (OFDM) 

systems. 

 

 
Fig. 1. The baseband model of multipath frequency hopping. 

 

Inspired by the prospects and trends for integrating 

artificial intelligence in wireless communications and 

motivated by the potential opportunities of machine 

learning in addressing issues in wireless communication 

systems compared to solutions provided through 

traditional signal processing methods, we proposed a deep 

learning-based channel estimation scheme in a frequency 

hopping system.  

In the proposed scheme, we used a neural network with 

three layers consisting of an input layer that diagnoses the 

signal's fundamental patterns, a hidden layer to extract the 

correlation found in the time scene and an output layer that 

employs a linear activation function to provide the 

flexibility required to handle the dynamic relationship 

between channel gain and time delay. The Mean Squared 

Error (MSE) acts as the loss function to measure the 

average squared difference between the estimated and the 

actual values. The simulation results indicated that the 

performance of the proposed model outperforms 

conventional channel estimation methods. 

This letter is organized as follows: Section II presents 

the system model and problem formulation. A review of 

subspace-based classical methods is described in Section 

III. The development of the novel ML method is presented 

in Section IV. The performance of these methods is 

illustrated through MATLAB simulations in Section V. 

Finally, some concluding remarks and future work follow 

in Section VI. 

II. LITERATION REVIEW   

A. Problem Formulation 

The FH communication system operates as a multi-

frequency shift keying system, comprising both a 

transmitting and a receiving end. The key elements of the 

transmitter include a transmitting antenna, frequency 

synthesizer, mixer, and Pseudo-Noise (PN) code generator. 

On the receiving end, the main components consist of the 

receiving antenna, synchronization circuit, PN code 

generator, frequency synthesizer, mixer, and filter. At the 

transmitting stage, the modulator is responsible for 

modulating the data information. Through the coordinated 

efforts of the pseudo-random code and local oscillator, a 

variable carrier frequency is generated to complete the 

modulation process. Carrier signals of varying frequencies 

are emitted at regular intervals. These carriers are then 

modulated with the original signals, producing an FH 

signal that is transmitted through a multipath fading 

channel. The baseband model of the multipath FH system, 

as shown in Fig. 1, is considered as a time-varying linear 

filter: 

    

ℎ(𝜏, 𝑡) = ∑ 𝛽𝑖(𝑡)𝑒−𝑗∅𝑖(𝑡)𝑃(𝑡)
𝑖=1 𝛿(𝑡 − 𝜏𝑖(𝑡))               (1) 

 

The parameters 𝛽𝑖(𝑡), ∅𝑖(𝑡)  are r the magnitude 

channel gain and phase channel gain. Parameter 𝜏𝑖(𝑡) is 

the related time delay of the i-th multipath. The three 

parameters are assumed to be independent. The Impulse 

response of the NBFH multipath model is shown in Fig. 2 

for a case of three paths. The received signal y(t) which is 

the output of the channel is the convolution of the input 

signal x(t) with the equivalent low-pass channel impulse 

response ℎ(𝜏, 𝑡), i.e. y(t)=x(t) h(τ,t). 

 

 
Fig. 2. The impulse response of NBFH multipath model. 
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The baseband model of the FH received signal in a 

multipath environment of the sample version form: 

 

𝑦(𝑛)(𝑘𝑇) = ∑ 𝛽𝑖(𝑡)𝑒−𝑗∅𝑖(𝑡)𝑒−𝑗2𝜋𝑓𝑛𝜏𝑖𝑠(𝑘𝑇 −
𝑃(𝑡)
𝑖=1

𝜏𝑖; 𝒃𝑛)  + 𝑤(𝑛)(𝑘𝑇)                     (2)                          

 

where 𝑦(𝑛)(𝑘𝑇) is the received signal in the nth hop, T is 

the sampling period, 𝑓𝑛 is the frequency in the nth hop, and  

𝒃𝑛 is the sequence of the transmitted bits. 𝑠(𝑘𝑇; 𝒃𝑛) is the 

transmitted baseband signal and 𝑤(𝑛)(𝑘𝑇)  is the white 

Gaussian noise parameter. The parameter P represents the 

overall count of multi-paths considered in the model. The 

receiver is tasked with estimating the unknown transmitted 

bit sequence under the challenging condition of varying 

and unknown channel parameters. Both the transmitter and 

the receiver are aware of the hop frequency. Therefore, the 

discrete-time version of the received signal is expressed as 

follows: 

 

𝑦(𝑛)(𝑘) = ∑ 𝛽𝑖𝑒
−𝑗2𝜋𝑓𝑛𝜏𝑖𝑠𝑖(𝑘) + 𝑤(𝑛)(𝑘)

𝑃

𝑖=1

 

 𝑘 = 1,2, … 𝐾                                  (3) 

 

Here, 𝑠𝑖(𝑘)  represents the delayed version of the 

transmitted signal through the i-th multipath. After 

capturing the signal via the antenna, the receiver initiates 

the process by extracting the precise phase of the 

transmitted FH signal through the synchronization circuit. 

Subsequently, it generates a local carrier frequency that is 

perfectly synchronized with the carrier frequency at the 

transmitting end. The next step implies mixing this 

synchronized carrier with the received FH signal, aiming 

to recover the original source signal.as shown in Fig. 3. 

The channel estimator is crucial for a receiver to adapt to 

varying channel conditions, mitigate the impact of 

impairments, and ultimately enhance the reliability and 

performance of communication systems. The received 

signal in Eq. (3) is attenuated, distorted, delayed, and 

phase shifted. Therefore, there is a need to provide a 

perfect and up-to-date estimation of the channel. The 

conventional channel estimator is typically a statistical 

model that estimates the channel’s impulse or frequency 

response. The estimated channel response can then be used 

to equalize the channel’s effects and improve the 

performance of the communication system. In recent years, 

increasing interest has been seen in using machine learning 

models to replace the conventional channel estimator. 

Machine learning models can be trained on large datasets 

of channel measurements, and they can learn to estimate 

the channel response more accurately than traditional 

statistical models. There are several potential advantages 

to using a machine learning model to replace the 

conventional channel estimator. First, machine learning 

models can be more accurate than traditional statistical 

models, especially in complex or rapidly changing 

channels. Second, machine learning models can be more 

adaptive than traditional statistical models, and they can 

learn to adapt to changes in the channel over time. Third, 

machine learning models can be used to estimate a broader 

range of channel characteristics than traditional statistical 

models, such as the channel's directional or polarization. 

However, some challenges are associated with using 

machine learning models for channel estimation. First, 

machine learning models can be computationally 

expensive to train and run. Second, machine learning 

models can be sensitive to the quality of the training data, 

and they may only perform well if the training data is 

representative of the actual channel conditions. Third, 

machine learning models can be difficult to interpret, and 

it can be challenging to understand how they are making 

their predictions. The problem tackled in this article is 

estimating the time delay and channel gain based on the 

received signal via machine learning.  

 

 
Fig. 3. FH system block diagram, the conventional channel estimator 

will be replaced by ML channel estimator. 

B. Review of the Classical Methods 

In this section, a review of a previous work related to 

this problem, based on Subspace based methods PM and 

RRQR is revisited. Both methods are directly applied to 

the received data. Let the K samples in Eq. (3) given by 

 

𝒚𝑛 = [𝑦𝑛(0) 𝑦𝑛(1) … … 𝑦𝑛(𝐾 − 1)]         (4) 

 

1) Part A: estimation using PM method 

PN Code Generator

Frequency Synthesizer Tx Antenna

Source Signal Modulation

Synchronizing PN Code Generator

Sink Frequency Synthesizer Rx Antenna

IF Filtering Modulation AWGN

Channel Estimator

Multi path Channel

ML-Estimator
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Two subsets of received hop frequencies {𝑓𝑝𝑖
}  and 

{𝑓𝑞𝑖
} each at least of size N are collected as 𝑓𝑝𝑖

= 𝑓𝑞𝑖
+

Δ𝑓 , 𝑖 = 1,2, … … 𝑁: 

Let  𝒀𝑝 = [𝒚𝑝1
𝑇  𝒚𝑝2

𝑇 … … 𝒚𝑝𝑁
𝑇 ]𝑇  and 𝒀𝑞 =

[𝒚𝑞1
𝑇  𝒚𝑞2

𝑇 … … 𝒚𝑞𝑁
𝑇 ]𝑇. 

𝒀𝑝 and 𝒀𝑞  can be written as  

𝒀𝑝 = 𝑨𝑺 + 𝑾𝑝 

𝒀𝑞 = 𝑨𝚽𝑺 + 𝑾𝑞                              (5) 

where: 

𝑨 = [
𝑒−𝑗2𝜋𝑓𝑝1𝜏1 … 𝑒−𝑗2𝜋𝑓𝑝1𝜏𝑝

⋮ ⋮ ⋮
𝑒−𝑗2𝜋𝑓𝑝𝑁𝜏1 … 𝑒−𝑗2𝜋𝑓𝑝𝑁𝜏𝑝

]  

  

𝑺 = [

𝛽1   
 ⋱  
  𝛽𝑝

] [

𝑠1(1) … 𝑠1(𝐾)
⋮ ⋮ ⋮

𝑠𝑝(1) … 𝑠𝑝(𝐾)
] 

 

The amplitudes of the respective multipath. The sub- 

matrices calculated by (5) are collected matrix in X as 

 

𝑿 =  [𝒀𝑝 𝒀𝑞] + 𝑾𝑿   (6) 

 

where 𝑾𝑿 is the related Additive White Gaussian Noise 

(AWGN) matrix. Matrix 𝑨  is portioned into two sub-

matrices 𝑨𝟏  and 𝑨𝟐  of size 𝑃 × 𝑃  and (𝑁 − 𝑃) ×
𝑃 respectively. A propagator matrix PX satisfying 

𝑷𝑿
𝑯𝑨𝟏=𝑨𝟐 , where (. )𝑯  denotes hermitian transpose and 

the dimension of the matrix 𝑷𝑿
𝑯  is (𝑁 − 𝑃) × 𝑃 . Also, 

matrix 𝑿 is divided into two sub-matrices 𝑿𝟏 and 𝑿𝟐 with 

dimensions 𝑃 × 2𝐾  and (𝑁 − 𝑃) × 2𝐾 respectively. The 

Propagator matrix �̂�𝑿 estimated by:  

�̂�𝑿 = arg  min‖𝑿𝟐 − �̂�𝑯𝑿𝟏‖
 

𝟐
               (7) 

 

Matrix EX can be defined as   𝑬𝑿 =  [�̂�𝑿
𝑻 −𝑰]𝑻where 

I is the identity (𝑁 − 𝑃) × (𝑁 − 𝑃)  matrix. The 

orthogonal projection matrix 𝑸𝑿 = 𝑬𝑿(𝑬𝑿
𝑯𝑬𝑿)−𝟏𝑬𝑿

𝑯 . 

Since the received hop frequencies are assembled in sets, 

therefore they are known at receiver. The MUSIC like 

search algorithm [15] is applied to estimate the multipath 

time delay using the function    

 

�̂�𝑃𝑀−𝑀𝑈𝑆𝐼𝐶 =
1

‖𝑸𝑿𝑨‖𝟐
                                     (8) 

 

2) Part B: Estimation Using RRQR Method 

Gathering data from number of hopes and splitting the 

data packets into M subsets {𝐹1, 𝐹2, … , 𝐹𝑀} of received 

frequencies each of at least of size N as  𝐹𝑖 =
{𝑓𝑖1, 𝑓𝑖2 … , 𝑓𝑖𝑁 } 

 

𝑓𝑖𝑗+1 = 𝑓𝑖𝑗 + Δ𝑓 , 𝑗 = 1,2 … , 𝑁, 𝑖 = 1,2, … , 𝑀 − 1    (9) 

 

Two consecutive frequency sets are varied by a 

constant Δ𝑓 . Let  𝒀𝑖 = [𝒚𝑖1
𝑇  𝒚𝑖2

𝑇 … , 𝒚𝑖𝑁
𝑇 ]𝑇 .It is an easy to 

show that M subsets can be characterized as   

𝒀1 = 𝑨𝑺 + 𝑾1            
𝒀2 = 𝑨𝚽𝑺 + 𝑾2        

⋮
 𝒀𝑀 = 𝑨𝚽𝐌−𝟏𝑺 + 𝑾𝑀

                      (10) 

 

here matrices 𝑨, 𝑺, 𝜱  already defined in part A of this 

section and 𝑾1 ,  𝑾2, … 𝑾𝑀  are corresponding noise 

matrices. The sub- matrices calculated by Eq. (10) grouped 

in the matrix X as 

𝑿 =  [𝒀1 𝒀2 … , 𝒀𝑀] + 𝑾   (11) 

 

where 𝑾  is the corresponding complex additive white 

Gaussian noise (AWGN) matrix. RRQR factorization is 

applied for Eq. (11) 

 

𝑿𝑻 = 𝑸𝑹 = [𝑸𝟏 𝑸𝟐] [
𝑹𝟏𝟏

𝟎
  
𝑹𝟏𝟐

𝑹𝟐𝟐
]   (12) 

 

where the two matrices 𝑸  and 𝑹  are of dimensions 

 𝑀𝐾 × 𝑀𝐾  and 𝑀𝐾 × (𝑁 − 𝑀 + 1)  respectively. The 

sub-matrix 𝑹𝟏𝟏 is upper triangular full rank matrix while 

𝑹𝟏𝟐  is holding remaining important information with 

dimensions  𝑃 × (𝑁 − 𝑀 − 𝑃 + 1) . Because of rank-

revealing QR-factorization, it is interesting to note here is 

that the sub-matrix 𝑹𝟐𝟐 is just about null matrix.  

𝑿𝑻 ≅ 𝑸𝟏�̂�  = 𝑸𝟏[𝑹𝟏𝟏  𝑹𝟏𝟐]  (13) 

 

Clearly, any vector that belongs to null space should 

satisfy. 

 

�̂�𝑮 = [𝑹𝟏𝟏 𝑹𝟏𝟐] [
𝒈𝟏

𝒈𝟐
] = 𝟎   (14) 

So that 𝑹𝟏𝟏𝒈𝟏 = −𝑹𝟏𝟐𝒈𝟐. Since 𝑹𝟏𝟏 is an invertible 

matrix,  𝒈𝟏  can be written in terms of 𝒈𝟐  as 𝒈𝟏 =
−𝑹𝟏𝟏

−𝟏𝑹𝟏𝟐𝒈𝟐. Then 𝑮 can be written as  

𝑮 = [
𝒈𝟏

𝒈𝟐
] = [

−𝑹𝟏𝟏
−𝟏𝑹𝟏𝟐

𝑰(𝑁−𝑀−𝑃+1)
] 𝒈𝟐 = 𝑯𝒈𝟐  (15) 

 

Clearly,  𝑹𝑯 = 𝟎 . It can be observed here that the 

columns of the null space 𝑯  are not orthonormal. To 

satisfy orthonormality the orthogonal projection onto this 

subspace is used to improve the performance as: 

𝑯𝒐 = 𝑯(𝑯𝑯𝑯)−𝟏𝑯𝑯  (16)  

. Therefore, the MUSIC like search algorithm [16] can 

be applied to explore null space for unknown multipath 

time delay parameters using the following function: 

     

�̂�𝑅𝑅𝑄𝑅−𝑀𝑈𝑆𝐼𝐶 =
1

𝑨𝑯(𝝎)𝑯𝒐
𝑯𝑯𝒐𝑨(𝝎)

                          (17) 

   An alternative approach, instead of seeking peaks in 

Eq. (17), is to employ root-MUSIC [16]. The frequency 

estimates can then be derived as: 

. 

𝐷(𝑧) = ∑ 𝑽𝒊(𝑧)𝑽𝒊
∗(1 𝑧∗⁄ )

𝑁 2⁄ −1

𝑖=0

           (18) 

 

Journal of Communications, vol. 19, no. 3, 2024

147



where 𝑽𝒊(𝒛)  is the z-transform of the ith column of a 

projection matrix [15].  

C. Part C: Time Delay Estimation Using a Closed Form 

 The sub matrices calculated by Eq. (6) grouped in 

matrix Y as 

 

𝒀 =  [𝒀𝒑
𝑻   𝒀𝒒

𝑻]
𝑻

+ 𝑾𝒀                       (19) 

and partition it as 𝒀 =  [𝒀𝟏
𝑻   𝒀𝟐

𝑻]
𝑻
, where Y1 and Y2 contain 

the first P and last 2N-P rows of 𝒀  respectively. The 

solution obtained through the least squares method for the 

propagator using the Direct Matrix (DM) is as follows: 

 

�̂�𝒀 = (𝒀𝟏𝒀𝟏
𝑯)−𝟏𝒀𝟏𝒀𝟐

𝑯                   (20) 

The matrix 𝑬𝒀 of size 2𝑁 × (2𝑁 − 𝑃) can be defined 

as 

 

𝑬𝒀 =  [𝑰𝑻 �̂�𝒀
𝑻]𝑻 = [𝑬𝟏

𝑻   𝑬𝟐
𝑻]

𝑻
              (21) 

and 𝑾𝑝 and 𝑾𝑞 are corresponding noise matrices, and 

matrix 𝜱 = 𝑑𝑖𝑎𝑔(𝑒−𝑗2𝜋Δ𝑓𝜏1 … … 𝑒−𝑗2𝜋Δ𝑓𝜏𝑝) . The 

parameters 𝛽𝑖 are 

where E1 and E2 contain the first N and last N rows of 𝑬𝒀 

respectively. Also, 

 𝑬𝟐(𝑬𝟏
𝑯𝑬𝟏)−𝟏𝑬𝟏

𝑯𝑨 = 𝑸𝒀𝑨 = 𝑨𝜱               (22) 

 

It is apparent that the P eigenvalues of 𝑸𝒀  are 

associated with the P diagonal elements of 𝜱 establishing 

a direct correspondence.  The multipath delay parameters 

are given by: 

�̂�𝑖 =
−𝑎𝑛𝑔𝑙𝑒(𝜆𝑖)

(2πΔ𝑓)
                               (23) 

III.  DEVELOPMENT OF ML METHODS 

Machine learning models in communication systems 

provide increased accuracy, adaptability to changing 

channels, and the capacity to estimate a wider range of 

channel characteristics. In this section, we will present the 

proposed ML based channel estimation scheme. 

A. Datasets Generation 

The first step of the research is to create a synthetic 

dataset that mimics the complexity of actual signal delays. 

A three-multipath model (P=3) is considered to compare 

with subspace methods. The transmission was assumed to 

be within the frequency range (1899 – 1929) MHz, which 

corresponds to the uplink frequency range for the personal 

communication system. A comprehensive set of 75 

frequencies was considered, featuring a 400 KHz 

separation between carriers. The symbol period for our 

system is set at 4µs.A total of five thousand signals were 

generated, with each signal having a length of one hundred 

units; the time delay is taken randomly from a uniform 

distribution between zero and one, and the channel gain is 

taken as a random complex normal distribution. 

B. Dataset Preprocessing 

The dataset went through preprocessing procedures to 

guarantee consistency and make model training easier. 

Three components with random amplitudes and delays 

were combined to simulate the complex structure of real-

world signals in signal synthesis. Gaussian noise was 

introduced to simulate the surroundings. After that, the 

dataset was divided into training (80%) and testing (20%) 

groups [28-30]. 

 

 
Fig. 4.  ANN architecture. 

 

C.  Neural Network Architecture 

The architecture of the NN employed in this study 

comprises three layers, each layer playing a pivotal role in 

capturing the intricate relationships within the synthesized 

signals: 

1) Input layer (16 neurons) 

The input layer, with 16 neurons, serves as the network 

gateway for the signal's temporal characteristics. 

Activated by the Rectified Linear Unit (ReLU) function, 

this layer is the initial interpreter of the signal's underlying 

patterns. 

2) Hidden layer (4 neurons) 

Nestled within the network, the hidden layer with four 

neurons, also employing the ReLU activation function, 

conceals the latent complexities associated with signal 

delays. It endeavors to distill the nuanced correlations 

embedded within the temporal landscape [31]. 

3) Output layer (6 neurons) 

The culmination of the network lies in the output layer, 

housing six neurons. Each neuron corresponds to a distinct 

aspect of the signal, the channel gain, and the linked time 

delay (𝛽𝑖 and 𝜏𝑖 ). Importantly𝛽𝑖, representing the signal 

amplitude (channel gain), is acknowledged as a dynamic 

entity. While in one experiment, it may exhibit a 

correlation with the delay, in another experiment, this 

correlation may not manifest. To accommodate this 

variability, the output layer utilizes a linear activation 

function, allowing for the flexibility required to capture 

such experiment-specific nuances.  

Dense Input Input 1x500

Input Layer Output 1x500

Dense Input 1x500

Dense Output 1x16

Dense_1 Input 1x16

Dense Output 1x4

Dense_2 Input 1x4

Dense Output 1x6
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D. Neural Network Training Process 

Activation functions in the hidden layers, employing 

Rectified ReLU, introduce non-linearity to discern 

intricate patterns, while the output layer utilizes linear 

activation to capture experiment-specific correlations 

between channel gain and time delay flexibly. The Mean-

Squared Error (MSE) [32, 33] serves as the loss function, 

quantifying the average squared difference between 

predicted and actual values in this regression task. 

The training loss curve and the validation loss curve for 

both time delay and channel gain estimator are shown in 

Fig. 5. The training loss curve shows how the loss on the 

training set evolves over epochs. In the initial epochs, the 

training loss tends to decrease as the model learns to 

capture patterns in the training data. As training progresses, 

the loss might stabilize, indicating improved model 

performance. The validation loss curve is plotted using a 

separate dataset that the model has not seen during training. 

It assesses the model's generalization to new, unseen data. 

The validation loss initially decreases, reaches a minimum, 

and then stabilizes. The training process involves the 

Adam optimizer for adaptive learning rates, a batch size of 

32 for computational efficiency, and a carefully selected 

training duration of 50 epochs.  Early stopping, set with a 

patience of 3, guards against overfitting, ensuring the 

model generalizes well. Hyperparameter settings were 

thoughtfully chosen with the default learning rate of Adam 

optimizer and a batch size of 32 to balance efficiency and 

model stability. A 50-epoch training duration, determined 

through convergence observations, optimizes learning. 

Notably, regularization techniques such as dropout layers 

were considered for complexity management but omitted, 

maintaining model simplicity in alignment with the 

synthetic dataset's characteristics. Hyperparameters were 

thoughtfully chosen with the default learning rate of the 

Adam optimizer and a batch size of 32 to balance 

efficiency and model stability. A 50-epoch training 

duration, determined through convergence observations, 

optimizes learning. Notably, regularization techniques 

such as dropout layers were considered for complexity 

management but omitted, maintaining model simplicity in 

alignment with the synthetic dataset's characteristics. This 

architectural configuration is tailored to not only to 

decipher temporal intricacies but also to accommodate the 

dynamic nature of the correlation between signal 

amplitude and delay across different experiments. The 

results of the neural network training reveal a substantial 

reduction in the MSE loss throughout three epochs. The 

initial training loss, starting at 2.3449, rapidly decreased to 

0.0573 by the third epoch. Concurrently, the validation 

loss mirrored this trend, dropping from an initial value of 

0.6402 to 0.0747. The consistent decline in training and 

validation losses demonstrates the model's capacity to 

effectively learn and generalize patterns within the data. 

The MSE loss metric quantifies the disparity between 

predicted and actual values, and the achieved low loss 

values indicate the model's proficiency in estimating 

delays. This suggests the potential utility of the developed 

neural network with accurate delay estimation tasks. 

 

 
Fig. 5. Training and Validation Loss for channel gain and time delay 

estimators. 

IV.  SIMULATION RESULTS 

Comprehensive computer simulations were conducted 

to validate the existing methods and assess the 

performance of the newly proposed ML-based estimator. 

In the initial experiment, illustrated in Fig. 6, the multipath 

delays were configured as 0.1, 0.4, and 0.9 µs in the 

subspace methods. In contrast, the proposed model 

featured randomly chosen time delays within the range of 

[0, 1]. The channel gain parameter is assumed to be a 

complex random variable in all methods. As depicted in 

the figure, the proposed method demonstrates outstanding 

performance in comparison to all subspace reference 

methods. To assess the proposed system's performance 

compared to other classical systems, we can compare the 

normalized MSE at a specific SNR. The lower the MSE 

values, the better the system performance. For instance, at 

a fixed SNR of 15dB, the normalized MSE for the 

proposed ML-based channel estimation method equals 

0.00677, and it is much lower than the normalized MSE of 

the QR-MUSIC method (MSE=0.02), which exhibits the 

best performance among the classical systems. Notably, 

the proposed method surpasses all subspace methods, 

including LS-Esprit, TLS-Esprit, RRQR-root-MUSIC, 

and RRQR-MUSIC, across various SNR levels. 

 

 
Fig. 6. Normalized MSE as a function of SNR over a normal multipath 

fading. 

 

In the second experiment, depicted in Fig. 7, consistent 

parameter assumptions were retained from the first 

experiment, with the exception that the multipath gain 

parameters exhibited an exponential decay pattern. 

Moreover, the scenario was examined across one thousand 

distinct realizations. In this setting, the PM method, 

coupled with MUSIC, exhibits robustness against random 

multipath channel conditions. Nevertheless, the ML 

method outperforms other techniques in terms of 

performance. 

Journal of Communications, vol. 19, no. 3, 2024

149



 
Fig. 7. Normalized MSE as a function of SNR over an exponential 

multipath fading. 

V.   CONCLUSION 

In this paper, we proposed an ML technique to 

accurately estimate NB multipath channel parameters for 

SFH, leveraging a synthetic dataset rich in intricate 

temporal variations and channel gain nuances. The Neural 

Network architecture, characterized by multiple dense 

layers, effectively captured intricate temporal 

relationships. Following rigorous training and validation 

utilizing MSE loss function, the model significantly 

reduced loss, underscoring its proficiency in accurate 

delay estimation. Furthermore, we provided computer 

simulations to validate the effectiveness of the proposed 

system compared to previous work using subspace-based 

methods. The proposed ML estimator outperformed the 

classical subspace-based methods and demonstrated 

effectiveness over different SNRs. The proposed system 

will be extended in future work to build an end-to-end ML-

based frequency hopping signal detection. 
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