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Abstract—The rapid expansion of vehicular communication 

systems emphasizes the integration of LTE-V networks, 

crucial for applications like road safety, traffic management, 

and infotainment. High-speed scenarios demand efficient 

downlink scheduling due to constantly changing channel 

conditions influenced by factors like throughput and Bit 

Error Rate (BER). Mobility-induced channel variations lead 

to signal quality fluctuations, interference, and congestion. 

LTE-V networks require robust Quality of Service (QoS) for 

safety applications, necessitating algorithms that detect and 

mitigate interference by dynamically adjusting scheduling. 

Existing algorithms struggle with Doppler shift effects, 

interference, and predicting network patterns, prompting the 

exploration of an Intelligent Downlink Scheduling (IDS) 

scheme based on Support Vector Machines (SVM) for high-

speed LTE-V networks. This work focuses on  the 

optimization of the resource allocation, improving spectral 

efficiency, and predicting network congestion. Leveraging 

machine learning and optimization, it addresses challenges 

posed by varying vehicle densities, mobility patterns, and 

QoS needs. Extensive simulations show the IDS’s superiority, 

significantly enhancing throughput and reducing BER. The 

improved throughput signifies reduced data loss in 

scheduling queues, while lower BER indicates enhanced 

received data post-scheduling. The IDS facilitates real-time 

decision-making and data-driven insights, ideal for managing 

and optimizing downlink scheduling in dynamic Long-Term 

Evolution-Vehicle (LTE-V) networks. Simulation results 

demonstrate a substantial 13 dB improvement over the best 

CQI scheduler at a 10-4 BER and a 24 Mbps increase at a 20 

dB SNR for a vehicle density of 40, showcasing the IDS's 

performance enhancements. 

 

Keywords—Long-Term Evolution-Vehicle (LTE-V), 

intelligent downlink scheduling, vehicular communication, 
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I. INTRODUCTION 

The increase of Internet of Things (IoT) devices and 

intelligent vehicles has led to an exponential increase in 

data traffic within vehicular environments. Long-Term 

Evolution-Vehicle (LTE-V) networks have emerged as a 

promising solution to cater to the communication needs of 

vehicles, enabling applications ranging from safety-critical 

vehicle-to-vehicle (V2V) communication to infotainment 

services for passengers [1]. However, the inherent 

challenges of high mobility, varying traffic densities, and 

a need to maintain stringent quality of service 

requirements demand innovative approaches to optimize 

the utilization of network resources and ensure seamless 

connectivity demands [2]. 

Vehicular communication systems introduce a unique 

set of challenges that traditional cellular networks often do 

not encounter. The highly dynamic nature of vehicular 

environments gives rise to rapid changes in network 

topology as vehicles move in and out of cellular range.  

Rapid changes like these present challenges for downlink 

scheduling, which involves allocating transmission 

resources to vehicles. Traditional static scheduling 

schemes often struggle to effectively adapt to this ever-

changing connectivity landscape [3]. Moreover, the 

Quality of Service (QoS) requirements vary widely in 

vehicular networks, with safety-critical applications 

necessitating ultra-low latency and high reliability. In 

contrast, entertainment and infotainment applications can 

tolerate slightly higher latency [4]. 

The effect of high-speed mobility exacerbates these 

challenges. As vehicles move at over 80 miles per hour, 

their relative positions concerning base stations change 

rapidly. The rapid movement leads to fluctuations in 

channel conditions, resulting in variations in signal 

strengths, fading conditions, and Doppler shifts. 

Consequently, traditional downlink scheduling algorithms 

that do not consider the impact of high-speed mobility may 

lead to suboptimal resource allocation, decreased spectral 
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efficiency, and increased packet loss [5]. These challenges 

call for intelligent downlink scheduling solutions that 

dynamically adapt to changing network conditions and 

make real-time decisions to ensure efficient resource 

allocation and reliable communication. 

Machine learning has emerged as a pivotal tool in 

addressing the intricate downlink scheduling challenges 

encountered in LTE-V networks. The ability of machine 

learning models to gain insights from vast and diverse 

datasets in dynamic network conditions enables the 

creation of adaptable scheduling strategies that can 

dynamically respond to real-time variations in network 

conditions [6]. Machine learning models can learn 

complex patterns of vehicle mobility, traffic density, and 

channel conditions, enabling them to allocate resources to 

vehicles predictively, thereby enhancing spectral 

efficiency and ensuring high-quality communication links. 

Furthermore, as LTE-V networks grapple with the 

demands of high-speed mobility, machine learning's 

capability to process and analyze data quickly allows for 

rapid decision-making to accommodate fast-changing 

scenarios [7]. Ultimately, machine learning-driven 

downlink scheduling optimizes resource utilization and 

latency and contributes to LTE-V networks' overall 

throughput and effectiveness in delivering seamless, high-

performance vehicular communication experiences with 

lower Bit Error Rate (BER) [8]. Table I summarizes 

downlink scheduling algorithms and LTE-V networks’ 

challenges and the importance of proposing machine 

learning algorithms to overcome them. 

In light of the proposed challenges, this paper aims to 

assess the utilization of a machine learning algorithm as a 

scheduler within an LTE-V network, particularly for high-

speed travel scenarios. The proposed algorithm, known as 

Intelligent Downlink Scheduling (IDS), is engineered to 

address interference issues, leverage network insights, and 

predict optimal throughput while minimizing Bit Error 

Rate (BER). It leverages Support Vector Machines (SVM) 

as the underlying machine learning algorithm to enhance 

overall system throughput and reduce system BER. By 

examining simulation results and comparing them to 

existing literature, the contributions of this paper can be 

summarized as follows: 

TABLE I. SUMMARY OF THE DOWNLINK SCHEDULING LTE-V 

NETWORK CHALLENGES 

Challenge 

Machine 

Learning as a 

Solution 

Description 

Changeable 

network 

conditions 

Dynamic 

Adaptation to 

Network 

Conditions 

High-speed LTE-V networks 

experience varying and dynamic 

network conditions due to the 

mobility of vehicles [9]. Machine 

learning algorithms can analyze 

real-time data from the network, 

such as traffic patterns, signal 

quality, and congestion levels, to 

adapt downlink scheduling 

strategies accordingly. This 

dynamic adaptation can improve 

network throughput. 

Future 

prediction of 

Predictive 

Scheduling 

Machine learning can predict 

future network conditions and 

the network 

conditions 

optimize downlink scheduling in 

anticipation of congestion or 

high-demand periods [10]. By 

considering historical data and 

real-time information, machine 

learning models can make 

informed decisions to allocate 

resources more effectively. 

Traffic Pattern 

Analysis 

Machine learning can analyze and 

detect vehicular traffic patterns, 

helping optimize downlink 

scheduling by allocating 

resources more efficiently to 

areas with higher vehicle density 

and demand [11]. This can 

improve overall network 

performance. 

Real-Time 

Decision-

Making 

Machine learning models can 

make near-instantaneous 

downlink scheduling decisions, 

allowing faster response to 

changing network conditions and 

improving user experiences. 

Self-Healing 

Networks 

Machine learning can enable self-

healing capabilities by 

continuously monitoring the 

network and automatically 

adjusting downlink scheduling in 

response to faults or interference 

[12]. This can reduce downtime 

and enhance network reliability. 

Limitation in 

QoS due to 

constraints of 

schedulers 

QoS 

Improvement 

Machine learning algorithms can 

prioritize data transmission based 

on QoS requirements, ensuring 

critical applications, such as 

emergency services or vehicle-to-

vehicle communication, receive 

higher priority in downlink 

scheduling [13]. This can lead to 

safer and more reliable 

communication in high-speed 

vehicular environments. 

Resource 

Allocation 

Optimization 

Machine learning can optimize 

resource allocation by 

considering channel conditions, 

interference, and device 

characteristics. This ensures that 

available resources are used 

effectively, resulting in higher 

throughput and reduced BER 

[14]. 

Scalability 

As the number of connected 

vehicles and devices in LTE-V 

networks continues to grow, 

machine learning algorithms can 

provide scalable solutions for 

managing downlink scheduling 

efficiently, adapting to changes in 

network size and complexity [15]. 

 

• Introducing the Intelligent Downlink Scheduling (IDS) 

algorithm for LTE-V, tailored to high-speed vehicular 

networks and applicable across a range of network 

densities. 

• Conducting a comprehensive evaluation of the newly 

introduced algorithm in comparison to established 

scheduling algorithms within the field. The 

comparative analysis will help analyze the superior 

throughput performance exhibited by the proposed 

algorithm. 

• Enhancing LTE-V network throughput and minimizing 

Bit Error Rate (BER) by taking insights from network 

Journal of Communications, vol. 19, no. 3, 2024

134



 

scenarios and characteristics. This approach provides a 

holistic view of the system's evolution, enabling the 

selection of optimal throughput and reduced BER for 

individual users and the entire network. 

The rest of the paper has been structured as follows. 

Section II provides a literature review of the related articles 

to analyze their methodologies and findings. Section III 

describes the proposed work's methodology. Section IV 

delineates the simulation results and analysis based on 

throughput results and BER. Section V concludes the study 

and provides along with providing some future 

recommendations. 

II. LITERATURE REVIEW 

The study of scheduling methods is contingent upon the 

QoS of the network, making throughput performance the 

primary measure in this study. Table II summarises the 

literature review for this paper. Mahdi et al. [16] 

introduced an enhanced variant of the Best-CQI 

scheduling algorithm to bolster network throughput. A 

comparative analysis is conducted between the proposed 

algorithm and three user scheduling algorithms: Round 

Robin (RR), Proportional Fair (PF), and the original Best-

CQI algorithm. The evaluation is conducted in a Line-of-

Sight (LoS) scenario using a carrier frequency of 2.6 GHz 

to cater to LTE-V in a high-speed context. The Best-CQI 

algorithm is good to use but has a limitation when the 

dynamic environment comes into consideration because it 

depends on the actual environment under the simulation 

and does not consider the previous or future conditions.   

Various scheduling methods are employed to enhance 

network throughput for V2I links. The fundamental 

approach is an exhaustive search, which involves 

documenting all possible user subsets [17]. However, in 

dense networks, this becomes computationally intricate. 

Consequently, there's an increase in the load on the Base 

Station (BS) due to numerous scheduling requests. To 

mitigate this, imperfect scheduling techniques have been 

proposed to simplify computations while maintaining 

throughput close to exhaustive search [18]. The QoS-

aware scheduling begins with establishing a connection to 

the LTE’s eNodeB. Subsequently, the LTE node evaluates 

incoming signals and their attributes to conduct scheduling 

based on QoS performance. 

The widely employed Best-CQI algorithm in LTE-V 

networks hinges on Transmission Time Interval (TTI) to 

allocate BS to users. This channel-aware algorithm 

prioritizes channel conditions, ensuring superior 

throughput compared to other LTE-V schedulers. 

Nevertheless, it falters when users experience poor 

channel quality, potentially inhibiting scheduling [19]. 

Taha et al. [20] presented an innovative downlink 

scheduling algorithm named Advanced Fair Throughput 

Optimized Scheduler (AFTOS) tailored for ultra-dense 

networks, focusing on channel quality and Quality of 

Service (QoS) awareness. AFTOS serves as a multi-QoS 

scheduler to enhance system-wide spectrum efficiency and 

user throughput and ensure improved fairness, reduced 

delays, and minimized Packet Loss Ratio (PLR). It 

accommodates both Real-Time (RT) and Non-Real-Time 

(nRT) traffic. The algorithm introduces two novel 

strategies: Adjusted Largest Weighted Delay First 

(ALWDF) and Fair Throughput Optimized Scheduler 

(FTOS), designed for RT and nRT traffic. These strategies 

are then combined to create the AFTOS scheduler. To 

assess the effectiveness of the proposed approach, a series 

of experiments were conducted to determine optimal 

parameter values and to benchmark it against existing best 

practices. The results substantiate the AFTOS algorithm's 

capability to surpass alternative techniques and 

successfully achieve its intended objectives. However, an 

innovative communication scheduling method based on 

deep learning is suggested in [21] for addressing the 

service scheduling challenge. This approach introduces a 

three-phase scheduling algorithm comprising RSU 

clustering, deep learning-powered traffic prediction, and a 

vehicle access scheduling algorithm. The primary 

objective is to optimize vehicle service capacity while 

minimizing energy expenditure. Thorough simulations 

were conducted, and the outcomes demonstrate that the 

algorithm outperforms other scheduling methods across 

various scenarios by efficiently accommodating more 

vehicles while conserving energy.  

The optimization problem, framed as minimizing 

overall system cost, is tackled through the application of 

Deep Reinforcement Learning (DRL) techniques in [22], 

explicitly employing the Deep Deterministic Policy 

Gradient (DDPG) algorithm. Simulation outcomes 

validate the scheme's effectiveness in achieving 

convergence, reducing system delay, curbing average task 

energy consumption, and minimizing system cost. This 

efficacy is particularly notable in dynamic IoV scenarios, 

as demonstrated through comparative analysis with 

alternative algorithms. 

DRL is also used in [23]. They Introduce an innovative 

algorithm called Multiagent Graph Convolutional Deep 

Reinforcement Learning (M-AGCDRL), which unites 

individual agent observations with a lower-resolution 

global map as input. This amalgamation facilitates policy 

learning for each agent. Through graph attention networks, 

agents exchange information, leading to a powerful 

collective policy. Simulation outcomes affirm that the M-

AGCDRL technique enhances the Quality of Experience 

(QoE) for Internet of Things (IoT) applications and attains 

commendable overall performance. 

Zhang et al. [24] delved into the joint optimization 

challenge of resource allocation and transmission mode 

selection in cellular V2X communications. The central 

issue is framed as a Markov decision process, and a 

decentralized algorithm based on Deep Reinforcement 

Learning (DRL) is introduced. The aim is to maximize the 

cumulative capacity of vehicle-to-infrastructure users 

while simultaneously meeting the latency and reliability 

prerequisites of V2V connections. A two-timescale 

federated DRL method is developed to address the 

constraints of training local DRL models. This involves 

executing a graph theory-based vehicle clustering 

algorithm on a larger timescale and applying the federated 

learning algorithm on a smaller timescale. The simulation 

findings demonstrate the superior performance of the 
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proposed DRL-based approach compared to other 

decentralized benchmarks and underscore the 

effectiveness of the two-timescale federated DRL 

approach in catering to newly activated V2V pairs. 

 
TABLE II. LITERATURE REVIEW SUMMARY 

Ref. Scheduler Importance Challenge 

Mahdi et al. [16] Best-CQI 

To Take into account the 

quality of the channel 

between the vehicle and 

the base station. This 

enhances the scheduling 

results, especially for 

throughput and error rate. 

The limitation when dynamic 

environment becomes considered 

because it depends on the actual 

environment under the simulation 

and does not consider the 

previous or future conditions. 

Raeisi and Sesay[17] exhaustive search 

To have the optimal 

algorithm depends on 

considering all the 

environmental conditions. 

Complexity increases because of 

the need for exhaustive search. 

Agyare et al. [18] 
Imperfect QoS-aware 

scheduling 

To have a QoS 

performance-based 

algorithm to perform 

scheduling. 

Limitation of scheduler because it 

depends on the network QoS. In a 

dense network, this becomes 

challenging. 

Mai and Li [19] Best-CQI based on TTL 

To have a channel-aware 

algorithm prioritizes 

channel conditions, 

ensuring superior 

throughput compared to 

other LTE-V schedulers. 

The challenge of poor channel 

quality. 

Taha et al. [20] AFTOS scheduler. 

To have a multi-QoS 

scheduler to enhance 

system-wide spectrum 

efficiency and user 

throughput and ensure 

improved fairness, reduced 

delays, and minimized 

packet loss ratio (PLR). 

It needs to determine optimal 

parameter values, which means 

an increase in the computational 

process required. 

Li et al. [21] 

Three-phase scheduling 

algorithm comprising RSU 

clustering, DL-powered 

traffic prediction, and a 

vehicle access scheduling 

algorithm. 

To optimize vehicle 

service capacity while 

minimizing energy 

expenditure. 

It used a deep learning algorithm 

to minimize the overall system 

cost. This means that DL is used 

to help the scheduler, not as a 

scheduler itself. This leads to 

computational complexity 

increase. 

Zhao et al. [22] DDPG algorithm 

To have optimal service 

quality based on future 

environmental conditions 

prediction. 

Increase in the computational 

process. 

Dai et al. [23] M-AGCDRL algorithm 

To facilitate policy 

learning for each 

environment by 

exchanging information 

between available 

networks, which leads to 

an assertive collective 

policy of data. 

A large data set is required to 

facilitate the learning process. 

Zhang et al. [24] 

Markov decision process 

and a decentralized 

algorithm based on DRL. 

To maximize the 

cumulative capacity of V2I 

vehicles while 

simultaneously meeting the 

latency and reliability 

prerequisites of V2V 

connections. 

It needs a large data set based on 

executing a graph theory-based 

vehicle clustering algorithm on a 

larger timescale and applying the 

federated learning algorithm on a 

smaller timescale. 

This means an increase in 

computational requirements. 

 

This proposed model makes use of SVM as a machine 

learning  tool. The developed design ensures that less 

reliance is on the use of large-scale datasets which gives it 

an edge over the use of deep learning models. Yet, the 

model ensures the effectiveness of the system design and 

is suited well for scenarios where the availability of the 

data is limited. Thus the choice of the model ensures that 

the network dynamics are met while relying on low data 

demands and lower computational requirements.  This 

makes it an optimal method in the given scenario.  

This strategic choice of algorithm not only reduces 

computational demands but also enhances adaptability to 

the network's dynamics, making it an optimal fit for the 

proposed approach in this paper. 
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III. METHODOLOGY 

Fig. 1 illustrates the simulation setup for the proposed 

research, which involves a single eNodeB serving a group 

of high-speed traveling vehicles. This configuration is 

designed to simplify computations while adhering to the 

Multi-User, Single-Input Single-Output (MU-SISO) 

network model. The Vienna LTE System Level Simulator 

is employed for the simulation, starting with network 

initialization queries. These pertain to parameters such as 

the number of users at each Base Station (BS), bandwidth 

allocation, and channel estimation techniques. 

Additionally, the simulation gathers information about 

user velocity (set at 100 km/h for high-speed movement), 

as well as Signal-to-Noise Ratio (SNR) values for 

calculating network throughput and Bit Error Rate (BER) 

under three distinct scheduling algorithms: Round Robin 

(RR), Best-CQI, and the Enhanced Best-CQI from a 

previous study [9]. Quadrature Phase-Shift Keying (QPSK) 

modulation is used due to its favorable properties in 

wireless communication and lower error rates. 

The SNR values are varied from −5 dB to 55 dB to 

assess algorithm performance across different SNR levels. 

The simulation considers the 100 km/h velocity and 

employs a channel model suitable for high-speed scenarios 

to minimize errors. Throughput and BER metrics are 

computed for varying SNR values. Multiple iterations are 

conducted for each scheduling algorithm to construct the 

dataset needed for the proposed Intelligent Downlink 

Scheduling (IDS). The dataset contains vehicle speed, 

concurrent vehicle count, carrier frequency, network 

bandwidth, and channel type. These parameters facilitate 

network simulation to calculate network-wide and 

individual user throughput and BER. The simulation is 

repeated under various conditions, encompassing diverse 

densities, speeds, and network scenarios. SVM is 

employed to train the IDS on the collected dataset. 

Predicted throughput and BER values are computed for the 

entire network and individual users, with a 70% split for 

training and 30% for testing purposes. 
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Fig. 1.  Simulation scenario. 

There are three stages of this work as mentioned in Fig. 

2. Each one of these stages has several operations that are 

performed to attain the desired outcomes of the study.   

 
Fig. 2.  Methodology stages. 

A. Dataset Generation 

This work utilizes four distinct datasets, each serving a 

specific predictive purpose. The first dataset is dedicated 

to forecasting network throughput, while the second 

focuses on predicting the Bit Error Rate (BER) of the 

network. The third and fourth datasets are tailored to 

predict the throughput and BER for individual vehicles. 

Each dataset encompasses 13 columns, capturing 

throughput and BER results for various scenarios across 

Signal-to-Noise Ratio (SNR) values ranging from −5 to 55 

dB. Additionally, these datasets include columns reflecting 

vehicle speed (set at 100 km/h), the channel characteristics 

governing vehicle-to-infrastructure communication, and 

the carrier frequency employed (2.6 GHz). The selection 

of these features for predicting throughput and BER with 

the proposed Intelligent Downlink Scheduling (IDS) stems 

from their crucial role in high-speed mobility 

environments, a key focus of this study. Vehicle speed 

influences changes in the network’s topology and channel 

characteristics due to the Doppler effect, making it a 

pivotal factor in this predictive analysis. 

The Vehicle-to-Infrastructure Expressway (V2I-E) 

channel model is a communication model used in this 

paper. The V2I-E channel model focuses on 

communication between vehicles and infrastructure 

elements, such as roadside units, traffic management 

systems, and other fixed infrastructure on expressways or 

highways. This communication enables vehicles to 

exchange information with infrastructure components to 

Dataset Generation

• Dataset generattion executing
the network simulation several
times for different featrue
values, including vehicle
speed, concurrent vehicle
count, carrier frequency,
network bandwidth, and
channel type.

Dataset Pre-Processing

• Data Cleaning

• Standardization

• Train Test Splits

Model Development

• Support Vector Machine 
(SVM)
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improve safety, traffic management, and various 

applications. 

The V2I-E channel model takes into account various 

factors that affect wireless communication in an 

expressway environment, including: 

• Propagation Characteristics: It considers how 

radio signals propagate in an expressway 

environment with specific attention to reflections, 

shadowing, and signal attenuation due to vehicles 

and surrounding structures. 

• Doppler Shift: Due to the high speeds of vehicles 

on expressways, there can be significant Doppler 

shifts that affect the frequency of the received 

signals. The channel model may account for these 

shifts. 

• Multipath Effects: Expressway environments can 

introduce multipath propagation, where signals 

take multiple paths before reaching the receiver. 

The channel model may consider how these 

various paths impact signal reception. 

• Interference and Noise: It considers interference 

from other vehicles, infrastructure, or sources, as 

well as ambient noise, which can affect signal 

quality. 

• Latency: The channel model may also consider the 

communication latency between vehicles and 

infrastructure, which is critical for time-sensitive 

applications like scheduling at high speed.  

All datasets gathered contain 5000 rows to satisfy most 

of the network conditions. These 5000 rows represent the 

throughput and BER results when running the code 5000 

times for different scenarios. 

B. Dataset Generation 

Since the dataset contains different numbers in different 

ranges, Standardization and Normalization are the two 

processing techniques obtained for a homogeneous dataset. 

A homogeneous dataset is essential to prevent sub-optimal 

performance of the machine learning model.  

1) Standardization 

The throughput and BER values exhibit varying ranges 

based on the network condition, which leads to differences 

in the dataset’s characteristics. These disparities in dataset 

values are undesirable for machine learning predictions as 

they introduce bias in the results. To mitigate this issue, 

standardizing the dataset is proposed as a solution. In 

simpler terms, this process involves transforming each 

element in the dataset to new values so that the entire 

dataset has a mean of 0 and a standard deviation of 1. This 

standardization can be achieved by implementing [25]:  

 

𝑒𝑛𝑒𝑤 =
𝑒−𝜇

𝜎
                              (1) 

 

where e is the original data, µ is the mean of the feature, 

and σ is the standard deviation.  

2) Normalization   

Diverse network conditions indicate that the dataset 

being employed possesses an unknown distribution. 

Consequently, it becomes crucial to normalize the dataset 

to establish a Gaussian distribution. This normalization 

process entails adjusting all dataset values to fall within the 

range of 0 to 1, ensuring that [26]:  

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                         (2) 

 

where 𝑋𝑛𝑜𝑟𝑚  is the normalized data, 𝑋  is the original 

value in the dataset, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum 

and maximum values in the dataset respectively.  

 

C. Model Development  

This stage in the proposed model involves training and 

predicting network throughput and BER for each vehicle. 

To prepare the dataset for prediction, two key steps have 

been followed: 

• Dataset Splitting: The dataset was divided into two 

sets: the training set, which contains data used to 

train the machine learning algorithm, and the test 

set, which includes data used to evaluate the 

algorithm. The train-test ratio has been kept at 

70:30. 

• Utilizing Machine Learning Algorithms: This 

study's chosen machine learning algorithm is SVM. 

SVM was selected because of its effectiveness in 

modeling non-linear data relationships. In LTE-V, 

where vehicle movements influence intricate and 

dynamic channel conditions, SVMs can capture 

and adapt to these non-linear patterns, leading to 

improved scheduling decisions. 

Figs. 3−4 outline the workflow for this study. It 

commences by executing the network simulation 5000 

times to collect the necessary dataset. The throughput and 

BER results at various SNR values are recorded and stored 

in the dataset during each run. Once all the required data 

has been gathered, preprocessing steps like standardization 

and normalization are applied. Data preparation is carried 

out for the SVM algorithm, with 70% of the data allocated 

for training and 30% for testing. The SVM model is trained 

over 100 epochs. Following the SVM model training, the 

network is evaluated by making predictions for the 

throughput and BER values using the same LTE-V 

network configuration, covering SNR values from −5 to 55 

dB. 

IV. RESULT AND DISCUSSION 

To evaluate the proposed IDS, the dataset that the IDS 

learned from was gathered from a simulated vehicular 

scenario with the simulation parameters provided in Table 

III. Among these parameters, the paper considers the 

response of two vehicles out of 10 and 40 to replicate 

scenarios with highly dense eNodeB. The selected carrier 

frequency is 2.6 GHz, aligning with LTE standards. To 

minimize sub-carrier interference, a subcarrier spacing of 

15 kHz is adopted. Orthogonal Frequency Division 

Multiplexing (OFDM) is used with a Fast Fourier 

Transform (FFT) of size 1024. This is the standard 

physical layer requirement in LTE-V networks. The 

bandwidth is changeable to gather the dataset. The 
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machine learning algorithm is SVM. Vehicle speed is 

constant, equal to 100 km/h. this is logical to simulate the 

speed of a vehicle in high-speed environments such as 

highways. The modulation used is Quadrature Phase Shift 

Keying (QPSK), and the simulation is performed several 

times with SNR range from −5 to 55 dB. This range is for 

satisfying a range from very low SNR to high SNR to 

evaluate the proposed algorithm on a large scale of 

received signal quality. 

 
The proposed workflow description:  

Initialization:  

for I=1:5000 

    for SNR=-5:5:55         

         Calculate throughput (SNR,I).  

Calculate the BER(SNR,I)  

Calculate user throughput (SNR,I) 

Calculate user BER (SNR,I)  

    End 

End  

save the dataset as dataset.xlsx 

apply 𝑒𝑛𝑒𝑤 for all values.  

Apply 𝑋𝑛𝑜𝑟𝑚 for all data.  

Apply the IDS algorithm. 

Obtain IDS accuracy.  

Test the algorithm.  

Find the predicted throughput and BER.  

Compare results.   

END  
 

Fig. 3. The proposed workflow description 

 

START

Determine speed required, carrier 

frequency and other simulation 

parameters as in table 3

Gather and store values of 

throughput and BER

SNR from -5 to 55 

dB?

YES

NO

NO
Number of runs 

5000?
Run again

Apply preprocessing of the dataset 

(standardization and normalization)

Apply preprocessing of the dataset 

(standardization and normalization)

Train the model for 100 

epochs 

Test the mode 

Compare results with other 

scheduling algorithms

START
 

Fig. 4. Methodology flowchart. 

TABLE III. SIMULATION PARAMETERS 

Simulation parameter Values 

Network bandwidth 5 MHz. 10 MHz, 20 MHz 

Carrier frequency 2.6 GHz 

ML algorithm SVM 

Modulation QPSK 

Vehicle speed 100 km/h 

Scheduling algorithms RR, Best CQI, IBCQI, IDS 

#of vehicles 10, 40 

#of eNodeB 1 

SNR [−5 : 55] dB 

Channel characteristics V2I-E 

#of epochs 100 

#of code running (I) 5000 

 

Fig. 5 depicts the throughput assessment for the 

proposed IDS, contrasting its results with throughput 

outcomes derived from the RR, Best-CQI, and IBCQI 

algorithms presented in prior work [9]. As illustrated in Fig. 

5, the RR algorithm maintains a consistent throughput of 

26 Mbps regardless of channel conditions. The 

performance of the Best-CQI algorithm exhibits 

fluctuations, dipping below 22 Mbps at low SNR values 

but escalating linearly as SNR values increase, reaching a 

peak of 88 Mbps at 55 dB SNR, representing the maximum 

throughput attainable.  
 

 

Fig. 5. Throughput vs. SNR when density equals 10. 

Throughput results from IBCQI align closely with Best-

CQI’s, as the two algorithms are almost identical, except 

that IBCQI addresses interference. In comparison, the 

proposed IDS outperforms all other algorithms in two 

aspects: first, it achieves high throughput even at low SNR 

values, and second, it maintains steadier performance 

across varying SNR values, indicating greater resilience to 

changing channel conditions. Notably, the IDS yields a 22 

Mbps throughput enhancement compared to IBCQI at an 

SNR of 20 dB. These results are logical because the IDS 

predicts the throughput values after training on a large 

dataset. This means the IDS knows the network's 

performance rather than only the channel characteristics 

and signal quality.  

Assessing the proposed algorithm’s performance under 

escalating network density is crucial. Fig. 6 illustrates how 

throughput performance changes as network density rises 

from 10 users to 40 users. Notably, the performance of all 
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algorithms declines as density increases. This outcome is 

reasonable, as maintaining good channel quality amid 

high-speed vehicle movement becomes more daunting 

with an expanding user count within the same eNodeB. 

This is aggravated by amplified interference, transmission 

errors arising from signal collisions, and heightened 

overhead on the single available BS. 

Fig. 6 underscores several vital observations. Firstly, the 

performance of the RR scheduler remains largely 

unaffected by the number of users, consistently yielding 

around 20 Mbps, indicating its resilience to channel 

conditions. Secondly, while maintaining high throughput, 

the Best-CQI scheduler displays reduced fluctuations at 

low SNR values. This suggests its viability even in high-

density networks. Remarkably, the IDS's performance 

remains constant despite user count increases. This 

robustness in the face of dynamic channel conditions and 

network density growth highlights the IDS's effectiveness. 

This robustness comes from the fact that the IDS is pre-

trained by a large dataset that allows it to predict 

throughput and BER for similar networks at any condition. 

The difference between IDS and IBCQI is that the IBCQI 

depends on the channel and signal quality, while the IDS 

depends on the amount of dataset used to train the model. 

In the case of BICQI, there is an effect when increasing the 

number of vehicles because of the reduction of signal 

quality due to congestion, while in the case of IDS, this is 

not a problem because of the pre-trained model.  

 

 

Fig. 6. Throughput vs. SNR when density equals 40. 

Assessing BER provides insight into the efficiency of 

downlink scheduling algorithms in preserving 

communication quality across varying scenarios. As 

demonstrated in Fig. 7, a clear inference can be drawn: 

higher throughput corresponds to lower transmission 

errors. In dynamic mobile communication, BER is a 

performance indicator, revealing how well the scheduler 

responds to errors stemming from channel characteristics, 

Doppler effects, and interference. Fig. 7 further illustrates 

the superior performance of the proposed IDS compared to 

other schedulers, yielding lower BER results. The 

proposed IDS showcases a 13 dB improvement over the 

best CQI scheduler for the same BER level at 10^−4. This 

is because the IDS knows the overall configuration of the 

network after training it with a large dataset. This allows 

us to predict the best suitable value of BER for each SNR 

without knowing the channel characteristics or signal 

quality.  

 

Fig. 7. BER vs. SNR when density equals 10. 

The same conclusion in Fig. 7, comes from Fig. 8, 

when the density increases. The proposed IDS still gives 

lower BER values compared to other schedulers. The 

proposed algorithm depends on learning all the network 

conditions before predicting the BER value. This will 

enhance the predicted values compared to the other 

schedulers.    

 

Fig. 8. BER vs. SNR when density equals 40 

All the above results are for the eNodeB performance. 

This means they are for the overall throughput and BER 

values. Fig. 9 and Fig. 10 show the throughput and BER 

values, respectively, for each vehicle. For simplicity, the 

Figures show only the performance of two vehicles only.  

Fig. 9 shows the throughput comparison between the 

IDS and the IBCQI algorithm. The proposed IDS gives a 

higher throughput for each vehicle. The note here is that 

the total throughput of the network is distributed at the 

same level between all vehicles (around 1.8 Mbps). This 

means that no vehicle has high throughput, and the one has 

low throughput. This distribution allows a communication 

link to each vehicle without causing dropping for other 

vehicles.  
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Fig. 9. Throughput vs. SNR for users. 

Fig. 10 shows the BER performance for two users. The 

proposed IDS still gives the lowest BER values compared 

to the IBCQI algorithm.  

 

Fig. 10. BER vs. SNR for users. 

 

V. CONCLUSION 

In conclusion, the integration of machine learning 

techniques to enhance LTE-V downlink scheduling in 

scenarios characterized by high-speed mobility has been 

introduced in this paper. The evaluation encompassed 

three widely used user scheduling algorithms in LTE-V 

networks: RR, Best CQI, and IBCQI. Throughput and 

BER are the two-performance metrics used in this paper 

that play a pivotal role in strengthening LTE-V network 

capacity during periods of high demand and minimizing 

interference. Results show that throughput is increased 

when using the proposed IDS compared to other 

schedulers. This means that for scheduling purposes in 

high-speed environments, there are fewer losses in the data 

that might come from the scheduling queue because of the 

ability to predict the environment conditions. The same 

conclusion comes from BER results: fewer errors come 

because the prediction ability means less BER. Moreover, 

it should be underscored that the lowest BER is achieved 

by our IDS, as compared to other algorithms. This 

achievement can be attributed to the IDS's ability to adapt 

to various network conditions, enabling it to predict the 

best values for throughput and BER. Expanding the dataset 

size and incorporating additional features can further 

enhance throughput and BER predictions, potentially 

leveraging deep learning algorithms. Furthermore, future 

research endeavors could explore the application of the 

proposed IDS in contexts involving multiple Radio Access 

Technologies (Multi-RAT) rather than limiting the focus 

to a single eNodeB. This expansion in scope could broaden 

the relevance and utility of the IDS in a broader range of 

scenarios. 
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