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Abstract—With the recent development of the Fourth 

Industrial Revolution, Internet of Things technology has 

been widely adopted. In addition, key technologies such as 

big data, artificial intelligence, and wireless communication 

are being combined. Positioning technology that uses these 

technologies is essential for locating human devices in 

modern industries. Although the Global Positioning System 

can provide relatively precise positioning outdoors, its 

performance is limited indoors due to propagation loss. 

Hence, various wireless signal-based indoor positioning 

technologies, such as WiFi, Bluetooth, ultra-wideband, and 

Visible Light Communication (VLC) are being studied. In 

this study, positioning in indoor VLC environments is 

analyzed using Deep Q-Network (DQN). Each element of 

reinforcement learning and the agent's action and reward 

function are set to increase positioning accuracy. Deep Q-

Network (DQN) training is then performed to derive 

positioning performance. The simulation results show that 

the proposed model attains a positioning resolution of less 

than 15 cm and achieves a processing speed of less than 0.03 

seconds to obtain the final position in the Visible Light 

Communication (VLC) environment.   

 

Keywords—Indoor Positioning System (IPS), Artificial 

Intelligence (AI), Deep Q-Network (DQN), Received Signal 

Strength (RSS), Visible Light Communication (VLC)  

 

I. INTRODUCTION 

With the continued development of the Fourth 

Industrial Revolution, Internet of Things (IoT) 

technology is advancing rapidly. A combination of IoT, 

big data, Artificial Intelligence (AI), and wireless 

communication technologies has led to the emergence of 

Location-Based Services (LBS) in various fields, such as 

public services, daily life, commerce, and manufacturing 

processes. Although the Global Positioning System (GPS) 

provides relatively precise accuracy for outdoor 

positioning [1], its use for indoor positioning is limited 

due to challenges such as signal attenuation, multipath 

effects [2], and the absence of a clear Line of Sight (LOS) 

[3]. To overcome these limitations, researchers are 

exploring various technologies such as WiFi, Bluetooth 

[4], Ultra-WideBand (UWB) [5], and Visible Light 
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Communication (VLC) [6] for their ability to achieve 

precise and reliable indoor positioning [7]. 

Indoor positioning techniques based on wireless 

communication technologies are widely used, and 

fingerprinting is the most popular for the positioning field 

due to its simplicity and high accuracy [8−10]. Other 

techniques include Time of Arrival (ToA), Time 

Difference of Arrival (TDoA), and Angle of Arrival 

(AoA) for indoor positioning. In recent studies, 

researchers have focused on improving the performance 

of indoor positioning systems. For example, Marina et al. 
[11] proposed a hybrid technique that used Received 

Signal Strength Indicator (RSSI)/TDOA to solve 

multipath interference problems and improve location 

tracking accuracy. Similarly, the Global best Local 

Neighborhood Particle Swarm Optimization (GbLN-PSO) 

algorithm was improved in [12] by Mozamir et al. 

conceded measurement errors and increasing the 

convergence speed of the algorithm. In the study by Wei 

et al. [13], an algorithm for automatically calibrating a 

large-scale indoor target signal positioning system was 

proposed to improve system performance, and Hashim et 

al. [14] introduced a method of distance estimation using 

a path loss model based on the PSO algorithm. 

As previously mentioned, the fingerprinting, which is 

widely used due to its simplicity, generally consists of 

two steps. In the offline step, specific locations within the 

indoor environment are selected as Reference Points 

(RPs), and the Received Signal Strength (RSS) from all 

Access Points (APs) is measured at these locations. The 

collected RSS values are stored in a database and used to 

construct a fingerprint map. In the online step, the RSS 

that is measured by the User Equipment (UE) is matched 

with the fingerprint map; the result of this match 

determines the location of the UE [15]. Matching 

techniques such as cosine similarity, k-Nearest Neighbor 

(kNN), and Weighted k-Nearest Neighbor (WKNN) [16] 

are used in this step. In cosine similarity, the similarity 

between two vectors, which represent the fingerprint map 

and the RSS of the UE, is calculated using the cosine 

angle between the vectors. The value of the similarity is 

between −1 and 1, and when the value is close to 1, this 

means that the locations of the RP and the UE are very 

close each other. kNN is an unsupervised machine 

learning technique that uses Euclidean distance to 

calculate the proximity between a fingerprint map and the 
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UE. Localization is performed by determining the 

proximity between the RP and the UE; in this process, a 

smaller Euclidean distance indicates a higher proximity. 

The WKNN method improves localization precision by 

adding weights to the kNN. 

However, the above matching techniques suffer from 

the problem of decreased processing speed as the 

fingerprint map grows larger. To solve this problem, we 

propose a reinforcement learning-based localization 

technique. Reinforcement learning is a method in which 

an agent performs actions in a given environment and 

then learns by observing changes in state and receiving 

rewards accordingly. In the proposed method, an agent, 

which is a reinforcement learning element, performs 

indoor localization based on the RSS of the UE. When 

the construction of the fingerprint map is complete, the 

location of the AP that transmits the highest RSS to the 

UE is designated as the initial prediction point for the 

agent. Subsequently, the agent moves the prediction point 

using one action of up, down, left, right, and stop, and it 

learns by receiving rewards based on proximity to the 

actual UE location. The trained reinforcement learning 

model achieves fast processing and identifies the RP 

closest to the UE. 

The paper is structured as follows. In Section II, the 

system model used in this study is described. Section III 

presents a detailed explanation of the proposed 

positioning approach. In Section IV, the simulation 

parameters and results are presented. In Section V, the 

conclusion is summarized, and future work directions are 

explained in view of improving indoor localization. 

II. SYSTEM MODEL 

This section provides a detailed description of the 

system model that is used to evaluate the proposed 

technique. First, the indoor VLC environment is 

described, including the size of the environment and the 

placement of the Light Emitting Diode (LED) APs. Next, 

the channel characteristics of the indoor VLC 

environment are analyzed, distinguishing between LOS 

and Non-Line of Sight (NLOS) signal paths. Finally, 

based on the analysis of the channel characteristics, the 

power distribution of the overall channel is presented. 

A. Indoor Environment Configuration 

 

Fig. 1. Indoor VLC environment configuration. 

The indoor VLC environment is shown in Fig. 1. As 

can be seen in the figure, the size of the indoor 

environment is 5𝑚 × 5𝑚 × 3𝑚, and it is assumed to be 

an empty space. Four LED APs are attached to the ceiling, 

3 m above the floor. In this case, the transmission power 

of all LED APs is considered to be equivalent. In addition, 

the green stars in the figure represent UE and the black 

dots represent RP. The transmission characteristics of the 

LED APs and the receiving characteristics of the UEs 

used in the experiment will be explained in detail in the 

simulation section. 

B. VLC Channel Characteristic Analysis 

This subsection analyzes the VLC channel 

characteristics of signals transmitted from the LED AP. 

As mentioned earlier, signals transmitted from the AP 

reach the receiver through both LOS and NLOS paths. 

Fig. 2 illustrates the signal path for both LOS and NLOS 

scenarios. 

 

Fig. 2. Channel model for directed and non-directed path between LED 

AP and UE. 

As shown in Fig. 2, in the LOS scenario, the optical 

signal from the LED AP travels directly to the UE. In the 

Fig. 2, 𝑑 represents the distance between the LED AP and 

the UE, 𝜃 represents the irradiation angle of the LED AP, 

and 𝜓 represents the reception angle of the UE. In the 

NLOS scenario, the optical signal from the LED AP 

travels to the UE indirectly by reflection from the wall. 

This is represented in the diagram, where, 𝑑1 represents 

the distance between the LED AP and the wall, 𝑑2 

represents the distance between the wall and the UE, 𝜃𝑟 

represents the irradiation angle from the LED AP to the 

wall, and 𝜓𝑟 represents the reception angle at the UE of 

the signal from the wall. The RSS that the UE receives 

from the LED AP in these two scenarios can be expressed 

by the following equation. 

ℎ𝑢,𝑑𝑖𝑟.
𝑏 = 𝑃𝑡

𝐴(𝑚+1)

2𝜋𝑑2 𝑐𝑜𝑠𝑚(𝜃)𝑇𝑠(𝜓)𝐶(𝜓) cos(𝜓)     (1) 

ℎ𝑢,𝑛𝑜𝑛−𝑑𝑖𝑟.
𝑏 = 

𝑃𝑡
𝐴(𝑚+1)

2𝜋𝑑1
2𝑑2

2 𝜌𝑐𝑜𝑠𝑚(𝜃)𝑑𝐴𝑤𝑎𝑙𝑙 cos(𝛼) cos(𝛽) 𝑇𝑠(𝜓𝑟)𝐶(𝜓𝑟) cos(𝜓𝑟)

(2) 
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where, ℎ𝑢,𝑑𝑖𝑟.
𝑏  in Eq. (1) represents the RSS in the LOS 

scenario, and ℎ𝑢,𝑛𝑜𝑛−𝑑𝑖𝑟.
𝑏  in Eq. (2) represents the RSS in 

the NLOS scenario. In the two equations above, 𝑃𝑡 

represents the transmission power of the LED AP. In Eq. 

(1), A represents the active area of the UE, 𝑚 represents 

the Lambertian order, 𝑇𝑠(𝜓) represents the optical filter 

gain, and 𝐶(𝜓) represents the optical concentration gain. 

The value of 𝜓  can be represented as 0 <  𝜓 <  𝜓𝑐 , 

where 𝜓𝑐 is the Field of View (FOV) of the UE. In Eq. 

(2), 𝜌  represents the wall reflection coefficient, and 

𝑑𝐴𝑤𝑎𝑙𝑙  represents the surface element of the wall. The 

value of 𝜓𝑟 can be represented as 0 <  𝜓𝑟  <  𝜓𝑐 in this 

Eq. (2). 

Based on the RSS derived from the above equations, 

the overall channel RSS distribution can be obtained 

using Eq. (3). 

ℎ𝑡𝑜𝑡𝑎𝑙
 = ℎ𝑑𝑖𝑟.

 + ℎ𝑛𝑜𝑛−𝑑𝑖𝑟.
                    (3) 

Based on Eq. (3), the overall channel distribution can 

be represented as shown in Fig. 3. 

 
Fig. 3. Overall channel RSS distribution. 

The next section discusses in detail the approach to 

estimating the location of the UE based on Deep Q-

Network (DQN) in an indoor VLC environment with the 

channel distribution shown in Fig. 3. 

III. PROPOSED POSITIONING METHOD 

This section provides a detailed description of the 

proposed positioning method, which can be understood to 

comprise two techniques: fingerprinting and DQN. In 

indoor environments, the RSS is collected from each AP 

by selecting each RP. The collected RSS is stored in a 

fingerprint map and is later matched through the DQN 

agent. Then, the RSS for each AP is measured by the UE, 

and the DQN agent is initialized based on this RSS. 

Subsequently, the position of the UE is determined based 

on the actions and rewards of the DQN agent. A detailed 

explanation of each technique is provided in the 

following subsections. 

A. Fingerprinting Technique 

The fingerprinting technique is a promising solution 

for indoor positioning, and it offers high accuracy and 

simplicity when used in conjunction with RSS. The 

fingerprinting technique can be divided into two steps: 

the offline stage and the online stage. The offline stage 

involves measuring the RSS from each LED AP at a 

specific location, called the RP, in the indoor 

environment. The RPs are uniformly distributed in the 

environment. After the RSS measurements have been 

completed at all RPs, they are used to build a fingerprint 

database. The fingerprint database 𝐹𝑃𝐷𝐵  can be 

represented as Eq. (4). 

𝐹𝑃𝐷𝐵 = 

[
 
 
 
 
ℎ1

1 ⋯
⋮  

ℎ1
𝑏 ⋯ ℎ1

𝐵

⋮  ⋮
ℎ𝑠

1 ⋯
⋮
ℎ𝑆

1

 
⋯

ℎ𝑠
𝑏 ⋯ ℎ𝑠

𝐵

⋮
ℎ𝑆

𝑏

 
⋯

⋮
ℎ𝑆

𝐵]
 
 
 
 

                       (4) 

where, ℎ𝑠
𝑏 represents the RSS between 𝐴𝑃𝑏 and 𝑅𝑃𝑠; 𝐴𝑃𝑏 

represents the 𝑏th AP; the total number of APs is 𝐵; 𝑅𝑃𝑠 

represents the 𝑠th RP; the total number of RPs is 𝑆. 

After the construction of the fingerprint map as 

described above, the offline step is complete and the 

online step begins. The online step is the process of 

location estimation based on the RSS of the UE. In this 

study, a deep reinforcement learning technique called 

DQN is used for location estimation. This technique will 

be explained in detail in the following subsection. 

B. Deep Q-Network 

This subsection explains the use of DQN for 

positioning. DQN is a Q-learning algorithm that predicts 

Q-values from input data and selects the optimal action 

based on these values to improving the stability and 

performance of reinforcement learning. Techniques such 

as experience replay, target network, and deep network 

are introduced to achieve this. 

The study considers four reinforcement learning 

elements: Agent, State, Action, and Reward. The Agent is 

responsible for designating the predicted location based 

on the RSS of the UE. The State represents the fingerprint 

data for the predicted point location, which is determined 

based on the RSS of the UE. Action refers to the 

movement of the predicted point location—up, down, left, 

or right—and Reward represents the Agent's reward 

based on the Action. Next, additional explanations for 

State, Action, and Reward will be presented. 

1) State 

The state of the Agent refers to the ID number of the 

RP where the prediction point is located. Therefore, in 

this study, the size of the State is determined by the total 

number of RPs in the indoor environment. Using the 

number of RPs and the fingerprint map, the Agent can 

determine the RSS from each AP at the current prediction 

point. The initial State selects as the prediction point the 

location of the AP that sends the strongest signal of all 

the RSS received by the UE from each AP. This allows 

the Agent to deduce the location of the UE with minimal 

effort. 

2) Action 

The Action of the Agent refers to the movement of the 

prediction point. In this study, a total of five Actions were 

set. The configured Actions are as follows: 
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 Up = PE(t + 1) = ns + RPx 

 Down = PE(t + 1) = ns − RPx 

 Left = PE(t + 1) = ns − 1 

 Right = PE(t + 1) = ns + 1 

 Stop = PE(t + 1) = PE(t) 

where, 𝑃𝐸 represents the prediction point location of the 

Agent, 𝑛𝑠 refers to the current State, and 𝑅𝑃𝑥 refers to the 

number of RPs on the x-axis. 

3) Reward 

In this system, Rewards are calculated based on the 

Euclidean distance between the Agent's prediction point 

and the RSS of the UE. If the current state has a smaller 

Euclidean distance value than does the previous state, the 

action receives a reward of +1, and if the Euclidean 

distance value is increased, the action receives a penalty 

of −1. 

4) Network configuration 

This subsection explains the network architecture of 

the DQN model used in this study. This network 

architecture is shown in Fig. 4. The Agent's state is input 

into the model, and the model is designed to output one 

of five actions. There are two hidden layers, and the 

Rectified Linear Unit (ReLU) activation function is used. 

Furthermore, the size of the replay memory is set to 

81,920, and the learning rate is set to 0.001. 

 

Fig. 4. DQN network configuration. 

IV. SIMULATION RESULTS 

This section discusses the simulation parameters and 

the positioning results of the DQN model. Table I lists the 

parameters for the indoor environment characteristics, 

transmitter, receiver, and DQN model. The VLC scenario 

was implemented using MATLAB in the indoor 

environment, and the DQN model was designed using 

Python and implemented using the keras-rl2 library. 

In Table I, 676 RPs are positioned such that the RPs 

have 20 cm intervals between two points from (0,0) [m] 

to (5,5) [m] considering room size. The update of the 

target network in DQN refers to the frequency of 

updating the target network across the total number of 

episodes. Hence, it means that the target network is 

updated once every 100 episodes. The epsilon-greedy 

policy is a commonly used exploration strategy in 

reinforcement learning. It balances the exploitation of 

actions known, to have high-reward and the exploration 

of unknown actions to find the optimal policy. At each 

step of the learning process, the agent chooses between 

exploring a new action with some probability epsilon 

(epsilon is usually a small value) or exploiting the action 

that currently has the highest estimated value. The results 

of the DQN model training, which uses these parameter 

are shown in Fig. 5. 

TABLE I. SIMULATION PARAMETERS 

Parameter Value 

Indoor 

Environment 

Room size 5𝑚 × 5𝑚 × 3𝑚 

Number of APs 4 

Number of RPs 676 

Reflection coefficient 0.8 

Transmitters 

Transmission power 10 W 

Wavelength 420 nm 

Elevation −90° 

Half power semi-angle 60° 

Receiver 

Field of view 60° 

Height 0.7 m (from bottom) 

Optical filter gain 1 

Optical concentrator gain 1.5 

Active area of UE 1𝑐𝑚2 

Deep 

Q-Network 

Episode 50,000 

Max steps per episode 100 

Replay memory size 81,920 

Update of target network 100 

Policy Epsilon-greedy policy 

 

Fig. 5. Training performance of DQN. 

Fig. 5 shows the reward per episode. The reward 

converges to a value greater than 0 as the episodes 

increase. This indicates that the Agent is finding the 

adjacent RPs to the UE more quickly as training 

progresses. Based on the trained model described above, 

a positioning test was carried out, and it was confirmed 

that the nearest reference point to the UE was identified 

in approximately 0.03 seconds. The positioning error was 

less than 15 cm. 

Table II presents the results of a performance 

comparison between the proposed method and existing 

methods in an overall channel scenario. The schemes are 

shown in Table II; FP-based DQN is the method 

proposed in this paper. The triangulation method 

estimates the distance between the AP and the UE based 

on the received RSS from the UE. After it tracks the 

distance from each AP to UE, triangulation calculates the 

actual position of UE. The performance was evaluated in 

terms of processing time and positioning error. Because 

the triangulation method estimates the distance based on 

the RSS value and derives the positioning result, the 

processing time is short. However, the positioning error is 
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1.298m, and the positioning accuracy is low. On the other 

hand, the proposed method achieves a similar processing 

time to triangulation and has a smaller positioning error 

of 0.15 m. 

TABLE Ⅱ. COMPARISON BETWEEN PROPOSED AND CONVENTIONAL 

SCHEME 

Performance 
FP-Based DQN 

(Proposed) 
Triangulation [17] 

Processing 

Time [s] 
0.03 0.00237 

Positioning 

Error [m] 
0.15 1.298 

V. CONCLUSION 

As indoor environments become larger and more 

complex, indoor positioning has emerged as an important 

research area. Hence, this paper investigates user 

positioning in indoor VLC environments through the 

DQN, which is an artificial intelligence technology. The 

objective of this study is to analyze the channel 

characteristics of the indoor VLC environment, build a 

fingerprint map, and use DQN to match the RSS of the 

UE. Traditional matching algorithms must manage an 

increase in processing time as the size of the fingerprint 

map increases. However, a trained DQN model can 

perform the matching quickly. This study designed a 

DQN model to perform optimal matching by a short 

processing time. To achieve this, the reinforcement 

learning elements of State, Action, and Reward were 

defined, and experiments were conducted to validate 

performance. The experimental results showed an 

positioning error of 15 cm within 0.03 seconds. 

Ultimately, the proposed model achieved fast position 

determination while increasing location accuracy by 

deploying a large number of RPs. 

In future, we will improve the performance of the 

DQN model by adjusting its hyperparameters, and we 

will research policy optimization solutions such as Deep 

Deterministic Policy Gradient (DDPG). Additionally, 

current indoor environments are assumed to be small 

offices. Hence, there are plans to broaden the current 

assumption to include larger indoor environments to 

obtain the positioning of moving users and to verify the 

effectiveness of the proposed system in more realistic 

indoor environments. 
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