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Abstract—The aim of this study is to assess the effectiveness 

of Physical Layer Authentication (PLA) in securing IoT 

nodes. Specifically, we present a PLA framework based on 

wireless fingerprinting, where the legitimated node is 

distinguished from potential attackers by exploiting the 

unique wireless channel features. To achieve this objective, 

we employ various machine learning approaches for anomaly 

detection, making use of a wide range of channel attributes in 

time-varying conditions. In particular, four different 

Machine Learning (ML)
 
strategies in their one class version 

have been considered and compared: decision-tree, kernel-

based, clustering and nearest neighbors. Our study highlights 

advantages and disadvantages of each method, considering 

parameters optimization, training requirements and time 

complexity. Results show that the use of multiple-attribute 

allows to achieve accurate detection performance. In 

particular, our results reveal that the kernel-based solution is 

the one that achieves best results in terms of accuracy, but the 

nearest neighbor’s
 
solution has very similar performance 

with a significant advantage in terms of complexity and no 

need for training, making it more suitable for time-varying 

contexts, and a promising choice for securing IoT nodes 

through PLA based on wireless fingerprinting. The other two 

alternatives have somewhat lower performance but low 

complexity. This research contributes valuable insights into 

enhancing IoT security through PLA techniques.
 

 

Keywords—physical layer security, machine learning, 

authentication, spoofing detection
 

 

I.
 

INTRODUCTION

 

Internet of Things (IoT) is an essential element to 

develop smart environments and to provide emerging 

services and applications. The IoT paradigm involves a 

massive number of smart objects interacting with each 

other and with Internet. In many IoT applications, such as 

industrial, e-health, or autonomous vehicles, some 

constraints such as low-latency, accuracy, energy 

consumption as well as security are of paramount 

importance. Particularly, the presence of rogue de-vices 

claiming a false identity can expose IoT system to many 

types of security attacks that can have severe consequences, 

especially in a wireless environment. One of the first lines 

of defense is represented by the identification of legitimate 

nodes (authentication) and the detection of rogue devices 

(spoofing detection). Traditionally, this is done by means 

of higher-layers
 
procedures that, however, may not be 

suitable for emerging IoT paradigms, in particular,
 
when 

low-resourced devices are involved. As a consequence, 

different kinds of authentication and spoofing detection 

approaches have recently acquired a relevant importance 

in IoT systems, to provide an additional level of security 

protection. In particular, Physical Layer Authentication 

(PLA) methods, exploiting specific characteristics of the 

device and/or of the wireless channel have gained more 

and more attention by the research community [1]. We 

focus here on a PLA approach, called Wireless 

Fingerprinting (WF) [2], that aims to distinguish a 

legitimate node from a malicious one by exploiting the 

uniqueness of the wireless channel experienced by each 

node. We analyze and compare different decision criteria 

based on Machine Learning (ML). In particular, we 

consider approaches based on Nearest Neighbor (NN), 

Support Vector Machine (SVM), Isolation Forest (iForest) 

and k-means algorithms in their One-Class (OC) version.
 

Recently, many research efforts have been devoted to 

de-
 
sign and investigate PLA and PHY-layer spoofing 

detection methods based on ML [3]. In comparison with 

traditional approaches, ML-based ones usually do not 

require setting of a threshold to achieve the detection in the 

hypothesis test and
 
are not model-based. The right value 

of the threshold, as well as accurate models, are difficult to 

be obtained in time-varying contexts, thus strongly 

affecting the detection performance in terms of accuracy 

and speed. Moreover, ML approaches allow to consider 

multiple attributes, thus increasing the detection accuracy. 

Due to estimation errors and time-variations of parameters, 

single-attribute algorithms often are not able to 

differentiate the transmitters all the time. In addition, it is 

harder for a malicious node to estimate and imitate 

multiple attributes than a single one. Different PLA 

methods based on ML have been investigated under 

different conditions and environments. In general, non-

parametric learning methods that do not require any a 

priori knowledge, but rely only on the available data, such 

as Nearest Neighbur (NN), kernel-based and decision tree, 
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are more suitable for IoT applications. Indeed, a priori 

knowledge of attributes requires static properties that 

cannot be applicable for many scenarios, such as 5G and 

beyond networks; in addition, the knowledge of the 

attacker is generally not realistic. In [4], the authentication 

is based on channel impulse response features extracted 

using statistical analysis and coefficients correlation. 

Attributes are then selected and classified by means of an 

SVM algorithm. The system is designed for a MIMO 

system exploiting spatial information in a static 

environment. Time-varying conditions are instead 

considered in [5] where a kernel machine-based scheme is 

proposed. Here, the dimensionality of multiple attributes is 

reduced by means of the kernel function. In [6] SVM and 

k-means clustering algorithms are applied and compared 

in an amplify and forward Unmanned Aerial Vehicle 

(UAV) context. The extracted attributes are the mean and 

the variance of the received samples and artificial data 

based on the statistical knowledge of channel state 

information are used to train the ML algorithms. Different 

ML algorithms are used in [7] to test the accuracy of body 

sensors authentication using Received Signal Strength 

Indicator (RSSI) and Frame Loss Rate as attributes. The 

simulated scenario is very limited, and no time variability 

is considered. In [8], authentication strategies, based on 

different ML algorithms and on statistical criteria based on 

a hypothesis testing approach, are evaluated, and 

compared in a time-varying environment. In particular, 

SVM and NN algorithms are considered. ML algorithms 

classified data exploiting the real and the imaginary parts 

of the channel coefficients measured on multiple carriers 

of an Orthogonal Frequency Division Multiplexing 

(OFDM) system. More recently, in [9], different ML 

methods are simulated over the entire estimated channel 

matrix to produce binary authentication 

(legitimate/malicious). In [10], carrier frequency offset 

and RSSI are used as parameters to check the performance 

of ML methods, concluding that considering two 

parameters is better than only one. An overview of existing 

studies in PLA is reported in [11]. The paper, anyway, 

focuses on ML and DL methods, but it does not discuss the 

specific physical parameters to extract from the received 

signal. As shown in previous papers, there is not a single 

ML method more suitable for all scenarios and datasets, 

that should be checked with several ML algorithms. For 

this reason, we compare here different ML algorithms, 

considering their OC version because we assume no 

knowledge about the malicious node, hence, only 

legitimate nodes’ samples are available during training. 

Assuming no-knowledge about the attacker is more 

realistic, moreover, in [8], it has been shown that the use 

of SVM and NN algorithms in their binary version does 

not bring any advantage over their OC version. 

This paper provides an exhaustive comparison of 

anomaly detection methods based on known ML 

approaches, that is not present in the literature to the best 

of our knowledge. Detection accuracy, time complexity, 

optimal parameters and training requirements are 

evaluated. We compare four different strategies: kernel-

based, clustering, nearest neighbors and decision-tree, 

while generally, only some of them are considered and 

compared. Moreover, we consider a time- varying scenario 

and we use a large set of attributes. Even if multiple-

attribute algorithms are considered an effective mean to 

improve the authentication accuracy, in the literature they 

are usually limited to multiple observations of the same 

attribute, or to the extraction of multiple features of the 

same attribute [4, 6, 8], rather than to effective multiple-

attribute as in [5]. Among others, we exploit both the delay 

and the Angle of Arrival (AoA). Particularly, AoA is 

exploited in [12] to validate the claimed GPS location 

information in a vehicle- to-roadside communication using 

a two-side hypothesis testing problem and in [13] to create 

a unique signature that is used in a challenge-response 

protocol. All these aspects have been rarely considered in 

previous papers, and not jointly. 

The paper is organized as follows. In Section II the 

system model is described while the proposed 

authentication/spoofing detection framework is introduced 

in Section III. Different solutions are described and 

compared. The numerical results are provided in Section 

IV. Finally, some conclusions are drowned in Section V. 

II. SYSTEM MODEL 

We focus on a wireless IoT system where resource- 

constrained nodes are connected to a sink node that 

collects, elaborates and distributes information thanks to a 

Wireless Sensor Network (WSN). IoT nodes simply 

collect information and communicate with the sink node 

using radio transceiver with a single antenna. The sink 

node is a more powerful node performing more complex 

operations and is equipped with a multiple antenna system 

for transmitting/receiving data. Consequently, the sink 

node is able to extract spatial information from received 

signals. IoT nodes must be able to authenticate in order to 

ascertain their legitimacy as a communication source and 

to avoid the presence of malicious nodes that attempt to 

subtract information from or inject false information into 

the network, by posing as legitimate node. The Access 

Point (AP) of the WSN acts as sink node and has in charge 

the node authentication of the devices communicating with 

it. Hence, the AP (Named Bob) receives a signal 

transmitted from a legitimate IoT device (named Alice) 

and has to confirm its identity. In the area is present a rogue 

device (Eve) that tries to impersonate Alice. Bob wants to 

identify communications form Alice and to detect potential 

anomalies due to Eve attacks exploiting the WF. 

A. Channel Model 

The communication channels between Alice and Bob, 

and Eve and Bob are corrupted by Additive Withe 

Gaussian Noise (AWGN), pathloss and time-varying 

fading. We assume here a multipath fading channel 

defined for IEEE 802.11ac WSN [14] whose statistical 

distributions have been extracted from actual channel 

measurements. It is suitable for indoor communications 

operating at 5 GHz with frequency bands up to 160 MHz. 

We refer to the Model-D scenario in [15], defined for large 

open indoor environments with mobility in the range 0-5 

km/h. More in detail, we consider static 
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transmitting/receiving nodes but the propagation channel 

is time-varying due to the mobility of the scatters in the 

environment. A single input multiple out- put propagation 

channel is considered, with one transmitting antenna and 

Q receiving antennas. The channel received by each 

antenna is then modelled as a Tapped Delay Line (TDL) 

with L paths. The channel matrix can be written as 

𝑯(𝑡) = ∑ 𝑯𝑙(𝑡)𝛿(𝑡 − 𝜏𝑙)
𝐿
𝑙=1 (t) 

 

where 𝑯𝑙(𝑡) is the l-th path channel vector of Q elements, 

τl is the delay of the l-th path and 𝛿() is the unit Dirac 

function (i.e., 𝛿(𝑡)  =  1 𝑖𝑓 𝑡 =  0, 𝛿(𝑡)  =  0 otherwise). 

The model assumes a LoS propagation, hence the first path 

is Rice-distributed, while other paths are Rayleigh 

distributed. As a consequence, the channel matrix can be 

divided in two matrices: one fixed 𝑯𝑙
𝐹 (𝑡) representing the 

LoS (non-variable) part, and one 𝑯𝑙
𝑉(𝑡) representing the 

NLoS (variable) part 

𝑯𝑙(𝑡) = √𝛾𝑙 (√
𝜁

𝜁 + 1
𝑯𝑗

𝐹(𝑡) + √
𝜁

𝜁 + 1
𝑯𝑗

𝑉(𝑡)) = 

  

√𝛾𝑙 (√
𝜁

𝜁 + 1
[

𝑒𝑗𝜙1(𝑡)

𝑒𝑗𝜙2(𝑡)

⋮
𝑒𝑗𝜙𝑄(𝑡)

] + √
𝜁

𝜁 + 1
[

𝑋1(𝑡)
𝑋2(𝑡)

⋮
𝑋𝑄(𝑡)

]) 

 

where 

• 𝑋𝑖(𝑡)  is the NLoS channel coefficient at the i-th 

receiving antenna. 𝑋𝑖  coefficients are modelled as 

correlated complex Gaussian random variables with 

zero mean and unitary variance; 

• 𝜙𝑖(𝑡)  represents the phase difference between the 

transmitter and the i-th receiving antenna; 

• is the Rice factor; 

• 𝛾𝑙 is the mean power of the l-th path at the receiver. 

 

For what concerns the pathloss, it is modelled with a 

free- space loss break-point model with two slopes [16]: 

LF S, the free-space pathloss with slope value 2 up to dBP, 

the break- point distance, and a slope value of 3.5 

afterwards 

 

𝐿(𝑑) = {

𝐿𝐹𝑆(𝑑), 𝑓𝑜𝑟 𝑑 ≤ 𝑑𝐵𝑃

𝐿𝐹𝑆(𝑑𝐵𝑃) + 35 log10 (
𝑑

𝑑𝐵𝑃
) , 𝑓𝑜𝑟 𝑑 > 𝑑𝐵𝑃

 

 

where 5<d<100 is the distance (in meters) between 

transmitter and receiver. In addition to the usually used 

channel coefficients, this paper proposes ML-based 

approaches that exploit also channel attributes that are 

rarely considered, the delay and particularly, the spatial 

information (i.e., AoA) of the received signals. In actual 

systems each node experiences different delay values that 

can also vary in time, and the AoA depends on the position 

of the node. Since the power delay profile in the IEEE 

model is fixed for any channel realization, we have 

integrated the IEEE model with the WINNER II [16] 

channel model. In [16] the l-th path of each channel 

realization is characterized by a random delay whose 

average value 𝜏𝑙
𝑎𝑣𝑔  is exponentially distributed with 

parameter λ. Moreover, for taking into account the time-

variability, the delay of each path, 𝜏𝑙 , is uniformly 

distributed around the mean delay 𝜏𝑙
𝑎𝑣𝑔

 with variance 

𝜎𝜏
2 = 1/𝜆. Values have been taken from B3 model in [16]. 

Similarly, the AoA of the signal’s paths are randomly 

distributed around a mean value µ  that is given by the 

geometrical angle connecting the IoT node with the AP. 

The AoA is a Gaussian-distributed random value, 

𝑁(µ, 𝜎𝐴𝑜𝐴
2 ), with variance 𝜎𝐴𝑜𝐴

2  from the B3 model in [16]. 

III. PROPOSED AUTHENTICATION/SPOOFING DETECTION 

FRAMEWORK 

In this paper we propose the use of the WF (the full title) 

approach to authenticate legitimate nodes and detect rogue 

devices using different ML approaches. Let us assume that 

the IoT network is composed by a transmitting node (Alice) 

and one sink node (Bob) which performs node 

authentication. The authentication/detection framework 

proposed here works in two phases: 

• Phase I: Bob identifies Alice by means a 

traditional authentication protocol and collects a 

set with size n of data (referred as training dataset 

in what follows) received from Alice in order to 

extract her WF and train the ML algorithm. 

• Phase II: Bob receives a message without 

assurance that it comes from Alice, hence, he tries 

to verify its authenticity by extracting the WF 

attributes from the signal and it feeds them to the 

ML anomaly detection algorithm. A positive 

result of the ML algorithm means that a match of 

the WF extracted from the message against the 

WF acquired during the Phase I is found, so the 

sender of the message is considered legitimate. 

Conversely, a negative result implies a message 

rejection and consequent countermeasures, e.g., a 

new Phase I authentication of the sender. It is 

important to stress that phase II allows a 

continuous authentication of the IoT nodes, 

without any resource burden for the IoT nodes 

since all operations are performed by the sink 

node. So, this approach is suitable for resource-

constrained IoT nodes. 

The WF method operates by extracting multiple 

attributes from the channel between sender and receiver: 

(1) the Received Signal Strength (RSS), (2) the AoA of the 

main path, (3) the maximum path delay, and (4) the signal 

energy. In what follows the ML-based 

authentication/anomaly detection schemes that have been 

considered here are described. In particular, their one class 

version has been considered: they distinguish only one 

class (Alice) and everything else is considered an anomaly 

(Eve). These schemes do not require any knowledge about 

Eve, they can operate in absence of negative class training 

samples (i.e., without collecting samples from Eve). In 

general, these kinds of schemes operate by defining a 
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decision test around the positive class (Alice), for 

separating and identifying new fingerprints as legitimate 

or not. The classification is based on two parameters: the 

distance between the test element (i.e., the element to be 

classified) and the training dataset characterizing the 

legitimate node (i.e., data used for training during Phase I), 

and a threshold. A sample is positively classified if the 

distance is lower than the threshold, otherwise it is 

classified as negative (i.e., an anomaly). Different 

algorithms define these parameters differently. The 

performance of the algorithms has been evaluated in terms 

of  

• True negative rate is the ratio between the 

number of anomalous samples correctly detected 

and the total number of anomalous samples. It 

represents the probability of correctly detecting 

an anomaly (Eve); 

• False negative rate is the ratio between the 

number of legitimate samples mistaken for 

anomalies and the total number of legitimate 

samples. It represents the probability of mistaking 

an authorized node (and blocking it), i.e., Alice is 

identified as a malicious node; 

• Balanced Accuracy BA is the average between the 

true positive rate (i.e., the probability that a 

legitimate sample is correctly identified) and the 

true negative rate. 

OC-k(j)NN is an authentication/anomaly detection 

algorithm derived from the k-NN classification algorithm 

[17] that selects the class of a sample to be tested as the 

most frequent among its k nearest neighbours. OC-k(j)NN 

algorithm is adapted to a single class problem: first the k 

nearest neighbours, {𝑦1,· · · , 𝑦𝑘}, of the test element x, are 

found in the training dataset, then the j nearest neighbors, 

{𝑧𝑖1,· · · , 𝑧𝑖𝑗}, for each of the first k neighbors (i.e., 𝑖 =

 1, ⋯ , 𝑘)  are found in the same dataset . The average 

Euclidean distances, �̅�𝑥𝑦  between x and its k nearest 

neighbors, and �̅�𝑦𝑧  between those k neighbors and their 

own j closest neighbors are calculated. The element to be 

test, x is considered an anomaly if  
�̅�𝑥𝑦

�̅�𝑦𝑧
> 1. Indeed, if x is 

an anomaly, it likely lays in a region where the samples are 

less clustered, so the distance of x form its closest 

neighbours (belonging to the training dataset) is on 

average greater than the distance of between those 

neighbours and their own closest neighbours (also 

belonging to the training dataset). In terms of complexity, 

there is no need of a training phase for OC-k(j)NN. During 

the test phase, assuming a number of extracted features p, 

and a training dataset size n, the algorithm calculates k 

times the distance of an element to be tested to every point 

in the training dataset extracting every time that at 

minimum distance ( 𝑂(𝑛𝑘𝑝) ). Then for the k selected 

neighbours it calculates j times distances to other points in 

the dataset extracting every time the element at minimum 

distance (𝑂(𝑘𝑗𝑛𝑝)) . Then the algorithm calculates the 

ratio between the average distances. Neglecting the 

complexity for calculating the distances the complexity is 

𝑂(𝑘𝑗𝑛𝑝). 

OC-SVM is based on SVM algorithms that use a non-

linear function (kernel) to map input data into a space 

withhigher dimensions named the feature space, and that 

find decision boundaries to separate classes. OC-SVM has 

only one class, the boundary is decided using the available 

training dataset, and any new data that lies outside that 

boundary is classified as an anomaly. We consider the 

solution that uses a hyperplane (a plane in m-dimensions) 

for the decision boundary [18]. During the training phase, 

elements of the dataset are projected in the feature space 

using a Gaussian kernel and then they are separated from 

the origin using a hyperplane minimizing the distance of 

the hyperplane from the origin. A parameter ν∈ [0, 1] is 

used as upper bound for the fraction of elements of the 

kernel transformed training dataset that lies outside the 

hyperplane, so that a low value of ν means that a few 

outliers are allowed, and the hyperplane is closer to the 

origin. Moreover, ν represents the lower bound for the 

number of support vectors that are critical elements of the 

dataset that define the decision boundary and are used to 

calculate the distances. SVM is a convex quadratic 

programming problem with linear constraints. Training 

complexity of non-linear SVM is generally between 

𝑂(𝑛2) and 𝑂(𝑛3) depending on the implementation. The 

test complexity depends on the used kernel function and 

the number of support vectors, s, since the kernel function 

must be computed for each support vector. Hence, the 

complexity is 𝑂(𝑠𝑝𝑓)  where f is the complexity of the 

kernel function. 

iForest is an anomaly detection algorithm belonging to 

decision tree algorithms [19], it is based on a ensemble 

random binary trees, called isolation trees (iTrees). During 

the training, T different iTrees are built by splitting the 

dataset into sub-sets until each partition has only one 

element or a multiple of that same element. When the size 

of training dataset, n, is big a sub-set of the whole dataset 

is used with dimension 𝜓 =  𝑚𝑖𝑛(𝑛, 256) . iTrees are 

created by successively splitting the resulting sub-set at 

each step, randomly selecting an attribute and a value in its 

range so that the split generates two complementary sub-

sets. The path length, ℎ(𝑥), is defined as the number of 

nodes traversed through the iTree to reach the leaf 

containing x. The anomaly score is then calculated 

as 𝑠(𝑥, 𝑛)  =  2
−

𝐸[ℎ(𝑥)]

𝐶(𝑛)  using the path length averaged on 

all iTrees, 𝐸[ℎ(𝑥)], normalized to the average path length 

𝑐(𝑛) of an unsuccessful search in a binary search tree built 

over a training dataset of n elements [19]. It is expected 

that features of an anomalous element differ significantly 

from training dataset elements, in particular an anomaly 

should have a path length shorter than the average. The 

anomaly score is compared with a threshold 𝜌 ∈ [0, 1]: 

values over the threshold are classified as anomalies. 

During the training stage, T iTrees are built by recursively 

splitting the dataset of size ψ. The complexity of the 

training is 𝑂(𝑇𝜓𝑙𝑜𝑔𝜓). The anomaly detection 

complexity for a single element is 𝑂(𝑇𝑙𝑜𝑔𝜓). 
OC-kmeans is a modified version of the k-means 

clustering algorithm [20] that aims at dividing a given 

dataset into k clusters where each element is closer to the 
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center of its cluster than to the center of other clusters. This 

is achieved through an iterative technique whereby the 

clustering operation is performed several times, using the 

resulting centres from each previous iteration as a starting 

point for the next one. We use here a modified version of 

the k-means algorithm to achieve anomaly detection [21]. 

This is done by dividing elements of the dataset in two 

clusters (i.e., k = 2). Then the average distance �̅� between 

the two clusters’ centers is calculated and used as threshold 

for the following decision test. During testing operations, 

received samples and training dataset are clustered in two 

clusters and the resulting distance V between the two 

clusters is compared with α�̅�, where α is a scaling factor. 

If V ≤ α�̅� a positive result is assumed, i.e., the received 

samples belong to Alice, otherwise an anomaly is detected. 

k-means shows complexity 𝑂(𝑛𝑝𝑘) for each iteration: for 

each element of the dataset the distance from the k 

centroids is calculated using a vector of dimension p. In 

the anomaly detection implementation described before, 

both training and test phases are based on a dataset 

clustering with k = 2, then distances among clusters are 

evaluated and compared. Hence, the complexity for both 

phases is 𝑂(2𝑛𝑝𝐼) where I is the number of iterations of 

the algorithm. 

IV. NUMERICAL RESULTS 

Performance of the previously described ML-based 

anomaly detection methods are presented and compared. 

Numerical results have been derived by means of 

simulations. To have results not depending on a single 

specific dataset (i.e., a specific position distribution of 

nodes in the area), results from multiple datasets have been 

averaged. For each dataset, Eve and Alice are randomly 

placed with a uniform distribution in a square area A = 20 

× 20 m, with the sink node in the centre. It is assumed that 

Alice’s signal is received with a Signal-to-Noise Ratio 

(SNR) of 10 dB, while the SNR of Eve is consequently 

calculated considering its position in the area. The channel 

model and the probability distribution of the channel 

attributes have been described in Sec. II, taking into 

account also their time-variability due to the scatterers’ 

movement up to 5 km/h. The carrier frequency is 5.25 GHz 

with a bandwidth of 80 MHz. Firs of all, we have evaluated 

the impact of different parameters’ settings on detection 

performance of the algorithms for selecting the optimum 

ones. Moreover, the impact of the training dataset size is 

evaluated. The OC-k(j)NN algorithm depends on two 

parameters k and j. Fig.1 (a) shows the balanced accuracy 

(BA) vs the parameter k for different values of j. Training 

dataset size is fixed at n = 200 samples. The algorithm 

behaves better when there is a higher unbalance between 

the two parameters with 𝑘 < 𝑗.  Indeed, performance 

increases as 
𝑘

𝑗
 decreases up to certain point, then benefits 

tend to disappear. In particular, values of 𝑘 =  [1, 5] are 

those that provide the best results with 𝑗 = [10, 20]. With 

equal 𝑘 𝑗⁄ , using a lower value of k gives almost the same 

performance but with lower complexity (for example the 

point 𝑘 𝑗⁄ = 5 10⁄   is similar to the value for 𝑘 𝑗⁄ =
10 20 ⁄ but the first one has lower complexity.) These 

results are confirmed by Table I where the BA is presented 

for different values of the training dataset size, n, for 

values of k and j in their best ranges (𝑘 =  1, 5 and 𝑗 =
 10, 20). We can see that better performance is achieved 

with 𝑘 𝑗⁄ = 1 20⁄    and a training dataset with limited size 

(𝑛 ∈ [50 −  100]), evidenced in the gray table part. OC-

SVM requires to set the parameter ν that represents an 

upper bound for the fraction of outliers of the training 

dataset and a lower bound for the number of supporting 

vectors. Fig. 1(b) shows BA vs ν for different values of the 

training dataset size, n. We can see that as n increases, BA 

performance significantly increases (up to n = 500) and the 

impact of ν decreases. Conversely, for small n values it is 

preferable to work with higher values of ν, since a higher 

number of support vectors improves the detection accuracy. 

However, the value of ν should be limited in order to limit 

the computational complexity. Previous considerations 

can be drawn also from Table II where BA is reported for 

different values of n and a selected range of values of 𝜈 ∈
 [0.05, 0.5]. 
 

TABLE I. OC-K(J)NN: BA VS TRAINING DATASET SIZE N 
 

  1st # neighbours 

                          k=1 k=5 

                        2nd # neighbours 

Training 

dataset  (n) 
j=10 j=20 j=10 j=20 

30 0.7931 0.9286 0.9829 0.5665 

50 0.9772 0.9903 0.8910 0.9610 

100 0.9749 0.9911 0.8783 0.9534 

200 0.9736 0.9897 0.8766 0.9466 

300 0.9746 0.9898 0.8778 0.9442 
 

TABLE II. OC-SVM: BA VS TRAINING DATASET SIZE N 
 

Training 

dataset (n) 

Upper bound elements outside the hyperplane 𝝂) 

0.05 0.10 0.20 0.30 0.40 0.50 
100 0.9046 0.9475 0.9852 0.9880 0.9889 0.9892 

300 0.9411 0.9840 0.9892 0.9902 0.9903 0.9904 

400 0.9918 0.9930 0.9932 0.9932 0.9928 0.9925 

500 0.9928 0.9939 0.9937 0.9936 0.9933 0.9927 

 

We can see that best performance, highlighted in gray 

in the table, is achieved with a training dataset size around 

n = 400 (higher values do not yield relevant benefits), also 

maintaining a low value of 𝜈 =  0.05. A reduced value of 

𝑛 =  300 could be selected using a value of 𝜈 ≥  0.3, that 

means the time complexity decreases during the training 

phase but increases in the running phase. iForest requires 

two parameters, the number of trees T and the threshold 

𝜌 ∈ [0, 1]. In Fig. 1c the BA vs 𝜌 for different values of T 

and n = 200 is shown. Curves show that the optimal 

threshold value is around 𝜌 =  0.6  for all values of T. 

Moreover, there is not a significant benefit in increasing 

the number of trees over 𝑇 =  10 . Indeed, BS 

performance remains almost constant, but the time 

complexity increases. The impact of the training dataset 

size is shown in Table III where the BA for different values 

on n is reported varying parameters 𝜌  and T in their 

optimal ranges. Again, we can see that the number of trees 

does not significantly affects the performance, while 

increasing n up to n = 300 leads to an improvement, then 

the performance remains almost constant, thus a further 

increase would lead only a complexity increase. Best 
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values are achieved with 𝜌 =  0.6, 𝑛 =  200 ÷ 300 and 

T around 100. OC-kmeans algorithm compares clusters’ 

distances using a weight factor 𝛼. Fig. 1(d) shows the BA 

vs 𝛼 for different values of n. Best accuracy is achieved 

with a limited training dataset size, indeed there is a benefit 

increasing n up to 20 but for higher values performance 

worsens. Also for what concerns the value of α, an increase 

is beneficial up to a certain value then performance 

decreases. This worsening is more evident when larger 

training dataset are considered. The best value of α varies 

with n, particularly, it increases as n decreases. This can be 

seen also from Table IV where BA for different values of 

n is reported for α in its best range [1.1, 1.5]. The grey part 

of the table highlights that the best accuracy is achieved 

with 𝑛 =  20 and 𝛼 =  1.4 ÷  1.5. The low value of n is 

beneficial also in terms of time complexity. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Balanced Accuracy vs algorithms' parameters: (a) OC-k(j)NN. BA vs parameter k varying j, (b) OC-SVM. BA vs parameter ν  varying n, 

(c) iForest. BA vs threshold ρ varying T, (d) k-means. BA vs distance weight α varying n 

 
(a) 

 
(b) 

Fig. 2. Eve detection rate vs training dataset size: (a) True Negative Rate, (b) False Negative Rate 
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TABLE III. IFOREST: BA VS TRAINING DATASET SIZE N 
 

                          Threshold 

                               𝛒 = 𝟎. 𝟓𝟓 𝛒 = 𝟎. 𝟔 

                             # of Threes (T) 

Training 

dataset (n) 
5 10 20 40 100 120 140 5 10 20 40 100 120 140 

50 0.8413 0.8559 0.8610 0.8746 0.8816 0.8881 0.8854 0.8786 0.8863 0.8941 0.8828 0.8924 0.8878 0.8973 

100 0.8384 0.8551 0.8992 0.9069 0.9075 0.9110 0.9095 0.8663 0.8867 0.9025 0.8978 0.9048 0.9097 0.9103 

200 0.9028 0.9141 0.9219 0.9214 0.9269 0.9289 0.9241 0.8879 0.9359 0.9248 0.9196 0.9388 0.9198 0.9306 

300 0.9021 0.9178 0.9255 0.9277 0.9289 0.9355 0.9304 0.9076 0.9159 0.9217 0.9333 0.9404 0.9414 0.9406 

400 0.8993 0.9101 0.9273 0.9298 0.9344 0.9319 0.9326 0.9199 0.9309 0.9336 0.9290 0.9307 0.9405 0.9321 

From previous results, we can see that OC-k(j)NN and 

OC-SVM are those achieving the best BA performance (∼ 

99%), while OC-kmeans and iForest reach 96% and 94%, 

respectively. It is also interesting comparing the 

performance of different ML algorithms when their 

optimal parameters are used. Fig. 2 shows the true negative 

rate (tnr) and the false negative rate (fnr), that are the 

correct and false detection of Eve, for different algorithms. 

In terms of fnr, results confirm that OC-SVM and OC-

k(j)NN achieve the highest values that are quite 

independent on the training dataset size. For what concerns 

the fnr instead, OC-k(j)NN achieves values almost 

constant with n but that do not go to zero, OC-SVM has 

values of fnr that depend on the training dataset size and 

go to zero around n=400. OC-kmeans presents good 

performance in terms of fnr while tnr strongly depends on 

n and reaches maximum values around 94%. iForest 

presents worst performance, and even increasing n there is 

a floor. 
 

TABLE IV. OC-KMEANS: BA VS TRAINING DATASET SIZE N 
 

Weight (α)  
Training 

dataset 

(n) 

1.1 1.2 1.3 1.4 1.5 

5 0.8641 0.8799 0.9102 0.9237 0.9272 

20 0.8710 0.9173 0.9506 0.9661 0.9642 

30 0.7687 0.8601 0.9050 0.9207 0.9173 

50 0.7613 0.8786 0.8721 0.8666 0.8655 

100 0.7718 0.8012 0.7753 0.7598 0.7595 

 

V. CONCLUSIONS 

This paper presented a ML-based PLA framework for 

identifying IoT nodes belonging to a WSN and detecting 

potential rogue devices trying to gain an unauthorized 

access. The identification is based on WF of the received 

signal, here characterized by various channel attributes. 

Different ML approaches have been evaluated and 

compared in terms of different metrics. OC-SVM and OC-

k(j)NN resulted to be the algorithms providing best 

performance, even if OC-k(j)NN presents a higher fnr. On 

the other side OC-k(j)NN has the advantage of a reduced 

time complexity compared to OC-SVM, it does not require 

training, achieves good performance with a limited 

training dataset 𝑛 ∈ [50,100] and has linear complexity 

with n. On the contrary, OC-SVM has a training 

complexity that exponentially increases with n and for 

having low fnr the training dataset should be big. The last 

two algorithms have limited complexity but present a 

significant performance worsening, especially the iForest. 

Although this paper does not include experimental 

activities, it still provides original contributions, as 

reported before. Field tests are planned in our scheduled 

future works to validate the findings reported in this paper. 
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