

Andrea

Stomaci,

Dania

Marabissi*,

and

Lorenzo

Mucchi

Department

of

Information

Engineering, University

of

Florence,

Italy.

Email: andrea.stomaci@unifi.it

(A.S.);

dania.marabissi@unifi.it

(D.M.);

lorenzo.mucchi@unifi.it

(L.M.)

*Corresponding author

Abstract—The aim of this study is to assess the effectiveness

of Physical Layer Authentication (PLA) in securing IoT

nodes. Specifically, we present a PLA framework based on

wireless fingerprinting, where the legitimated node is

distinguished from potential attackers by exploiting the

unique wireless channel features. To achieve this objective,

we employ various machine learning approaches for anomaly

detection, making use of a wide range of channel attributes in

time-varying conditions. In particular, four different

Machine Learning (ML)

strategies in their one class version

have been considered and compared: decision-tree, kernel-

based, clustering and nearest neighbors. Our study highlights

advantages and disadvantages of each method, considering

parameters optimization, training requirements and time

complexity. Results show that the use of multiple-attribute

allows to achieve accurate detection performance. In

particular, our results reveal that the kernel-based solution is

the one that achieves best results in terms of accuracy, but the

nearest neighbor’s

solution has very similar performance

with a significant advantage in terms of complexity and no

need for training, making it more suitable for time-varying

contexts, and a promising choice for securing IoT nodes

through PLA based on wireless fingerprinting. The other two

alternatives have somewhat lower performance but low

complexity. This research contributes valuable insights into

enhancing IoT security through PLA techniques.

Keywords—physical layer security, machine learning,

authentication, spoofing detection

I.

INTRODUCTION

Internet of Things (IoT) is an essential element to

develop smart environments and to provide emerging

services and applications. The IoT paradigm involves a

massive number of smart objects interacting with each

other and with Internet. In many IoT applications, such as

industrial, e-health, or autonomous vehicles, some

constraints such as low-latency, accuracy, energy

consumption as well as security are of paramount

importance. Particularly, the presence of rogue de-vices

claiming a false identity can expose IoT system to many

types of security attacks that can have severe consequences,

especially in a wireless environment. One of the first lines

of defense is represented by the identification of legitimate

nodes (authentication) and the detection of rogue devices

(spoofing detection). Traditionally, this is done by means

of higher-layers

procedures that, however, may not be

suitable for emerging IoT paradigms, in particular,

when

low-resourced devices are involved. As a consequence,

different kinds of authentication and spoofing detection

approaches have recently acquired a relevant importance

in IoT systems, to provide an additional level of security

protection. In particular, Physical Layer Authentication

(PLA) methods, exploiting specific characteristics of the

device and/or of the wireless channel have gained more

and more attention by the research community [1]. We

focus here on a PLA approach, called Wireless

Fingerprinting (WF) [2], that aims to distinguish a

legitimate node from a malicious one by exploiting the

uniqueness of the wireless channel experienced by each

node. We analyze and compare different decision criteria

based on Machine Learning (ML). In particular, we

consider approaches based on Nearest Neighbor (NN),

Support Vector Machine (SVM), Isolation Forest (iForest)

and k-means algorithms in their One-Class (OC) version.

Recently, many research efforts have been devoted to

de-

sign and investigate PLA and PHY-layer spoofing

detection methods based on ML [3]. In comparison with

traditional approaches, ML-based ones usually do not

require setting of a threshold to achieve the detection in the

hypothesis test and

are not model-based. The right value

of the threshold, as well as accurate models, are difficult to

be obtained in time-varying contexts, thus strongly

affecting the detection performance in terms of accuracy

and speed. Moreover, ML approaches allow to consider

multiple attributes, thus increasing the detection accuracy.

Due to estimation errors and time-variations of parameters,

single-attribute algorithms often are not able to

differentiate the transmitters all the time. In addition, it is

harder for a malicious node to estimate and imitate

multiple attributes than a single one. Different PLA

methods based on ML have been investigated under

different conditions and environments. In general, non-

parametric learning methods that do not require any a

priori knowledge, but rely only on the available data, such

as Nearest Neighbur (NN), kernel-based and decision tree,

Manuscript received August 8, 2023; revised August 30, 2023;

accepted

October

12, 2023; published

February 26, 2024.

Journal of Communications, vol. 19, no. 2, 2024

99

Comparison of Machine Learning Approaches

Based on Multiple Channel Attributes for

Authentication andSpoofing Detection at the

Physical Layer

doi:10.12720/jcm.19.2.99-106

are more suitable for IoT applications. Indeed, a priori

knowledge of attributes requires static properties that

cannot be applicable for many scenarios, such as 5G and

beyond networks; in addition, the knowledge of the

attacker is generally not realistic. In [4], the authentication

is based on channel impulse response features extracted

using statistical analysis and coefficients correlation.

Attributes are then selected and classified by means of an

SVM algorithm. The system is designed for a MIMO

system exploiting spatial information in a static

environment. Time-varying conditions are instead

considered in [5] where a kernel machine-based scheme is

proposed. Here, the dimensionality of multiple attributes is

reduced by means of the kernel function. In [6] SVM and

k-means clustering algorithms are applied and compared

in an amplify and forward Unmanned Aerial Vehicle

(UAV) context. The extracted attributes are the mean and

the variance of the received samples and artificial data

based on the statistical knowledge of channel state

information are used to train the ML algorithms. Different

ML algorithms are used in [7] to test the accuracy of body

sensors authentication using Received Signal Strength

Indicator (RSSI) and Frame Loss Rate as attributes. The

simulated scenario is very limited, and no time variability

is considered. In [8], authentication strategies, based on

different ML algorithms and on statistical criteria based on

a hypothesis testing approach, are evaluated, and

compared in a time-varying environment. In particular,

SVM and NN algorithms are considered. ML algorithms

classified data exploiting the real and the imaginary parts

of the channel coefficients measured on multiple carriers

of an Orthogonal Frequency Division Multiplexing

(OFDM) system. More recently, in [9], different ML

methods are simulated over the entire estimated channel

matrix to produce binary authentication

(legitimate/malicious). In [10], carrier frequency offset

and RSSI are used as parameters to check the performance

of ML methods, concluding that considering two

parameters is better than only one. An overview of existing

studies in PLA is reported in [11]. The paper, anyway,

focuses on ML and DL methods, but it does not discuss the

specific physical parameters to extract from the received

signal. As shown in previous papers, there is not a single

ML method more suitable for all scenarios and datasets,

that should be checked with several ML algorithms. For

this reason, we compare here different ML algorithms,

considering their OC version because we assume no

knowledge about the malicious node, hence, only

legitimate nodes’ samples are available during training.

Assuming no-knowledge about the attacker is more

realistic, moreover, in [8], it has been shown that the use

of SVM and NN algorithms in their binary version does

not bring any advantage over their OC version.

This paper provides an exhaustive comparison of

anomaly detection methods based on known ML

approaches, that is not present in the literature to the best

of our knowledge. Detection accuracy, time complexity,

optimal parameters and training requirements are

evaluated. We compare four different strategies: kernel-

based, clustering, nearest neighbors and decision-tree,

while generally, only some of them are considered and

compared. Moreover, we consider a time- varying scenario

and we use a large set of attributes. Even if multiple-

attribute algorithms are considered an effective mean to

improve the authentication accuracy, in the literature they

are usually limited to multiple observations of the same

attribute, or to the extraction of multiple features of the

same attribute [4, 6, 8], rather than to effective multiple-

attribute as in [5]. Among others, we exploit both the delay

and the Angle of Arrival (AoA). Particularly, AoA is

exploited in [12] to validate the claimed GPS location

information in a vehicle- to-roadside communication using

a two-side hypothesis testing problem and in [13] to create

a unique signature that is used in a challenge-response

protocol. All these aspects have been rarely considered in

previous papers, and not jointly.

The paper is organized as follows. In Section II the

system model is described while the proposed

authentication/spoofing detection framework is introduced

in Section III. Different solutions are described and

compared. The numerical results are provided in Section

IV. Finally, some conclusions are drowned in Section V.

II. SYSTEM MODEL

We focus on a wireless IoT system where resource-

constrained nodes are connected to a sink node that

collects, elaborates and distributes information thanks to a

Wireless Sensor Network (WSN). IoT nodes simply

collect information and communicate with the sink node

using radio transceiver with a single antenna. The sink

node is a more powerful node performing more complex

operations and is equipped with a multiple antenna system

for transmitting/receiving data. Consequently, the sink

node is able to extract spatial information from received

signals. IoT nodes must be able to authenticate in order to

ascertain their legitimacy as a communication source and

to avoid the presence of malicious nodes that attempt to

subtract information from or inject false information into

the network, by posing as legitimate node. The Access

Point (AP) of the WSN acts as sink node and has in charge

the node authentication of the devices communicating with

it. Hence, the AP (Named Bob) receives a signal

transmitted from a legitimate IoT device (named Alice)

and has to confirm its identity. In the area is present a rogue

device (Eve) that tries to impersonate Alice. Bob wants to

identify communications form Alice and to detect potential

anomalies due to Eve attacks exploiting the WF.

A. Channel Model

The communication channels between Alice and Bob,

and Eve and Bob are corrupted by Additive Withe

Gaussian Noise (AWGN), pathloss and time-varying

fading. We assume here a multipath fading channel

defined for IEEE 802.11ac WSN [14] whose statistical

distributions have been extracted from actual channel

measurements. It is suitable for indoor communications

operating at 5 GHz with frequency bands up to 160 MHz.

We refer to the Model-D scenario in [15], defined for large

open indoor environments with mobility in the range 0-5

km/h. More in detail, we consider static

Journal of Communications, vol. 19, no. 2, 2024

100

transmitting/receiving nodes but the propagation channel

is time-varying due to the mobility of the scatters in the

environment. A single input multiple out- put propagation

channel is considered, with one transmitting antenna and

Q receiving antennas. The channel received by each

antenna is then modelled as a Tapped Delay Line (TDL)

with L paths. The channel matrix can be written as

𝑯(𝑡) = ∑ 𝑯𝑙(𝑡)𝛿(𝑡 − 𝜏𝑙)
𝐿
𝑙=1 (t)

where 𝑯𝑙(𝑡) is the l-th path channel vector of Q elements,

τl is the delay of the l-th path and 𝛿() is the unit Dirac

function (i.e., 𝛿(𝑡) = 1 𝑖𝑓 𝑡 = 0, 𝛿(𝑡) = 0 otherwise).

The model assumes a LoS propagation, hence the first path

is Rice-distributed, while other paths are Rayleigh

distributed. As a consequence, the channel matrix can be

divided in two matrices: one fixed 𝑯𝑙
𝐹 (𝑡) representing the

LoS (non-variable) part, and one 𝑯𝑙
𝑉(𝑡) representing the

NLoS (variable) part

𝑯𝑙(𝑡) = √𝛾𝑙 (√
𝜁

𝜁 + 1
𝑯𝑗

𝐹(𝑡) + √
𝜁

𝜁 + 1
𝑯𝑗

𝑉(𝑡)) =

√𝛾𝑙 (√
𝜁

𝜁 + 1
[

𝑒𝑗𝜙1(𝑡)

𝑒𝑗𝜙2(𝑡)

⋮
𝑒𝑗𝜙𝑄(𝑡)

] + √
𝜁

𝜁 + 1
[

𝑋1(𝑡)
𝑋2(𝑡)

⋮
𝑋𝑄(𝑡)

])

where

• 𝑋𝑖(𝑡) is the NLoS channel coefficient at the i-th

receiving antenna. 𝑋𝑖 coefficients are modelled as

correlated complex Gaussian random variables with

zero mean and unitary variance;

• 𝜙𝑖(𝑡) represents the phase difference between the

transmitter and the i-th receiving antenna;

• is the Rice factor;

• 𝛾𝑙 is the mean power of the l-th path at the receiver.

For what concerns the pathloss, it is modelled with a

free- space loss break-point model with two slopes [16]:

LF S, the free-space pathloss with slope value 2 up to dBP,

the break- point distance, and a slope value of 3.5

afterwards

𝐿(𝑑) = {

𝐿𝐹𝑆(𝑑), 𝑓𝑜𝑟 𝑑 ≤ 𝑑𝐵𝑃

𝐿𝐹𝑆(𝑑𝐵𝑃) + 35 log10 (
𝑑

𝑑𝐵𝑃
) , 𝑓𝑜𝑟 𝑑 > 𝑑𝐵𝑃

where 5<d<100 is the distance (in meters) between

transmitter and receiver. In addition to the usually used

channel coefficients, this paper proposes ML-based

approaches that exploit also channel attributes that are

rarely considered, the delay and particularly, the spatial

information (i.e., AoA) of the received signals. In actual

systems each node experiences different delay values that

can also vary in time, and the AoA depends on the position

of the node. Since the power delay profile in the IEEE

model is fixed for any channel realization, we have

integrated the IEEE model with the WINNER II [16]

channel model. In [16] the l-th path of each channel

realization is characterized by a random delay whose

average value 𝜏𝑙
𝑎𝑣𝑔 is exponentially distributed with

parameter λ. Moreover, for taking into account the time-

variability, the delay of each path, 𝜏𝑙 , is uniformly

distributed around the mean delay 𝜏𝑙
𝑎𝑣𝑔

 with variance

𝜎𝜏
2 = 1/𝜆. Values have been taken from B3 model in [16].

Similarly, the AoA of the signal’s paths are randomly

distributed around a mean value µ that is given by the

geometrical angle connecting the IoT node with the AP.

The AoA is a Gaussian-distributed random value,

𝑁(µ, 𝜎𝐴𝑜𝐴
2), with variance 𝜎𝐴𝑜𝐴

2 from the B3 model in [16].

III. PROPOSED AUTHENTICATION/SPOOFING DETECTION

FRAMEWORK

In this paper we propose the use of the WF (the full title)

approach to authenticate legitimate nodes and detect rogue

devices using different ML approaches. Let us assume that

the IoT network is composed by a transmitting node (Alice)

and one sink node (Bob) which performs node

authentication. The authentication/detection framework

proposed here works in two phases:

• Phase I: Bob identifies Alice by means a

traditional authentication protocol and collects a

set with size n of data (referred as training dataset

in what follows) received from Alice in order to

extract her WF and train the ML algorithm.

• Phase II: Bob receives a message without

assurance that it comes from Alice, hence, he tries

to verify its authenticity by extracting the WF

attributes from the signal and it feeds them to the

ML anomaly detection algorithm. A positive

result of the ML algorithm means that a match of

the WF extracted from the message against the

WF acquired during the Phase I is found, so the

sender of the message is considered legitimate.

Conversely, a negative result implies a message

rejection and consequent countermeasures, e.g., a

new Phase I authentication of the sender. It is

important to stress that phase II allows a

continuous authentication of the IoT nodes,

without any resource burden for the IoT nodes

since all operations are performed by the sink

node. So, this approach is suitable for resource-

constrained IoT nodes.

The WF method operates by extracting multiple

attributes from the channel between sender and receiver:

(1) the Received Signal Strength (RSS), (2) the AoA of the

main path, (3) the maximum path delay, and (4) the signal

energy. In what follows the ML-based

authentication/anomaly detection schemes that have been

considered here are described. In particular, their one class

version has been considered: they distinguish only one

class (Alice) and everything else is considered an anomaly

(Eve). These schemes do not require any knowledge about

Eve, they can operate in absence of negative class training

samples (i.e., without collecting samples from Eve). In

general, these kinds of schemes operate by defining a

Journal of Communications, vol. 19, no. 2, 2024

101

decision test around the positive class (Alice), for

separating and identifying new fingerprints as legitimate

or not. The classification is based on two parameters: the

distance between the test element (i.e., the element to be

classified) and the training dataset characterizing the

legitimate node (i.e., data used for training during Phase I),

and a threshold. A sample is positively classified if the

distance is lower than the threshold, otherwise it is

classified as negative (i.e., an anomaly). Different

algorithms define these parameters differently. The

performance of the algorithms has been evaluated in terms

of

• True negative rate is the ratio between the

number of anomalous samples correctly detected

and the total number of anomalous samples. It

represents the probability of correctly detecting

an anomaly (Eve);

• False negative rate is the ratio between the

number of legitimate samples mistaken for

anomalies and the total number of legitimate

samples. It represents the probability of mistaking

an authorized node (and blocking it), i.e., Alice is

identified as a malicious node;

• Balanced Accuracy BA is the average between the

true positive rate (i.e., the probability that a

legitimate sample is correctly identified) and the

true negative rate.

OC-k(j)NN is an authentication/anomaly detection

algorithm derived from the k-NN classification algorithm

[17] that selects the class of a sample to be tested as the

most frequent among its k nearest neighbours. OC-k(j)NN

algorithm is adapted to a single class problem: first the k

nearest neighbours, {𝑦1,· · · , 𝑦𝑘}, of the test element x, are

found in the training dataset, then the j nearest neighbors,

{𝑧𝑖1,· · · , 𝑧𝑖𝑗}, for each of the first k neighbors (i.e., 𝑖 =

 1, ⋯ , 𝑘) are found in the same dataset . The average

Euclidean distances, �̅�𝑥𝑦 between x and its k nearest

neighbors, and �̅�𝑦𝑧 between those k neighbors and their

own j closest neighbors are calculated. The element to be

test, x is considered an anomaly if
�̅�𝑥𝑦

�̅�𝑦𝑧
> 1. Indeed, if x is

an anomaly, it likely lays in a region where the samples are

less clustered, so the distance of x form its closest

neighbours (belonging to the training dataset) is on

average greater than the distance of between those

neighbours and their own closest neighbours (also

belonging to the training dataset). In terms of complexity,

there is no need of a training phase for OC-k(j)NN. During

the test phase, assuming a number of extracted features p,

and a training dataset size n, the algorithm calculates k

times the distance of an element to be tested to every point

in the training dataset extracting every time that at

minimum distance (𝑂(𝑛𝑘𝑝)). Then for the k selected

neighbours it calculates j times distances to other points in

the dataset extracting every time the element at minimum

distance (𝑂(𝑘𝑗𝑛𝑝)) . Then the algorithm calculates the

ratio between the average distances. Neglecting the

complexity for calculating the distances the complexity is

𝑂(𝑘𝑗𝑛𝑝).

OC-SVM is based on SVM algorithms that use a non-

linear function (kernel) to map input data into a space

withhigher dimensions named the feature space, and that

find decision boundaries to separate classes. OC-SVM has

only one class, the boundary is decided using the available

training dataset, and any new data that lies outside that

boundary is classified as an anomaly. We consider the

solution that uses a hyperplane (a plane in m-dimensions)

for the decision boundary [18]. During the training phase,

elements of the dataset are projected in the feature space

using a Gaussian kernel and then they are separated from

the origin using a hyperplane minimizing the distance of

the hyperplane from the origin. A parameter ν∈ [0, 1] is

used as upper bound for the fraction of elements of the

kernel transformed training dataset that lies outside the

hyperplane, so that a low value of ν means that a few

outliers are allowed, and the hyperplane is closer to the

origin. Moreover, ν represents the lower bound for the

number of support vectors that are critical elements of the

dataset that define the decision boundary and are used to

calculate the distances. SVM is a convex quadratic

programming problem with linear constraints. Training

complexity of non-linear SVM is generally between

𝑂(𝑛2) and 𝑂(𝑛3) depending on the implementation. The

test complexity depends on the used kernel function and

the number of support vectors, s, since the kernel function

must be computed for each support vector. Hence, the

complexity is 𝑂(𝑠𝑝𝑓) where f is the complexity of the

kernel function.

iForest is an anomaly detection algorithm belonging to

decision tree algorithms [19], it is based on a ensemble

random binary trees, called isolation trees (iTrees). During

the training, T different iTrees are built by splitting the

dataset into sub-sets until each partition has only one

element or a multiple of that same element. When the size

of training dataset, n, is big a sub-set of the whole dataset

is used with dimension 𝜓 = 𝑚𝑖𝑛(𝑛, 256) . iTrees are

created by successively splitting the resulting sub-set at

each step, randomly selecting an attribute and a value in its

range so that the split generates two complementary sub-

sets. The path length, ℎ(𝑥), is defined as the number of

nodes traversed through the iTree to reach the leaf

containing x. The anomaly score is then calculated

as 𝑠(𝑥, 𝑛) = 2
−

𝐸[ℎ(𝑥)]

𝐶(𝑛) using the path length averaged on

all iTrees, 𝐸[ℎ(𝑥)], normalized to the average path length

𝑐(𝑛) of an unsuccessful search in a binary search tree built

over a training dataset of n elements [19]. It is expected

that features of an anomalous element differ significantly

from training dataset elements, in particular an anomaly

should have a path length shorter than the average. The

anomaly score is compared with a threshold 𝜌 ∈ [0, 1]:

values over the threshold are classified as anomalies.

During the training stage, T iTrees are built by recursively

splitting the dataset of size ψ. The complexity of the

training is 𝑂(𝑇𝜓𝑙𝑜𝑔𝜓). The anomaly detection

complexity for a single element is 𝑂(𝑇𝑙𝑜𝑔𝜓).
OC-kmeans is a modified version of the k-means

clustering algorithm [20] that aims at dividing a given

dataset into k clusters where each element is closer to the

Journal of Communications, vol. 19, no. 2, 2024

102

center of its cluster than to the center of other clusters. This

is achieved through an iterative technique whereby the

clustering operation is performed several times, using the

resulting centres from each previous iteration as a starting

point for the next one. We use here a modified version of

the k-means algorithm to achieve anomaly detection [21].

This is done by dividing elements of the dataset in two

clusters (i.e., k = 2). Then the average distance �̅� between

the two clusters’ centers is calculated and used as threshold

for the following decision test. During testing operations,

received samples and training dataset are clustered in two

clusters and the resulting distance V between the two

clusters is compared with α�̅�, where α is a scaling factor.

If V ≤ α�̅� a positive result is assumed, i.e., the received

samples belong to Alice, otherwise an anomaly is detected.

k-means shows complexity 𝑂(𝑛𝑝𝑘) for each iteration: for

each element of the dataset the distance from the k

centroids is calculated using a vector of dimension p. In

the anomaly detection implementation described before,

both training and test phases are based on a dataset

clustering with k = 2, then distances among clusters are

evaluated and compared. Hence, the complexity for both

phases is 𝑂(2𝑛𝑝𝐼) where I is the number of iterations of

the algorithm.

IV. NUMERICAL RESULTS

Performance of the previously described ML-based

anomaly detection methods are presented and compared.

Numerical results have been derived by means of

simulations. To have results not depending on a single

specific dataset (i.e., a specific position distribution of

nodes in the area), results from multiple datasets have been

averaged. For each dataset, Eve and Alice are randomly

placed with a uniform distribution in a square area A = 20

× 20 m, with the sink node in the centre. It is assumed that

Alice’s signal is received with a Signal-to-Noise Ratio

(SNR) of 10 dB, while the SNR of Eve is consequently

calculated considering its position in the area. The channel

model and the probability distribution of the channel

attributes have been described in Sec. II, taking into

account also their time-variability due to the scatterers’

movement up to 5 km/h. The carrier frequency is 5.25 GHz

with a bandwidth of 80 MHz. Firs of all, we have evaluated

the impact of different parameters’ settings on detection

performance of the algorithms for selecting the optimum

ones. Moreover, the impact of the training dataset size is

evaluated. The OC-k(j)NN algorithm depends on two

parameters k and j. Fig.1 (a) shows the balanced accuracy

(BA) vs the parameter k for different values of j. Training

dataset size is fixed at n = 200 samples. The algorithm

behaves better when there is a higher unbalance between

the two parameters with 𝑘 < 𝑗. Indeed, performance

increases as
𝑘

𝑗
 decreases up to certain point, then benefits

tend to disappear. In particular, values of 𝑘 = [1, 5] are

those that provide the best results with 𝑗 = [10, 20]. With

equal 𝑘 𝑗⁄ , using a lower value of k gives almost the same

performance but with lower complexity (for example the

point 𝑘 𝑗⁄ = 5 10⁄ is similar to the value for 𝑘 𝑗⁄ =
10 20 ⁄ but the first one has lower complexity.) These

results are confirmed by Table I where the BA is presented

for different values of the training dataset size, n, for

values of k and j in their best ranges (𝑘 = 1, 5 and 𝑗 =
 10, 20). We can see that better performance is achieved

with 𝑘 𝑗⁄ = 1 20⁄ and a training dataset with limited size

(𝑛 ∈ [50 − 100]), evidenced in the gray table part. OC-

SVM requires to set the parameter ν that represents an

upper bound for the fraction of outliers of the training

dataset and a lower bound for the number of supporting

vectors. Fig. 1(b) shows BA vs ν for different values of the

training dataset size, n. We can see that as n increases, BA

performance significantly increases (up to n = 500) and the

impact of ν decreases. Conversely, for small n values it is

preferable to work with higher values of ν, since a higher

number of support vectors improves the detection accuracy.

However, the value of ν should be limited in order to limit

the computational complexity. Previous considerations

can be drawn also from Table II where BA is reported for

different values of n and a selected range of values of 𝜈 ∈
 [0.05, 0.5].

TABLE I. OC-K(J)NN: BA VS TRAINING DATASET SIZE N

 1st # neighbours

 k=1 k=5

 2nd # neighbours

Training

dataset (n)
j=10 j=20 j=10 j=20

30 0.7931 0.9286 0.9829 0.5665

50 0.9772 0.9903 0.8910 0.9610

100 0.9749 0.9911 0.8783 0.9534

200 0.9736 0.9897 0.8766 0.9466

300 0.9746 0.9898 0.8778 0.9442

TABLE II. OC-SVM: BA VS TRAINING DATASET SIZE N

Training

dataset (n)

Upper bound elements outside the hyperplane 𝝂)

0.05 0.10 0.20 0.30 0.40 0.50
100 0.9046 0.9475 0.9852 0.9880 0.9889 0.9892

300 0.9411 0.9840 0.9892 0.9902 0.9903 0.9904

400 0.9918 0.9930 0.9932 0.9932 0.9928 0.9925

500 0.9928 0.9939 0.9937 0.9936 0.9933 0.9927

We can see that best performance, highlighted in gray

in the table, is achieved with a training dataset size around

n = 400 (higher values do not yield relevant benefits), also

maintaining a low value of 𝜈 = 0.05. A reduced value of

𝑛 = 300 could be selected using a value of 𝜈 ≥ 0.3, that

means the time complexity decreases during the training

phase but increases in the running phase. iForest requires

two parameters, the number of trees T and the threshold

𝜌 ∈ [0, 1]. In Fig. 1c the BA vs 𝜌 for different values of T

and n = 200 is shown. Curves show that the optimal

threshold value is around 𝜌 = 0.6 for all values of T.

Moreover, there is not a significant benefit in increasing

the number of trees over 𝑇 = 10 . Indeed, BS

performance remains almost constant, but the time

complexity increases. The impact of the training dataset

size is shown in Table III where the BA for different values

on n is reported varying parameters 𝜌 and T in their

optimal ranges. Again, we can see that the number of trees

does not significantly affects the performance, while

increasing n up to n = 300 leads to an improvement, then

the performance remains almost constant, thus a further

increase would lead only a complexity increase. Best

Journal of Communications, vol. 19, no. 2, 2024

103

values are achieved with 𝜌 = 0.6, 𝑛 = 200 ÷ 300 and

T around 100. OC-kmeans algorithm compares clusters’

distances using a weight factor 𝛼. Fig. 1(d) shows the BA

vs 𝛼 for different values of n. Best accuracy is achieved

with a limited training dataset size, indeed there is a benefit

increasing n up to 20 but for higher values performance

worsens. Also for what concerns the value of α, an increase

is beneficial up to a certain value then performance

decreases. This worsening is more evident when larger

training dataset are considered. The best value of α varies

with n, particularly, it increases as n decreases. This can be

seen also from Table IV where BA for different values of

n is reported for α in its best range [1.1, 1.5]. The grey part

of the table highlights that the best accuracy is achieved

with 𝑛 = 20 and 𝛼 = 1.4 ÷ 1.5. The low value of n is

beneficial also in terms of time complexity.

(a)

(b)

(c)

(d)

Fig. 1. Balanced Accuracy vs algorithms' parameters: (a) OC-k(j)NN. BA vs parameter k varying j, (b) OC-SVM. BA vs parameter ν varying n,

(c) iForest. BA vs threshold ρ varying T, (d) k-means. BA vs distance weight α varying n

(a)

(b)

Fig. 2. Eve detection rate vs training dataset size: (a) True Negative Rate, (b) False Negative Rate

Journal of Communications, vol. 19, no. 2, 2024

104

TABLE III. IFOREST: BA VS TRAINING DATASET SIZE N

 Threshold

 𝛒 = 𝟎. 𝟓𝟓 𝛒 = 𝟎. 𝟔

 # of Threes (T)

Training

dataset (n)
5 10 20 40 100 120 140 5 10 20 40 100 120 140

50 0.8413 0.8559 0.8610 0.8746 0.8816 0.8881 0.8854 0.8786 0.8863 0.8941 0.8828 0.8924 0.8878 0.8973

100 0.8384 0.8551 0.8992 0.9069 0.9075 0.9110 0.9095 0.8663 0.8867 0.9025 0.8978 0.9048 0.9097 0.9103

200 0.9028 0.9141 0.9219 0.9214 0.9269 0.9289 0.9241 0.8879 0.9359 0.9248 0.9196 0.9388 0.9198 0.9306

300 0.9021 0.9178 0.9255 0.9277 0.9289 0.9355 0.9304 0.9076 0.9159 0.9217 0.9333 0.9404 0.9414 0.9406

400 0.8993 0.9101 0.9273 0.9298 0.9344 0.9319 0.9326 0.9199 0.9309 0.9336 0.9290 0.9307 0.9405 0.9321

From previous results, we can see that OC-k(j)NN and

OC-SVM are those achieving the best BA performance (∼

99%), while OC-kmeans and iForest reach 96% and 94%,

respectively. It is also interesting comparing the

performance of different ML algorithms when their

optimal parameters are used. Fig. 2 shows the true negative

rate (tnr) and the false negative rate (fnr), that are the

correct and false detection of Eve, for different algorithms.

In terms of fnr, results confirm that OC-SVM and OC-

k(j)NN achieve the highest values that are quite

independent on the training dataset size. For what concerns

the fnr instead, OC-k(j)NN achieves values almost

constant with n but that do not go to zero, OC-SVM has

values of fnr that depend on the training dataset size and

go to zero around n=400. OC-kmeans presents good

performance in terms of fnr while tnr strongly depends on

n and reaches maximum values around 94%. iForest

presents worst performance, and even increasing n there is

a floor.

TABLE IV. OC-KMEANS: BA VS TRAINING DATASET SIZE N

Weight (α)
Training

dataset

(n)

1.1 1.2 1.3 1.4 1.5

5 0.8641 0.8799 0.9102 0.9237 0.9272

20 0.8710 0.9173 0.9506 0.9661 0.9642

30 0.7687 0.8601 0.9050 0.9207 0.9173

50 0.7613 0.8786 0.8721 0.8666 0.8655

100 0.7718 0.8012 0.7753 0.7598 0.7595

V. CONCLUSIONS

This paper presented a ML-based PLA framework for

identifying IoT nodes belonging to a WSN and detecting

potential rogue devices trying to gain an unauthorized

access. The identification is based on WF of the received

signal, here characterized by various channel attributes.

Different ML approaches have been evaluated and

compared in terms of different metrics. OC-SVM and OC-

k(j)NN resulted to be the algorithms providing best

performance, even if OC-k(j)NN presents a higher fnr. On

the other side OC-k(j)NN has the advantage of a reduced

time complexity compared to OC-SVM, it does not require

training, achieves good performance with a limited

training dataset 𝑛 ∈ [50,100] and has linear complexity

with n. On the contrary, OC-SVM has a training

complexity that exponentially increases with n and for

having low fnr the training dataset should be big. The last

two algorithms have limited complexity but present a

significant performance worsening, especially the iForest.

Although this paper does not include experimental

activities, it still provides original contributions, as

reported before. Field tests are planned in our scheduled

future works to validate the findings reported in this paper.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

AS, DM and LM conducted the research; AS analyzed

the data; DM and LM wrote the paper; all authors had

approved the final version.

FUNDING

This work was partially supported by the European

Union under the Italian National Recovery and Resilience

Plan (NRRP) of Next Generation EU, partnership on

“Telecommunications of the Future” (PE0000001 -

program “RESTART”).

REFERENCES

[1] J. Zhang, S. Rajendran, Z. Sun, R. Woods, and L. Hanzo, “Physical

layer security for the internet of things: Authentication and key

generation,” IEEE Wireless Commun., vol. 26, no. 5, pp. 92–98,

2019.

[2] L. Bai, L. Zhu, J. Liu, J. Choi, and W. Zhang, “Physical layer

authentication in wireless communication networks: A survey,” J.

Commun. Inf. Netw., vol. 5, no. 3, pp. 237–264, 2020.

[3] Y. Liu, J. Wang, J. Li, S. Niu, and H. Song, “Machine learning for

the detection and identification of internet of things devices: A

survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 298–320, 2022.

[4] J. Yoon, Y. Lee, and E. Hwang, “Machine learning-based physical

layer authentication using neighborhood component analysis in

mimo wireless communications,” in Proc. Int. Conf. Information

and Commun. Tech. Convergence (ICTC), 2019, pp. 63–65.

[5] H. Fang, X. Wang, and L. Hanzo, “Learning-aided physical layer

authentication as an intelligent process,” IEEE Trans. Commun.,

vol. 67, no. 3, pp. 2260–2273, 2019.

[6] T. M. Hoang, N. M. Nguyen, and T. Q. Duong, “Detection of

eavesdropping attack in uav-aided wireless systems: Unsupervised

learning with one-class svm and k-means clustering,” IEEE

Wireless Commun. Lett., vol. 9, no. 2, pp. 139–142, 2020.

[7] S. Kashani, F. Nait-Abdesselam, and A. Khokhar, “A channel-

based authentication using machine learning for body sensor

networks,” IEEE Globecom, 2022, pp. 1103–1108.

[8] L. Senigagliesi, M. Baldi, and E. Gambi, “Comparison of statistical

and machine learning techniques for physical layer authentication,”

IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1506–1521, 2021.

[9] E. H. Enad and S. Younis, “Machine learning based decision

stratigies for physical layer authentication in wireless systems,” in

Proc. 2nd Annual Int Conf Information and Sciences (AiCIS), 2020,

pp. 114–118.

[10] H. Fang, X. Wang, and S. Tomasin, “Machine learning for

intelligent authentication in 5g and beyond wireless networks,”

IEEE Wireless Communications, vol. 26, no. 5, pp. 55–61, 2019.

Journal of Communications, vol. 19, no. 2, 2024

105

[11] L. Alhoraibi, D. Alghazzawi, R. Alhebshi, and O. B. J. Rabie,

“Physical layer authentication in wireless networks-based machine

learning approaches,” Sensors, vol. 23, no. 4, p. 1814, Feb. 2023.

[12] A. Abdelaziz, R. Burton, F. Barickman, J. Martin, J. Weston, and

C. E. Koksal, “Enhanced authentication based on angle of signal

arrivals,” IEEE Trans. Vehic. Tech., vol. 68, no. 5, pp. 4602–4614,

2019.

[13] J. Xiong and K. Jamieson, “Securearray: Improving wifi security

with fine-grained physical-layer information,” in Proc. 19th Annual

Int. Conf. Mobile Computing & Networking (MobiCom), 2013, pp.

441–452.

[14] J. Kermoal and et al., “A stochastic mimo radio channel model with

experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no.

6, pp. 1211–1226, 2002.

[15] V. Erceg et al., “Wireless lans indoor mimo wlantgn channel

models,” 2004.

[16] P. Kyosti, J. Meinila, L. Hentila, X. Zhao, T. Jamsa, C. Schneider,M.

Narandzic, M. Milojevic, A. Hong, J. Ylitalo, V. M. Holappa, M.

Alatossava, R. Bultitude, Y. Jong, and T. Rautiainen, “Winner II

channel models,” IST-4-027756 WINNER II D1.1.2 V1.2, vol. 2,

2008.

[17] S. S. Khan and A. Ahmad, “Relationship between variants of one-

class nearest neighbors and creating their accurate ensembles,”

IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1796–1809, 2018.

[18] B. E. A. Scholkopf, “Estimating the support of a high-dimensional

distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471,

2001.

[19] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc.

8th IEEE Int. Conf. Data Mining, 2008, pp. 413–422.

[20] J. M. Queen et al., “Some methods for classification and analysis of

multivariate observations,” in Proc. 5th Berkeley Symp. Math.

Statistics and Probability, vol. 1, no. 14. Oakland, CA, USA, 1967,

pp. 281–297.

[21] H. Liu, Y. Wang, J. Liu, J. Yang, and Y. Chen, “Practical user

authentication leveraging channel state information (csi),” in Proc.

9th ACM Symp. Information, Computer and Commun. Security,

2014, pp. 389–400.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Communications, vol. 19, no. 2, 2024

106

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

