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Abstract—The design of optimal channel codes with 

computationally efficient Forward Error Correction (FEC) 

codes remains an open research problem. In this paper, we 

explore optimal channel codes with computationally efficient 

FEC codes, focusing on turbo and Low-Density Parity-Check 

(LDPC) codes as near-capacity approaching solutions. We 

highlight the significance of accurate channel estimation in 

reliable communication technology design. We further note 

that the stringent requirements of contemporary 

communication systems have pushed conventional FEC 

codes to their limits. To address this, we advocate for a 

paradigm shift towards emerging Machine Learning (ML) 

applications in communication. Our review highlights ML's 

potential to solve current channel coding and estimation 

challenges by replacing traditional communication 

algorithms with adaptable deep neural network architectures. 

This approach provides competitive performance, flexibility, 

reduced complexity and latency, heralding the era of ML-

based communication applications as the future of end-to-

end efficient communication systems. 

Keywords—Turbo codes, LDPC codes, autoencoder, 

interleaver, encoder 

I.  INTRODUCTION 

Communication systems are crucial for enabling the 

exchange of information across vast distances in modern 

society. Channel coding is a fundamental technique used 

in communication systems to ensure reliable and secure 

data transmission by addition of redundant bits to the 

original message for error correction. Traditional channel 

coding schemes, such turbo codes and Low-Density 

Parity-Check (LDPC) codes, have been widely used and 

optimized to achieve near-capacity performance [1]. 

However, these conventional coding schemes are based on 

mathematical models and heuristics, which may not fully 

exploit the potential of modern communication systems, 

especially in non-linear systems. 

With the emergence of Machine Learning (ML) 

techniques, there has been growing interest in leveraging 

ML for communication applications, including end-to-end 

channel coding and estimation [2]. ML-based approaches 

have the potential to adaptively learn and optimize coding 

schemes based on data-driven insights, leading to 

improved performance and adaptability to changing 

channel conditions.  

A reliable communication system needs to transfer data 

accurately, with high throughput and low latency across a 

transmission channel [3]. However, communication 

channels have limitations, such as hostile environments 

that can result in unreliable signal propagation [1]. Thus, 

to design communication technologies that are reliable and 

energy-efficient, accurate knowledge of the 

communication channel is essential. Unfortunately, and in 

reality, the complexity of communication media, 

especially in terms of noise or interference, is not fully 

understood or modeled. Moreover, the demands of modern 

communication systems, such as 5G wireless 

communications, have further stretched the capabilities of 

conventional communication schemes. Developing 

strategies and efficient algorithms to mitigate these 

limitations and achieve reliable communication systems 

remains an open research problem.  

The current requirements of communication systems 

call for near-capacity channel codes that are highly 

optimized and can combat noise in the communication 

medium [2, 4]. Fig. 1 depicts a classification diagram of 

the available error control schemes. 

Forward Error Correction (FEC) is an error control 

scheme that aims to efficiently transmit data signals over 

noisy channels while enabling error-free decoding [2]. Fig. 

2 illustrates a typical FEC model. In digital transmission, 

FEC coding schemes involve adding carefully designed 

redundancy to the original signal k to create a codeword n, 

which aids the receiver decoder in detecting and even 

correcting transmission errors [4, 5], FEC codes are 

commonly classified as block (algebraic) codes and 

convolutional codes, with varying complexity and 

performance. The authors in [6] emphasized that efficient 

encoding schemes for well-constructed input message 

patterns and appropriate decoding algorithms are critical 

design considerations for all FEC coding schemes. 
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Fig. 1.  Error control scheme (ECS) classification diagram. 

 

 
Fig. 2.  FEC communication model diagram. 

 
While the encoder aims to find an efficient codeword 

representation for the message to be transmitted over a 

noisy channel, the decoder aims to identify the most 

probable codeword sent. At a low signal-to-noise ratio 

(SNR) where there is considerable noise interference, a 

low coding rate (R = k/n) is required. However, this 

necessitates adding significant redundancy, increasing 

bandwidth and energy consumption. This limitation is a 

major factor that restricts the deployment of FEC codes in 

high-throughput applications. 

FEC techniques are typically preferred when signal re-

transmission is impractical or costly. Ideally, FEC codes 

should successfully detect and correct errors and enable 

transmission at coding rates approaching the Shannon 

capacity [2]. 

Numerous FEC coding strategies have been proposed to 

achieve near-optimal channel capacity while minimizing 

costs, encoding/decoding complexity, power consumption 

and transmitting errors [7]. Despite significant progress in 

the field, some current FEC strategies suffer from high 

encoding/decoding complexity, increased power 

consumption, and redundant bit overhead [7]. Additionally, 

the error-floor effect in the high SNR region poses a 

challenge, where the Bit Error Rate (BER) curve shows a 

significantly decreased slope compared to lower SNR 

regions. This paper aims to contribute potential solutions 

to these challenges. 

The remainder of the paper is organized as follows. 

Section II explores the principles and characteristics of 

near-optimal capacity-approaching FEC channel codes, 

with turbo codes and LDPC codes being considered the 

two most powerful and commonly used FEC codes in 

modern communication systems [8]. This section provides 

specific turbo and LDPC codes performance metrics as 

examples of near capacity-approaching FEC codes, 

including communication channel throughput, BER, 

latency and complexity. Section III presents an overview 

of current ML approaches for achieving near-optimal 

channel coding schemes, which have the potential to 

overcome the limitations of canonical FEC channel coding 

techniques. Finally, Section IV concludes the paper with 

recommendations. 

II. NEAR-CAPACITY APPROACHING CHANNEL CODING 

In this section, we conduct a review of code classes that 

are capable of approaching the Shannon limit closely. 

Specifically, we analyze and compare turbo codes and low-

Density Parity-Check (LDPC) codes, both of which 

involve iterative decoding evaluated based on various 

metrics, including encoding and decoder schemes, system 

complexity, bandwidth, throughput, BER or SNR, memory 

usage and latency. 

A. Turbo Codes 

Turbo codes are parallel concatenated convolutional 

codes that are widely used in the field of communication 

[1, 2, 9]. They were first introduced in 1993 by Berrou et 

al. [3] and Arif et al. [10].  Turbo codes achieved 

impressive performance, coming within 0.7 dB of 

Shannon’s channel capacity limit at a BER of 10−5 on an 

Additive White Gaussian Noise (AWGN) channel [5] 

Turbo codes typically involve using two or more parallel 

concatenated convolutional encoders with pseudorandom 

interleavers and employ a converging iterative decoding 

procedure that feeds the outputs of one decoder to the 

inputs of another using a soft-decision algorithm [1, 5–7]  

Hard-output decoders are generally not suitable as they can 

degrade system performance. Instead, Soft-Input/Soft-

Output (SISO) decoders are commonly adopted for Robust 

decoding of turbo codes. However, the number of 

iterations required for convergence can result in latency 

drawbacks, which impose limits on the block length n. 

 The performance of turbo codes in terms of BER is not 
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only influenced by designing more powerful 

encoders/decoders or increasing the encoder/decoder 

dimension but also by the design of the constituent 

interleavers [7, 8] . Two important factors that are 

commonly considered significant in evaluating turbo code 

performance are the convergence behavior of iterative 

decoding in the low SNR region, known as the “waterfall” 

region, and the “error-floor” effect in the high SNR region 

[11, 12]. Conventional turbo codes that use 8-state 

constituent encoders can perform effectively at low SNR 

but often suffer from a flattening around a Frame Error 

Rate (FER) of 10−5 due to a large number of low-weight 

codewords, which corresponds to a poor minimum 

distance, dmin [8]. It has been shown that modifying 

interleaver parameters and puncturing patterns, such as 

encoding information bits of various lengths with different 

coding rates, can improve the BER performance [8]. 

According to the authors in [11] the “error-floor” challenge 

is becoming less problematic due to good permutation 

matrices. 

B. Turbo Encoding 

A pioneering work [13] proposed a convolutional code 

with near Shannon capacity, utilizing a parallel 

concatenation of two Recursive Systematic Convolutional 

(RSC) codes. This approach was shown to outperform the 

best non-Systematic Convolutional (NSC) code at any 

SNR for high code rates, as demonstrated in [14]. The 

authors compared BER performance and concluded that 

while NSC was superior to Systematic Convolutional (SC) 

code at high SNR and vice versa at low SNR, the RSC 

offered good performance at both low and high SNR, as 

shown in [14], Fig. 3. However, one drawback of RSC 

codes is the lack of long-range memory [15]. To address 

this limitation, the authors in [13] introduced long-range 

memory by concatenating the first encoder’s output with 

the second encoder’s interleaved output.  

 
Fig. 3. Simulated performance of the memory-2 RSC code with NSC and SC codes [14]. 

 

 
Fig. 4. R = 1/2 non-systematic feed-forward convolutional encoder with 

memory m = 3. 

 

The relationship between the constraint length k of a 

convolutional code and the maximum number of memory 

stages m in the encoder is defined as 𝑘 = 𝑚 + 1 [16]. To 

minimize decoding computational complexity, typically, m 

is chosen to be between 3 and 5. Fig. 4 illustrates a ½ rate 

NSC encoder with 𝑚 = 3.  
This NSC encoder has two generator functions denoted, 

𝑔0 and 𝑔1 and can be represented algebraically: 

𝑔1 = 1 + 𝑥 + 𝑥2 + 𝑥3 

𝑔0 = 1 + 𝑥2 + 𝑥3 

The parity bits 𝑑0 and 𝑑1 are generated as the modulo-

2 addition of the message bit u and the respective generator 

functions: 

𝑑0 = 𝑢 ⊕ 𝑔0 (1) 

𝑑1 = 𝑢 ⊕ 𝑔1 (2) 

Fig. 5 depicts the block diagram of the conventional 

turbo encoder [3].  
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Fig. 5. Classical turbo encoder structure. 

 
In this architecture, the first RSC encoder (ENC1) takes 

a binary information bit sequence of length k as input and 

generates an encoded stream codeword y1. Simultaneously, 

this information bit sequence is reordered by an interleaver 

and then encoded by the second RSC encoder (ENC2) to 

produce another codeword y2, which behaves like a long 

random code [17]. The information sequence X, along with 

the two parity sequences y1 and y2, are transmitted with a 

combined code rate R of 1/3. In cases where different code 

rates are desired, puncturing elements can be included to 

puncture and multiplex the encoded bit sequences before 

they are modulated and transmitted over the physical 

channel. As stated in [14] the global coding rate for a 

parallel concatenation of two elementary codes, C1 and C2, 

with coding rates R1 and R2, can be represented by the 

expression: 

𝑅𝑝 = 
𝑅1𝑅2

𝑅1 +𝑅2
= 

𝑅1𝑅2

1 − (1 − 𝑅1)(1 − 𝑅2)
.  (3) 

As per Shannon's pioneering work [3, 7] random-like 

codes are essential for approaching capacity in 

communication systems. In [2], the authors proposed 

the use of the random-like (R-L) criterion as a basis for 

designing turbo codes. The R-L algorithm distinguishes 

between strongly and weakly random-like codes by 

measuring the closeness of their weight distribution to 

the average weight distribution obtained from random 

coding. The authors concluded that incorporating these 

codes as components in turbo code schemes can 

enhance the low-weight tail of the distribution and 

allow for adjustments to the BER according to specific 

specifications. 

C. Interleaver  

Extensive research has been conducted on interleaver 

design to achieve effective randomization and 

substantially enhance the code distance properties [4, 12, 

18, 19]. The design strategy of interleavers plays a crucial 

role in determining the achievable minimum Hamming 

distance of the code, as well as the suitability for iterative 

decoding based on the IDS criterion [10], Interleavers are 

utilized in a specific pattern to randomize the location of 

errors and reduce the correlation between parity bits 

corresponding to the original and interleaved data frames, 

as low-weight generated codes often result in poor error 

performance [7, 10, 20]  To avoid the costly use of storage 

elements or look-up tables associated with randomly 

selected permutations, interleaver designs employing 

algebraic permutation methods are generally preferred, as 

mentioned in [18]. However, it is worth noting that most 

of the research on interleaver design is based on the S-

random algorithm [10, 21] 

In [22], a method for designing efficient puncture-

constrained interleavers was introduced, where Garzón-

Bohórquez et al. claimed that applying interleaving with a 

periodic cross-connection pattern resembling a photograph 

not only improves the error-correction capability of the 

code but also significantly reduces the search space for 

different interleaver parameters. On the other hand, 

Onurcan et al. [23] proposed the concept of window band 

structured interleavers for turbo codes, where the 

generated symbols are limited within the window structure 

to improve the decoding latency characteristics. This 

proposed scheme allows for flexible trade-offs between 

latency and error correction performance. 

D. Turbo Decoder 

The utilization of intelligent encodings and reordering 

strategies discussed earlier leads to the generation of 

powerful codes that require complex decoding operations 

over multiple iterative soft-decision cycles [4, 5]. Turbo 

decoders, due to their iterative probabilistic nature, 

generally exhibit higher complexity compared to encoders. 

Some of the challenges in training decoders are 

developing models that can successfully capture the 

underlying patterns in the data and transfer these 

continuous representations to discrete outputs, interference 
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latency, and experimenting with different model 

architectures and hyperparameters to achieve the desired 

performance. Fig. 6 illustrates a block diagram of a turbo 

decoder [4]. 

Turbo codes employ iterative decoding between SISO 

cascaded decoders, which extract systematic and recursive 

bits from the received information bit sequence and 

generate probabilities for each received bit being either 0 

or 1. The maximum a-posteriori probability (MAP) and 

soft output Viterbi algorithm (SOVA) are two commonly 

used optimal decoding algorithms in turbo decoding. MAP 

involves a-posteriori probabilities, while SOVA is based 

on maximum-likelihood  [5, 24, 25]. Turbo decoders 

typically operate in the log domain to reduce 

implementation complexity and time delay [8, 24, 26]. The 

decoders exchange log likelihood ratios (LLRs) for each 

binary input bit dk, as expressed in [4, 27]. 

 

 
Fig. 6. Turbo decoder structure [4]. 

 

In
Prob {𝑑

𝑘 
= 0|𝑦,𝐶}

Prob {𝑑
𝑘 

= 1|𝑦,𝐶}
= 𝐿𝑛

𝑘 + ∑𝐿𝑒𝑖
𝑘

𝑖

.  (4) 

where C represents the code structure, y denotes the 

decoder inputs and i is the number of decoding iterations. 

The 𝐿𝑛
𝑘   and the 𝐿𝑒𝑖

𝑘   are the intrinsic and extrinsic 

information decoder contributions during the decoding 

operations. 
To obtain a block of k extrinsic LLRs, the addition and 

Jacobian logarithm operations (max* operation) used for 

combining two LLRs x and y is expressed in [1]: 

max∗(𝑥. 𝑦) = max(𝑥, 𝑦) + ln(1 + 𝑒−|𝑦−𝑥|) .  (5) 

In the max-log-MAP algorithm, the max* operations 

logarithm is approximated, as reported in [28], by 

 
max∗(𝑥. 𝑦) ≈ max(𝑥, 𝑦).  (6) 

 
Once a certain number of SISO decoder operations, also 

known as half-iterations, have been completed, the turbo 

decoder produces estimates for the information bits by 

analyzing the sign of the intrinsic LLRs [29] 

The comparative analysis of the decoding algorithms, as 

reported in [5], is summarized in Table I. Furthermore, a 

review of research on turbo codes is presented in Table II. 

The simulated BER performance of turbo codes, as 

reported by [8], is depicted in Fig. 7. Mensouri et al. 

presented the frame error rate results for a block size of k 

= 1024 using simple Max-Log-MAP algorithm under 6 

decoding iterations. 

Turbo codes have found successful applications in 3G 

and 4G systems due to their high reliability. However, the 

computational intensity of the decoding algorithm and the 

inherent high latency pose challenges to meeting the 

stringent low latency requirements of 5G systems and 

mobile devices [30, 31]. Reducing the latency of decoding 

has always been a challenging task, often involving trade-

offs with performance. To achieve improved performance, 

a comprehensive understanding of the core components in 

terms of BER in the floor region, complexity and latency 

is necessary. 
 

TABLE I: COMPARATIVE PERFORMANCE OF VARIOUS 

ALGORITHMS 

Decoding Algorithm  SNR at 103 No. of Iterations 

Log-MAP 3.8 dB 14 

Max-Log-MAP 3.9dB 10 

SOVA 5.0dB 10 

 

E. Low-Density Parity-Check (LDPC) Codes 

Panem et al. [34] analysed the high  implementation 

complexity of the LDPC code that was originally 

developed by Gallager in 1962. However, LDPC codes 

were reinvented by MacKay and Neal [35], and today they 

are increasingly being considered and widely used in high-

throughput emerging communication systems due to their 

performance that approaches the Shannon limit, especially 

with the belief propagation decoding algorithm [8, 36–38]. 

 

 

Fig. 7. Performance, in BER, of the turbo codes   
 

Recent research has shown that LDPC codes can 

achieve comparable or even superior performance to turbo 

codes in certain cases, LDPC codes typically perform 

better than turbo codes at low SNR values (high noise 

levels). In such circumstances, LDPC codes are renowned 

for their exceptional error-correction abilities. The 

performance differences between turbo and LDPC codes 
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may not be very noticeable in moderate SNR levels. Both 

codes can deliver trustworthy communication, however, 

LDPC codes frequently hold a minor advantage. The 

performance gap between the two codes closes at a high 

SNR value (low noise level) showing that the turbo code 

can perform remarkably well. While turbo codes have a 

higher error floor, LDPC codes have a lower one. This 

means that when exceptionally low error rates are 

necessary, LDPC codes can offer more dependable 

communication. When iterative decoding is used, turbo 

code decoding may be more difficult than LDPC code 

decoding. In situations where computational complexity is 

a consideration, LDPC codes are frequently preferred [39, 

41], thanks to their flexible and low-complexity encoder, 

as well as high-speed decoder  [42−44].  

 

TABLE II. A SUMMARY OF TURBO CODES 

Ref. Proposed Turbo Methods (Approach) Results Problems/Limitation 

Bohórquez et al. [22] Interleaver 

Photograph-based 

interleavers for punctured 

turbo codes 

Improve code error 

correction and reduce the 

interleaver parameters 

search space. 

Performance comparison of the 

proposed method with existing 

standards and techniques is not fully 

comprehensive. 

Işcan and Xu [23] Interleaver 
Window-interleaved turbo 

codes 

Latency reduction and 

makes parallel decoding 

with high throughput 

possible. 

Reduction in error performance. 

Kene and Kulat [5] Decoder 

Developed a max-log-MAP 

decoding algorithm 

(modified log-map 

decoding algorithm) 

Hardware complexity 

reduction. 

BER performance slightly degraded 

but better than SOVA. 

Berrou et al. [13] Turbo code 

Recursive systematic 

convolutional (RSC) codes 

(Classical turbo code) 

Performance better than 

the best non-systematic 

convolutional code. 

Performances are at 0.7dB from 

Shannon's limit.  

Arif et al. [10] Interleaver Deterministic interleaver 

Provided the larger 

minimum distance for 

short-frame turbo codes by 

uniformly spreading the 

points in its smaller 

subsets, over the entire 

range of the information 

frame. 

Does not provide a clear motivation 

for why reducing the correlation 

between parity bits is important for 

improving the decoding capability of 

the MAP decoder. 

Ramasamy et al. [6] 
Asymmetric turbo 

code 

RSC encoder with heuristic 

generator polynomials in 

decimal and 3G interleaver 

Performs well in both 

“waterfall” and “error 

floor” regions and with a 

coding gain of 0.5–0.8 dB. 

Increased number of iterations. 

J. Sodha [32] 

Frame 

synchronization 

technique 

Concept of probability 

surface metric within a 

modified MAP decoder 

Reduction in the 

probability of false alarms. 

Slight increase in the average 

number of information bits to be 

processed. 

Tanriover et al. [33] Turbo code 

Multi-fold coding. 

Binomial weight 

distribution. Dividing a 

long information sequence 

into multiple sections of 

equal length and then 

permuting with separate 

interleavers. 

Improved error 

performance. 
Increased complexity and latency. 

Tonnellier et al. [12] Turbo codes 

Turbo codes with CRC. 

Flip and check algorithm, 

most unreliable bits are 

identified based on their 

associated extrinsic 

information. 

Lowering the error floor of 

turbo codes. Significant 

reduction in computation 

complexity. 

The computational complexity 

grows exponentially with the chosen 

parameter q 

Vucetic et al. and Panem 

et al  [7, 34] 
Interleaver 

S-random interleaver. 

Increasing distances of 

low-weighted codewords. 

A better performance 

relative to pseudorandom 

interleavers. 

Lack of specificity on interleaver 

designs and simulation results. 

 

LDPC codes are long linear binary block codes 

represented by a parity-check matrix (H) of size 𝑀 × 𝑁, 
𝑁 > 𝑀, where N columns represent the received encoded 

bits (codeword), and each of the M rows represents a 

parity-check equation [37]. The relationship between M, N, 

and K is given by 𝑀 = 𝑁 − 𝐾,  where K represents the 

number of information bits. The matrix degree distribution 

refers to the number of non-zero entries in each row and 

column of the matrix. The row-weight and column-weight 

represent the number of ones in a row and column of the 

parity-check matrix, respectively [43]. In the Tanner graph 

representation, the rows and columns of the parity-check 

matrix correspond to the check and variable nodes, 

respectively. The distribution of variable nodes in 

polynomial representation on the Tanner graph can be 

expressed as: 

𝜆(𝑥) =  ∑𝜆𝑖𝑥
𝑖−1 (𝜌(𝑥) =  ∑𝜌𝑖𝑥

𝑖−1)  (7)
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where 𝜆𝑖(𝜌𝑖) is the fraction of edges incident to variable 

(check) nodes of degree i [37]. A parity-check matrix of 

code length 10 bits is given by: 

𝐻 =

[
 
 
 
 
1 0 0 0 0 1 1 0 0 1
0 1 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1 1
0 0 1 1 1 0 0 1 0 0
0 1 0 1 0 0 1 1 0 0]

 
 
 
 

, 

and Fig. 8 illustrates the corresponding Tanner graph 

representation  [45, 46]. The parity-check matrix H is 

used to decode the received code sequence. 

 

 
Fig. 8. Tanner graph representation of parity check matrix H 

 

The codebook C is the set of length N words x, which 

satisfy: 

𝒙.𝐻𝑡 = 0.  (8) 

LDPC codes are popularly categorized into regular and 

irregular codes, random and pseudo-random codes, and 

structured and unstructured codes. Regular LDPC codes 

are commonly used, but carefully constructed irregular 

codes can also exhibit efficient error-correcting 

performance. LDPC block codes are similar to other block 

codes but are distinguished by the extended code length 

that introduces execution complexity and latency [34, 47]. 

Efficient LDPC decoding algorithms are designed to 

meet the cost, time, power and bandwidth requirements of 

intended applications. The construction of efficient LDPC 

codes involves addressing issues such as complexity, 

memory and latency. Achieving capacity-approaching and 

energy-efficient LDPC codes require not only the design 

of efficient decoders but also robust puncturing algorithms 

that allow for easy adjustment of block length and code 

rate  [42, 48]. There are various techniques proposed in the 

literature for LDPC code construction and algorithmic 

optimization of decoding to address issues such as 

complexity, memory and latency. Efficient decoder 

construction aims to achieve good error correction 

performance and low error floor performance, which 

remains a challenging and active area of research for 

digital communication applications. 

Efficiently constructed LDPC codes must not only 

achieve good error correction performance but also combat 

the degradation of error-floor performance in the high 

signal-to-noise ratio (SNR) region. This is typically 

achieved by utilizing a more dominant error-prone 

structure (EPS) than the low-weight codewords in the error 

floor region [43]. Having a general framework to 

determine the minimum distance and the minimum error-

prone structures is crucial in designing an efficient LDPC 

code scheme. Techniques such as code matrix permutation, 

matrix space restriction, and sub-matrix row-column 

scheduling are commonly investigated in the literature to 

address the issue of decoder latency. These techniques aim 

to optimize the decoding process and reduce latency in 

LDPC code decoding, which is an important consideration 

in practical communication systems. It is however 

challenging to obtain accurate channel state information. 

The complex mathematical representation of the design 

models also lacks precise accuracy, leading to performance 

degradation. 

It has been shown in [49]  that a linear block code C of 

length N, with a cycle-free Tanner graph, does not support 

good codes. Therefore, a quasi-cyclic (QC) structure is 

generally imposed on the parity-check matrices of LDPC 

codes for efficient hardware implementation, as reported 

[34, 42, 44]. This implementation allows for easy 

adjustment of the block length, providing advantages such 

as a fast-decoding convergence rate and improvement on 

the error-floor problem. QC-LDPC codes must satisfy the 

condition that no two rows or columns of the parity-check 

matrices have more than one position where they both have 

non-zero components.  

Costantini et al.  [50] presented constructions of non-

binary LDPC codes based on ultra-sparse matrices. 

According to the authors, non-binary LDPC codes over 

non-binary Galois fields (GFs) outperform binary LDPC 

codes by at least 0.3 dB. However, this performance gain 

comes at the cost of increased decoding complexity. 

In [49], two possible approaches for decoding LDPC 

convolutional codes, namely block-wise decoding and 

windowed decoding, were discussed. The block-wise 

decoding technique starts the decoding process only when 

the entire codeword has been received, while the 

windowed decoder operates on a window of size W that 

slides along the Tanner graph sequentially. A summary of 

LDPC codes and their applications can be found in Table 

III. 

 
Fig. 9. Performance of LDPC in BER. 

 

Fig. 9 depicts the simulation results of the BER 

performance of LDPC codes simulation in [8]. The 

simulation conditions are same as in Fig. 7; a code rate R 

of ½, over an additive white Gaussian noise (AWGN) 
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channel and binary phase shift keying (BPSK) modulation 

scheme. The use of LDPC codes and 3-dimensional turbo 

codes is integrated with receive diversity methods to serve 

as the error correction strategy over AWGN channels, 

employing a BPSK modulation scheme. A comparison of 

the BER performance of turbo codes and LDPC codes, as 

shown in Figs. 7−9, [8, 51, 52] indicates that LDPC codes 

offer better BER performance. 

 

TABLE III: A SUMMARY OF LDPC CODES 
Reference Proposed LDPC Methods Results Problem 

Kim et al. [36] 

Efficiently-encodable rate-

compatible (E2RC) LDPC 

codes  

Strategies for increasing the 

maximum puncturing rate. 

Good performance at a 

moderately high 

puncturing rate. 

Higher puncturing rates 

are difficult to achieve 

limiting performance. 

Sariduman et al. [43] 

Integer programming IP-

based search technique for 

error-prone structures of 

LDPC codes 

An iterative integer 

programming algorithm was 

proposed to enumerate all 

EPS parity-check matrices to 

find the important parameters 

of an LDPC code. 

With the knowledge of the 

dominant EPS, the error-

floor performance of 

LDPC codes can be 

estimated. 

Proposed integer 

programming is not very 

efficient in finding 

minimum distance and 

minimum SS size for large 

block lengths above 1000. 

Chaibi et al. [53] 
Parallel genetic algorithm for 

LDPC codes 

Parallel genetic algorithms 

(PGAD) for decoding low-

density parity using multi-

criteria optimization method. 

Offers good performance 

when solving a complex 

optimization problem. 

Large gains over the sum-

product decoder. 

Increased decoding 

complexity. 

Roth et al. and Zhu et al. 

[42][44] 
Quasi-LPDC decoder 

Constructed QC-LDPC codes 

from isomorphism theory. 

Good performance under 

iterative decoding. 

Algebraic and usually 

results in codes with 

regular degree 

distributions 

III. DEEP LEARNING CHANNEL CODING 

In [54], it is reported that early research in neural 

network applications in digital communication focused 

more on learning decoders rather than encoders, as the 

latter is more challenging in the specific problems they 

must solve. Decoder training focuses on error propagation, 

complexity matching, robustness of the channel model, 

feedback mechanisms and coordination of the learning rate. 

Whereas encoder training frequently concentrates on non-

linearity, quantization, latency and channel variability. 

However, today ML algorithms are being introduced to 

achieve optimal end-to-end performance in 

communication systems. Nevertheless, it remains 

uncertain to what extent ML can replace or complement 

the domain expertise developed over the last century in 

communication [55]. 

Recently, there have been increasing attention on the 

application of ML in channel encoding schemes, 

particularly involving deep neural network autoencoder 

architecture, which can improve or provide solutions that 

are not achievable with conventional coding techniques 

[56, 57]. Deep learning (DL) has also been introduced in 

digital communication applications to address channel 

estimation problems [58, 59]. DL autoencoders have been 

applied in real-world communication such as natural 

language processing (text compression), image 

compression and transmission (JPEG AI), speech and 

audio compression (Google’s WaveNet), satellite 

communication and image reconstruction (satellite and 

remote sensing) and recommendation systems (Netflix 

recommendation system [60, 61]. Autoencoders, being a 

type of deep learning scheme, do not heavily rely on 

heuristics of channel estimation, which allows them to 

adapt to communicate over any channel, even for which no 

information-theoretically optimal schemes are known. 

Autoencoders have been shown to understand the 

dynamics of end-to-end performance of the entire 

communication system building blocks, as reported in [62]. 

It has been established in [63] that DL-based 

communication systems, trained to optimize end-to-end 

performance, act as universal function approximators with 

superior algorithmic learning ability, even under complex 

channel conditions. Apart from the type of autoencoder 

used in Fig. 10, autoencoders have been used in a 

communication system, and different configurations and 

alternative autoencoders that have been investigated to 

enhance modulation, data compression, and error 

correction [64]. Some prominent modifications and 

alternative autoencoder components used are variational 

autoencoder, sparse autoencoder and denoising 

autoencoder [65, 66]. However, Fig. 10 illustrates an end-

to-end autoencoder communication system [54] . 

Journal of Communications, vol. 19, no. 2, 2024

114



 
Fig. 10. Representation of a channel autoencoder. 

The current research trend in autoencoder schemes 

involves training both the encoder and decoder with noisy 

feedback [15]. The autoencoder is trained to produce an 

efficient signal vector at the encoder, which can be 

efficiently decoded to retrieve the original message signal 

error-free, despite the presence of regularizers. Gaussian 

noise and dropout are commonly used as regularizers 

within the autoencoder model. Proper hyper-parameter 

selection is crucial for setting up an efficient DL 

autoencoder model, and an efficient training regime is 

equally important. 

In [15], the authors proposed a turbo-encoded 

autoencoder, parameterized as convolutional neural 

networks with interleavers, inspired by turbo codes. To 

address the issue of locally optimal solutions in their 

encoder/decoder, they proposed training strategies 

involving alternate training of the encoder and decoder. 

The authors in [67] also support this concept of systematic 

training for their TurboNet decoder, which uses the max-

log-MAP decoding algorithm. In [54], a two-step 

suboptimal training policy for the autoencoder with the 

Adam optimizer has been proposed. 

The significance of a proper training regime cannot be 

overstated, as it has been reported that a perfectly trained 

autoencoder can adapt to any environment and obtain 

optimal codes for any block length. Authors generally 

recommend a large batch size for separate systematic 

encoder and decoder training, as it allows for easy 

convergence and optimal performance, as shown in 

experiments conducted in [15, 68]. 

Numerous studies, such as [15, 54, 62, 63, 69, 70, 71], 

have demonstrated the superior performance of DL 

communication applications over traditional codes and 

channel estimation under non-linear system models. The 

neural network architecture used in the deep learning 

autoencoder in this study are convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs). 

RNNs are used for sequential data analysis and CNNs are 

widely used for image recognition [72]. The review of 

performances is summarized in Table VI, while Tables IV 

and V provide a selection list of commonly used hyper-

parameters in machine learning applications. It has been 

observed that the sigmoid activation function, Adam 

optimizer and binary cross-entropy loss functions are 

commonly used in these applications. 

 
TABLE IV: LOSS FUNCTIONS 

Reference Name 𝒍(𝐮, 𝐯) 

Shinde and Shah  [60] MSE ‖u − v‖2
2 

Douillard et al., Sattiraju et 

al., Nachmani et al., Soltani 

et al.  [14, 31, 59,  62] 

Binary 

cross-

entropy 

−∑ 𝑢𝑗 log(𝑣𝑗)
𝑗

 

 
TABLE V: ACTIVATION FUNCTIONS 

Reference Name [𝝈(𝐮)]𝒊 Range 

Sattiraju et al. [31] linear 𝑢𝑖 (−∞,∞) 

Nachmani et al. 

[52] 
ReLU max(0, 𝑢𝑖) [𝟎,∞) 

 Nachmani et al. 

and Liu et al. [52, 

60] 

tanh tanh(𝑢𝑖) (−1,1) 

Sattiraju et al., 

Nachmani et al. 

Nachmani et al. 

[31, 52, 59] 

sigmoid 
𝟏

𝟏 + 𝒆−𝒖𝒊
 (𝟎, 𝟏) 

Liu et al. [60]  softmax 
𝑒𝑢𝑖

∑ 𝑒𝑢𝑗
𝑗

 (0,1) 

 

IV. LESSONS LEARNT AND FUTURE RESEARCH DIRECTION 

In this survey, we learnt that early research in neural 

network applications in digital communication focused on 

learning decoders rather than encoders, which was found 

to be more challenging. Also, ML algorithms, such as DL 

autoencoders, have been introduced to achieve optimal 

end-to-end performance in communication systems, 

surpassing traditional coding techniques. Autoencoders 

improve performance robustly by adjusting to channel 

circumstances and variations, adapting to difficult settings 

to improve error correction. It also allows more effective 

use of resources by lowering overhead and consequently, 

optimizing the overall communication system. 

ML applications produce effective representation for 

robust signal recovery by learning from real-world 

changing circumstances in non-linear system models [73]. 

Furthermore, proper hyper-parameter selection and 

training regimes are crucial for the performance of DL 

autoencoders, with large batch sizes and systematic 

encoder/decoder training strategies being recommended 

for optimal convergence and performance. 

For future research directions, the in-depth exploration 

of DL autoencoders and their applications in digital 
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communication is still needed, with a focus on improving 

the efficiency and effectiveness of encoder training. 

Latency issues must also be looked at, especially in some 

time-critical applications. Also, the investigation of novel 

regularization techniques and hyper-parameter selection 

methods that enhance the performance of autoencoder-

based communication systems are still needed from the 

research community. Furthermore, research that explores 

various autoencoder architectures beyond CNNs and 

interleavers, to identify other potential approaches for 

optimizing end-to-end performance is also necessary. 

There is also a need to carry out comparative studies of 

different DL communication applications and traditional 

coding techniques under various system models and 

channel conditions, to better understand the advantages 

and limitations of each approach. Lastly, investigations of 

the potential of transfer learning and adaptation techniques 

to improve their performance in different communication 

scenarios and environments are still needed ( 

TABLE VI: PERFORMANCE SUMMARY OF DEEP LEARNING APPLICATIONS IN CHANNEL CODING AND ESTIMATION 

Ref. Proposed Technique Approach Results 

Jiang et al. [15] Turbo autoencoder 
introducing Turbo Autoencoder using the 

neural structure and training algorithms. 

Outperform traditional codes in the low to 

middle SNR range. Performance is only worse 

than LDPC and polar code. 

He et al.  [67] 

TurboNet: Deep neural 

network turbo code 

decoder 

for turbo decoding 

that integrates DL into the traditional max-

log-maximum 

Superiority in error-correction, ability, signal-

to-noise ratio generalization. 

Devamane and Itagi [70] 

Recurrent neural 

network (RNN) turbo 

decoder 

Turbo decoders are constructed by two 

means; neural Turbo decoder and deep 

learning Turbo decoder. The performances 

are examined  

It is concluded that both neural and DL turbo 

decoders perform better as compared to 

conventional Viterbi decoders. 

Balevi and Andrews [54] Autoencoder ECC 

Using a concatenation of a turbo code and 

an autoencoder. Utilizing turbo codes as an 

implicit regularization. Suboptimum 

training methods adopted. 

The proposed coding technique outperforms 

conventional turbo codes for one-bit 

quantization. 

Soltani et al. [62] 

Autoencoder-based 

optical wireless 

communications 

systems (OWS) 

Proposed autoencoder based OWC. 

 

Performance compared with the state-of-the-

art model-based OWC systems in terms of the 

block error rate (BLER) metric. Results 

indicate learning-based OWC system 

outperforms the model-based one. 

Mei et al. [71] 

Machine learning-

based channel 

estimation in OFDM 

Simulated the performance of machine 

learning-based channel estimation under 

quasi-stationary channel conditions. 

Simulation results exhibit the effectiveness and 

convenience of machine learning-based 

channel estimation under complex channel 

models. 

Nachmani et al. [68] 

Novel deep learning to 

improve belief 

propagation algorithm 

Used “soft” Tanner instead of the standard 

Tanner graph. Properly weighting 

messages, such that the effect of small 

cycles in the Tanner graph was partially 

compensated. 

Improved BER performance. 

Sattiraju et al. [62] 
RNN turbo 

encoder/decoder 

Used the LTE variant of the turbo encoder 

to encode the data. 

Their testing accuracy produces 67% for turbo 

encoding and 100% for turbo decoding. 

IV.  CONCLUSION 

We conducted a comparative analysis of near-capacity 

turbo codes and LDPC codes, highlighting their potential 

and challenges. The traditional approach of designing 

communication algorithms based on complex 

mathematical models and heuristics was found to be sub-

optimal. They are characterized by a lack of accurate 

model estimation. We also discussed the emergence of ML 

applications in communication systems as a potential 

solution to the limitations of conventional coding schemes. 

Our survey revealed that while LDPC codes may offer 

better performance than turbo codes, ML-based 

approaches have shown competitive performance and 

adaptability to channel conditions. The superiority of ML-

based end-to-end channel coding and estimation in non-

linear system models has been demonstrated in several 

reviewed papers. We found that systematic training 

schedules are generally favored in ML applications for 

communication to prevent overfitting and local optima 

issues. It has been established that a perfectly trained 

autoencoder can dynamically adapt to channel interference 

to find optimal error correction codes, although achieving 

perfect training remains a challenge. 

However, it should be noted that the theoretical 

understanding of ML deep neural networks is still 

unsatisfactory, and there may be a need to open the “black 

boxes” of ML to fully comprehend and harness their full 

potential. We believe that ML applications will eventually 

replace communication algorithms with learned weights 

derived from training deep neural network architectures, 

eliminating the need for specialized expert channel coding 

schemes that create unnecessary bottlenecks. 
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