
Machine Learning for Channel Coding: A

Paradigm Shift from FEC Codes

Kayode A. Olaniyi1, Reolyn Heymann1, and Theo G. Swart1, 2, *

1 Department of Electrical and Electronic Engineering Science, University of Johannesburg, South Africa
2 Center for Telecommunications, University of Johannesburg, South Africa

Email: 217097911@student.uj.ac.za (K.A.O.); reolyn.heymann@gmail.com (R.H.); tgswart@uj.ac.za (T.G.S.)

*Corresponding author

Abstract—The design of optimal channel codes with

computationally efficient Forward Error Correction (FEC)

codes remains an open research problem. In this paper, we

explore optimal channel codes with computationally efficient

FEC codes, focusing on turbo and Low-Density Parity-Check

(LDPC) codes as near-capacity approaching solutions. We

highlight the significance of accurate channel estimation in

reliable communication technology design. We further note

that the stringent requirements of contemporary

communication systems have pushed conventional FEC

codes to their limits. To address this, we advocate for a

paradigm shift towards emerging Machine Learning (ML)

applications in communication. Our review highlights ML's

potential to solve current channel coding and estimation

challenges by replacing traditional communication

algorithms with adaptable deep neural network architectures.

This approach provides competitive performance, flexibility,

reduced complexity and latency, heralding the era of ML-

based communication applications as the future of end-to-

end efficient communication systems.

Keywords—Turbo codes, LDPC codes, autoencoder,

interleaver, encoder

I. INTRODUCTION

Communication systems are crucial for enabling the

exchange of information across vast distances in modern

society. Channel coding is a fundamental technique used

in communication systems to ensure reliable and secure

data transmission by addition of redundant bits to the

original message for error correction. Traditional channel

coding schemes, such turbo codes and Low-Density

Parity-Check (LDPC) codes, have been widely used and

optimized to achieve near-capacity performance [1].

However, these conventional coding schemes are based on

mathematical models and heuristics, which may not fully

exploit the potential of modern communication systems,

especially in non-linear systems.

With the emergence of Machine Learning (ML)

techniques, there has been growing interest in leveraging

ML for communication applications, including end-to-end

channel coding and estimation [2]. ML-based approaches

have the potential to adaptively learn and optimize coding

schemes based on data-driven insights, leading to

improved performance and adaptability to changing

channel conditions.

A reliable communication system needs to transfer data

accurately, with high throughput and low latency across a

transmission channel [3]. However, communication

channels have limitations, such as hostile environments

that can result in unreliable signal propagation [1]. Thus,

to design communication technologies that are reliable and

energy-efficient, accurate knowledge of the

communication channel is essential. Unfortunately, and in

reality, the complexity of communication media,

especially in terms of noise or interference, is not fully

understood or modeled. Moreover, the demands of modern

communication systems, such as 5G wireless

communications, have further stretched the capabilities of

conventional communication schemes. Developing

strategies and efficient algorithms to mitigate these

limitations and achieve reliable communication systems

remains an open research problem.

The current requirements of communication systems

call for near-capacity channel codes that are highly

optimized and can combat noise in the communication

medium [2, 4]. Fig. 1 depicts a classification diagram of

the available error control schemes.

Forward Error Correction (FEC) is an error control

scheme that aims to efficiently transmit data signals over

noisy channels while enabling error-free decoding [2]. Fig.

2 illustrates a typical FEC model. In digital transmission,

FEC coding schemes involve adding carefully designed

redundancy to the original signal k to create a codeword n,

which aids the receiver decoder in detecting and even

correcting transmission errors [4, 5], FEC codes are

commonly classified as block (algebraic) codes and

convolutional codes, with varying complexity and

performance. The authors in [6] emphasized that efficient

encoding schemes for well-constructed input message

patterns and appropriate decoding algorithms are critical

design considerations for all FEC coding schemes.

Manuscript received August 8, 2023; revised August 30, 2023; accepted

November 1, 2023; published February 25, 2024.

Journal of Communications, vol. 19, no. 2, 2024

107doi:10.12720/jcm.19.2.107-118

mailto:217097911@student.uj.ac.za
mailto:reolyn.heymann@gmail.com
mailto:tgswart@uj.ac.za

Fig. 1. Error control scheme (ECS) classification diagram.

Fig. 2. FEC communication model diagram.

While the encoder aims to find an efficient codeword

representation for the message to be transmitted over a

noisy channel, the decoder aims to identify the most

probable codeword sent. At a low signal-to-noise ratio

(SNR) where there is considerable noise interference, a

low coding rate (R = k/n) is required. However, this

necessitates adding significant redundancy, increasing

bandwidth and energy consumption. This limitation is a

major factor that restricts the deployment of FEC codes in

high-throughput applications.

FEC techniques are typically preferred when signal re-

transmission is impractical or costly. Ideally, FEC codes

should successfully detect and correct errors and enable

transmission at coding rates approaching the Shannon

capacity [2].

Numerous FEC coding strategies have been proposed to

achieve near-optimal channel capacity while minimizing

costs, encoding/decoding complexity, power consumption

and transmitting errors [7]. Despite significant progress in

the field, some current FEC strategies suffer from high

encoding/decoding complexity, increased power

consumption, and redundant bit overhead [7]. Additionally,

the error-floor effect in the high SNR region poses a

challenge, where the Bit Error Rate (BER) curve shows a

significantly decreased slope compared to lower SNR

regions. This paper aims to contribute potential solutions

to these challenges.

The remainder of the paper is organized as follows.

Section II explores the principles and characteristics of

near-optimal capacity-approaching FEC channel codes,

with turbo codes and LDPC codes being considered the

two most powerful and commonly used FEC codes in

modern communication systems [8]. This section provides

specific turbo and LDPC codes performance metrics as

examples of near capacity-approaching FEC codes,

including communication channel throughput, BER,

latency and complexity. Section III presents an overview

of current ML approaches for achieving near-optimal

channel coding schemes, which have the potential to

overcome the limitations of canonical FEC channel coding

techniques. Finally, Section IV concludes the paper with

recommendations.

II. NEAR-CAPACITY APPROACHING CHANNEL CODING

In this section, we conduct a review of code classes that

are capable of approaching the Shannon limit closely.

Specifically, we analyze and compare turbo codes and low-

Density Parity-Check (LDPC) codes, both of which

involve iterative decoding evaluated based on various

metrics, including encoding and decoder schemes, system

complexity, bandwidth, throughput, BER or SNR, memory

usage and latency.

A. Turbo Codes

Turbo codes are parallel concatenated convolutional

codes that are widely used in the field of communication

[1, 2, 9]. They were first introduced in 1993 by Berrou et

al. [3] and Arif et al. [10]. Turbo codes achieved

impressive performance, coming within 0.7 dB of

Shannon’s channel capacity limit at a BER of 10−5 on an

Additive White Gaussian Noise (AWGN) channel [5]

Turbo codes typically involve using two or more parallel

concatenated convolutional encoders with pseudorandom

interleavers and employ a converging iterative decoding

procedure that feeds the outputs of one decoder to the

inputs of another using a soft-decision algorithm [1, 5–7]

Hard-output decoders are generally not suitable as they can

degrade system performance. Instead, Soft-Input/Soft-

Output (SISO) decoders are commonly adopted for Robust

decoding of turbo codes. However, the number of

iterations required for convergence can result in latency

drawbacks, which impose limits on the block length n.

 The performance of turbo codes in terms of BER is not

Error Control Scheme (ECS)

Automatic Repeat
Request (ARQ)

Forward Error
Correction (FEC)

Modulation

Hybrid Automatic Repeat
Request (HARQ)

Convolutional Code
(e.g. PCCC, Turbo code, RA) HARQ-I HARQ-II Block Code

Binary Codes Non-Binary Codes
(e.g. RS Codes)

Cyclic Codes
(e.g. BCH, Golay)

Linear Codes
(e.g. Hamming, Extended Hamming LDPC, RA)

Encoding

Decoding Target Source

 Noise

Journal of Communications, vol. 19, no. 2, 2024

108

only influenced by designing more powerful

encoders/decoders or increasing the encoder/decoder

dimension but also by the design of the constituent

interleavers [7, 8] . Two important factors that are

commonly considered significant in evaluating turbo code

performance are the convergence behavior of iterative

decoding in the low SNR region, known as the “waterfall”

region, and the “error-floor” effect in the high SNR region

[11, 12]. Conventional turbo codes that use 8-state

constituent encoders can perform effectively at low SNR

but often suffer from a flattening around a Frame Error

Rate (FER) of 10−5 due to a large number of low-weight

codewords, which corresponds to a poor minimum

distance, dmin [8]. It has been shown that modifying

interleaver parameters and puncturing patterns, such as

encoding information bits of various lengths with different

coding rates, can improve the BER performance [8].

According to the authors in [11] the “error-floor” challenge

is becoming less problematic due to good permutation

matrices.

B. Turbo Encoding

A pioneering work [13] proposed a convolutional code

with near Shannon capacity, utilizing a parallel

concatenation of two Recursive Systematic Convolutional

(RSC) codes. This approach was shown to outperform the

best non-Systematic Convolutional (NSC) code at any

SNR for high code rates, as demonstrated in [14]. The

authors compared BER performance and concluded that

while NSC was superior to Systematic Convolutional (SC)

code at high SNR and vice versa at low SNR, the RSC

offered good performance at both low and high SNR, as

shown in [14], Fig. 3. However, one drawback of RSC

codes is the lack of long-range memory [15]. To address

this limitation, the authors in [13] introduced long-range

memory by concatenating the first encoder’s output with

the second encoder’s interleaved output.

Fig. 3. Simulated performance of the memory-2 RSC code with NSC and SC codes [14].

Fig. 4. R = 1/2 non-systematic feed-forward convolutional encoder with

memory m = 3.

The relationship between the constraint length k of a

convolutional code and the maximum number of memory

stages m in the encoder is defined as 𝑘 = 𝑚 + 1 [16]. To

minimize decoding computational complexity, typically, m

is chosen to be between 3 and 5. Fig. 4 illustrates a ½ rate

NSC encoder with 𝑚 = 3.
This NSC encoder has two generator functions denoted,

𝑔0 and 𝑔1 and can be represented algebraically:

𝑔1 = 1 + 𝑥 + 𝑥2 + 𝑥3

𝑔0 = 1 + 𝑥2 + 𝑥3

The parity bits 𝑑0 and 𝑑1 are generated as the modulo-

2 addition of the message bit u and the respective generator

functions:

𝑑0 = 𝑢 ⊕ 𝑔0 (1)

𝑑1 = 𝑢 ⊕ 𝑔1 (2)

Fig. 5 depicts the block diagram of the conventional

turbo encoder [3].

Journal of Communications, vol. 19, no. 2, 2024

109

Fig. 5. Classical turbo encoder structure.

In this architecture, the first RSC encoder (ENC1) takes

a binary information bit sequence of length k as input and

generates an encoded stream codeword y1. Simultaneously,

this information bit sequence is reordered by an interleaver

and then encoded by the second RSC encoder (ENC2) to

produce another codeword y2, which behaves like a long

random code [17]. The information sequence X, along with

the two parity sequences y1 and y2, are transmitted with a

combined code rate R of 1/3. In cases where different code

rates are desired, puncturing elements can be included to

puncture and multiplex the encoded bit sequences before

they are modulated and transmitted over the physical

channel. As stated in [14] the global coding rate for a

parallel concatenation of two elementary codes, C1 and C2,

with coding rates R1 and R2, can be represented by the

expression:

𝑅𝑝 =
𝑅1𝑅2

𝑅1 +𝑅2
=

𝑅1𝑅2

1 − (1 − 𝑅1)(1 − 𝑅2)
. (3)

As per Shannon's pioneering work [3, 7] random-like

codes are essential for approaching capacity in

communication systems. In [2], the authors proposed

the use of the random-like (R-L) criterion as a basis for

designing turbo codes. The R-L algorithm distinguishes

between strongly and weakly random-like codes by

measuring the closeness of their weight distribution to

the average weight distribution obtained from random

coding. The authors concluded that incorporating these

codes as components in turbo code schemes can

enhance the low-weight tail of the distribution and

allow for adjustments to the BER according to specific

specifications.

C. Interleaver

Extensive research has been conducted on interleaver

design to achieve effective randomization and

substantially enhance the code distance properties [4, 12,

18, 19]. The design strategy of interleavers plays a crucial

role in determining the achievable minimum Hamming

distance of the code, as well as the suitability for iterative

decoding based on the IDS criterion [10], Interleavers are

utilized in a specific pattern to randomize the location of

errors and reduce the correlation between parity bits

corresponding to the original and interleaved data frames,

as low-weight generated codes often result in poor error

performance [7, 10, 20] To avoid the costly use of storage

elements or look-up tables associated with randomly

selected permutations, interleaver designs employing

algebraic permutation methods are generally preferred, as

mentioned in [18]. However, it is worth noting that most

of the research on interleaver design is based on the S-

random algorithm [10, 21]

In [22], a method for designing efficient puncture-

constrained interleavers was introduced, where Garzón-

Bohórquez et al. claimed that applying interleaving with a

periodic cross-connection pattern resembling a photograph

not only improves the error-correction capability of the

code but also significantly reduces the search space for

different interleaver parameters. On the other hand,

Onurcan et al. [23] proposed the concept of window band

structured interleavers for turbo codes, where the

generated symbols are limited within the window structure

to improve the decoding latency characteristics. This

proposed scheme allows for flexible trade-offs between

latency and error correction performance.

D. Turbo Decoder

The utilization of intelligent encodings and reordering

strategies discussed earlier leads to the generation of

powerful codes that require complex decoding operations

over multiple iterative soft-decision cycles [4, 5]. Turbo

decoders, due to their iterative probabilistic nature,

generally exhibit higher complexity compared to encoders.

Some of the challenges in training decoders are

developing models that can successfully capture the

underlying patterns in the data and transfer these

continuous representations to discrete outputs, interference

Journal of Communications, vol. 19, no. 2, 2024

110

latency, and experimenting with different model

architectures and hyperparameters to achieve the desired

performance. Fig. 6 illustrates a block diagram of a turbo

decoder [4].

Turbo codes employ iterative decoding between SISO

cascaded decoders, which extract systematic and recursive

bits from the received information bit sequence and

generate probabilities for each received bit being either 0

or 1. The maximum a-posteriori probability (MAP) and

soft output Viterbi algorithm (SOVA) are two commonly

used optimal decoding algorithms in turbo decoding. MAP

involves a-posteriori probabilities, while SOVA is based

on maximum-likelihood [5, 24, 25]. Turbo decoders

typically operate in the log domain to reduce

implementation complexity and time delay [8, 24, 26]. The

decoders exchange log likelihood ratios (LLRs) for each

binary input bit dk, as expressed in [4, 27].

Fig. 6. Turbo decoder structure [4].

In
Prob {𝑑

𝑘
= 0|𝑦,𝐶}

Prob {𝑑
𝑘

= 1|𝑦,𝐶}
= 𝐿𝑛

𝑘 + ∑𝐿𝑒𝑖
𝑘

𝑖

. (4)

where C represents the code structure, y denotes the

decoder inputs and i is the number of decoding iterations.

The 𝐿𝑛
𝑘 and the 𝐿𝑒𝑖

𝑘 are the intrinsic and extrinsic

information decoder contributions during the decoding

operations.
To obtain a block of k extrinsic LLRs, the addition and

Jacobian logarithm operations (max* operation) used for

combining two LLRs x and y is expressed in [1]:

max∗(𝑥. 𝑦) = max(𝑥, 𝑦) + ln(1 + 𝑒−|𝑦−𝑥|) . (5)

In the max-log-MAP algorithm, the max* operations

logarithm is approximated, as reported in [28], by

max∗(𝑥. 𝑦) ≈ max(𝑥, 𝑦). (6)

Once a certain number of SISO decoder operations, also

known as half-iterations, have been completed, the turbo

decoder produces estimates for the information bits by

analyzing the sign of the intrinsic LLRs [29]

The comparative analysis of the decoding algorithms, as

reported in [5], is summarized in Table I. Furthermore, a

review of research on turbo codes is presented in Table II.

The simulated BER performance of turbo codes, as

reported by [8], is depicted in Fig. 7. Mensouri et al.

presented the frame error rate results for a block size of k

= 1024 using simple Max-Log-MAP algorithm under 6

decoding iterations.

Turbo codes have found successful applications in 3G

and 4G systems due to their high reliability. However, the

computational intensity of the decoding algorithm and the

inherent high latency pose challenges to meeting the

stringent low latency requirements of 5G systems and

mobile devices [30, 31]. Reducing the latency of decoding

has always been a challenging task, often involving trade-

offs with performance. To achieve improved performance,

a comprehensive understanding of the core components in

terms of BER in the floor region, complexity and latency

is necessary.

TABLE I: COMPARATIVE PERFORMANCE OF VARIOUS

ALGORITHMS

Decoding Algorithm SNR at 103 No. of Iterations

Log-MAP 3.8 dB 14

Max-Log-MAP 3.9dB 10

SOVA 5.0dB 10

E. Low-Density Parity-Check (LDPC) Codes

Panem et al. [34] analysed the high implementation

complexity of the LDPC code that was originally

developed by Gallager in 1962. However, LDPC codes

were reinvented by MacKay and Neal [35], and today they

are increasingly being considered and widely used in high-

throughput emerging communication systems due to their

performance that approaches the Shannon limit, especially

with the belief propagation decoding algorithm [8, 36–38].

Fig. 7. Performance, in BER, of the turbo codes

Recent research has shown that LDPC codes can

achieve comparable or even superior performance to turbo

codes in certain cases, LDPC codes typically perform

better than turbo codes at low SNR values (high noise

levels). In such circumstances, LDPC codes are renowned

for their exceptional error-correction abilities. The

performance differences between turbo and LDPC codes

Journal of Communications, vol. 19, no. 2, 2024

111

may not be very noticeable in moderate SNR levels. Both

codes can deliver trustworthy communication, however,

LDPC codes frequently hold a minor advantage. The

performance gap between the two codes closes at a high

SNR value (low noise level) showing that the turbo code

can perform remarkably well. While turbo codes have a

higher error floor, LDPC codes have a lower one. This

means that when exceptionally low error rates are

necessary, LDPC codes can offer more dependable

communication. When iterative decoding is used, turbo

code decoding may be more difficult than LDPC code

decoding. In situations where computational complexity is

a consideration, LDPC codes are frequently preferred [39,

41], thanks to their flexible and low-complexity encoder,

as well as high-speed decoder [42−44].

TABLE II. A SUMMARY OF TURBO CODES

Ref. Proposed Turbo Methods (Approach) Results Problems/Limitation

Bohórquez et al. [22] Interleaver

Photograph-based

interleavers for punctured

turbo codes

Improve code error

correction and reduce the

interleaver parameters

search space.

Performance comparison of the

proposed method with existing

standards and techniques is not fully

comprehensive.

Işcan and Xu [23] Interleaver
Window-interleaved turbo

codes

Latency reduction and

makes parallel decoding

with high throughput

possible.

Reduction in error performance.

Kene and Kulat [5] Decoder

Developed a max-log-MAP

decoding algorithm

(modified log-map

decoding algorithm)

Hardware complexity

reduction.

BER performance slightly degraded

but better than SOVA.

Berrou et al. [13] Turbo code

Recursive systematic

convolutional (RSC) codes

(Classical turbo code)

Performance better than

the best non-systematic

convolutional code.

Performances are at 0.7dB from

Shannon's limit.

Arif et al. [10] Interleaver Deterministic interleaver

Provided the larger

minimum distance for

short-frame turbo codes by

uniformly spreading the

points in its smaller

subsets, over the entire

range of the information

frame.

Does not provide a clear motivation

for why reducing the correlation

between parity bits is important for

improving the decoding capability of

the MAP decoder.

Ramasamy et al. [6]
Asymmetric turbo

code

RSC encoder with heuristic

generator polynomials in

decimal and 3G interleaver

Performs well in both

“waterfall” and “error

floor” regions and with a

coding gain of 0.5–0.8 dB.

Increased number of iterations.

J. Sodha [32]

Frame

synchronization

technique

Concept of probability

surface metric within a

modified MAP decoder

Reduction in the

probability of false alarms.

Slight increase in the average

number of information bits to be

processed.

Tanriover et al. [33] Turbo code

Multi-fold coding.

Binomial weight

distribution. Dividing a

long information sequence

into multiple sections of

equal length and then

permuting with separate

interleavers.

Improved error

performance.
Increased complexity and latency.

Tonnellier et al. [12] Turbo codes

Turbo codes with CRC.

Flip and check algorithm,

most unreliable bits are

identified based on their

associated extrinsic

information.

Lowering the error floor of

turbo codes. Significant

reduction in computation

complexity.

The computational complexity

grows exponentially with the chosen

parameter q

Vucetic et al. and Panem

et al [7, 34]
Interleaver

S-random interleaver.

Increasing distances of

low-weighted codewords.

A better performance

relative to pseudorandom

interleavers.

Lack of specificity on interleaver

designs and simulation results.

LDPC codes are long linear binary block codes

represented by a parity-check matrix (H) of size 𝑀 × 𝑁,
𝑁 > 𝑀, where N columns represent the received encoded

bits (codeword), and each of the M rows represents a

parity-check equation [37]. The relationship between M, N,

and K is given by 𝑀 = 𝑁 − 𝐾, where K represents the

number of information bits. The matrix degree distribution

refers to the number of non-zero entries in each row and

column of the matrix. The row-weight and column-weight

represent the number of ones in a row and column of the

parity-check matrix, respectively [43]. In the Tanner graph

representation, the rows and columns of the parity-check

matrix correspond to the check and variable nodes,

respectively. The distribution of variable nodes in

polynomial representation on the Tanner graph can be

expressed as:

𝜆(𝑥) = ∑𝜆𝑖𝑥
𝑖−1 (𝜌(𝑥) = ∑𝜌𝑖𝑥

𝑖−1) (7)

Journal of Communications, vol. 19, no. 2, 2024

112

where 𝜆𝑖(𝜌𝑖) is the fraction of edges incident to variable

(check) nodes of degree i [37]. A parity-check matrix of

code length 10 bits is given by:

𝐻 =

[

1 0 0 0 0 1 1 0 0 1
0 1 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1 1
0 0 1 1 1 0 0 1 0 0
0 1 0 1 0 0 1 1 0 0]

,

and Fig. 8 illustrates the corresponding Tanner graph

representation [45, 46]. The parity-check matrix H is

used to decode the received code sequence.

Fig. 8. Tanner graph representation of parity check matrix H

The codebook C is the set of length N words x, which

satisfy:

𝒙.𝐻𝑡 = 0. (8)

LDPC codes are popularly categorized into regular and

irregular codes, random and pseudo-random codes, and

structured and unstructured codes. Regular LDPC codes

are commonly used, but carefully constructed irregular

codes can also exhibit efficient error-correcting

performance. LDPC block codes are similar to other block

codes but are distinguished by the extended code length

that introduces execution complexity and latency [34, 47].

Efficient LDPC decoding algorithms are designed to

meet the cost, time, power and bandwidth requirements of

intended applications. The construction of efficient LDPC

codes involves addressing issues such as complexity,

memory and latency. Achieving capacity-approaching and

energy-efficient LDPC codes require not only the design

of efficient decoders but also robust puncturing algorithms

that allow for easy adjustment of block length and code

rate [42, 48]. There are various techniques proposed in the

literature for LDPC code construction and algorithmic

optimization of decoding to address issues such as

complexity, memory and latency. Efficient decoder

construction aims to achieve good error correction

performance and low error floor performance, which

remains a challenging and active area of research for

digital communication applications.

Efficiently constructed LDPC codes must not only

achieve good error correction performance but also combat

the degradation of error-floor performance in the high

signal-to-noise ratio (SNR) region. This is typically

achieved by utilizing a more dominant error-prone

structure (EPS) than the low-weight codewords in the error

floor region [43]. Having a general framework to

determine the minimum distance and the minimum error-

prone structures is crucial in designing an efficient LDPC

code scheme. Techniques such as code matrix permutation,

matrix space restriction, and sub-matrix row-column

scheduling are commonly investigated in the literature to

address the issue of decoder latency. These techniques aim

to optimize the decoding process and reduce latency in

LDPC code decoding, which is an important consideration

in practical communication systems. It is however

challenging to obtain accurate channel state information.

The complex mathematical representation of the design

models also lacks precise accuracy, leading to performance

degradation.

It has been shown in [49] that a linear block code C of

length N, with a cycle-free Tanner graph, does not support

good codes. Therefore, a quasi-cyclic (QC) structure is

generally imposed on the parity-check matrices of LDPC

codes for efficient hardware implementation, as reported

[34, 42, 44]. This implementation allows for easy

adjustment of the block length, providing advantages such

as a fast-decoding convergence rate and improvement on

the error-floor problem. QC-LDPC codes must satisfy the

condition that no two rows or columns of the parity-check

matrices have more than one position where they both have

non-zero components.

Costantini et al. [50] presented constructions of non-

binary LDPC codes based on ultra-sparse matrices.

According to the authors, non-binary LDPC codes over

non-binary Galois fields (GFs) outperform binary LDPC

codes by at least 0.3 dB. However, this performance gain

comes at the cost of increased decoding complexity.

In [49], two possible approaches for decoding LDPC

convolutional codes, namely block-wise decoding and

windowed decoding, were discussed. The block-wise

decoding technique starts the decoding process only when

the entire codeword has been received, while the

windowed decoder operates on a window of size W that

slides along the Tanner graph sequentially. A summary of

LDPC codes and their applications can be found in Table

III.

Fig. 9. Performance of LDPC in BER.

Fig. 9 depicts the simulation results of the BER

performance of LDPC codes simulation in [8]. The

simulation conditions are same as in Fig. 7; a code rate R

of ½, over an additive white Gaussian noise (AWGN)

Journal of Communications, vol. 19, no. 2, 2024

113

channel and binary phase shift keying (BPSK) modulation

scheme. The use of LDPC codes and 3-dimensional turbo

codes is integrated with receive diversity methods to serve

as the error correction strategy over AWGN channels,

employing a BPSK modulation scheme. A comparison of

the BER performance of turbo codes and LDPC codes, as

shown in Figs. 7−9, [8, 51, 52] indicates that LDPC codes

offer better BER performance.

TABLE III: A SUMMARY OF LDPC CODES
Reference Proposed LDPC Methods Results Problem

Kim et al. [36]

Efficiently-encodable rate-

compatible (E2RC) LDPC

codes

Strategies for increasing the

maximum puncturing rate.

Good performance at a

moderately high

puncturing rate.

Higher puncturing rates

are difficult to achieve

limiting performance.

Sariduman et al. [43]

Integer programming IP-

based search technique for

error-prone structures of

LDPC codes

An iterative integer

programming algorithm was

proposed to enumerate all

EPS parity-check matrices to

find the important parameters

of an LDPC code.

With the knowledge of the

dominant EPS, the error-

floor performance of

LDPC codes can be

estimated.

Proposed integer

programming is not very

efficient in finding

minimum distance and

minimum SS size for large

block lengths above 1000.

Chaibi et al. [53]
Parallel genetic algorithm for

LDPC codes

Parallel genetic algorithms

(PGAD) for decoding low-

density parity using multi-

criteria optimization method.

Offers good performance

when solving a complex

optimization problem.

Large gains over the sum-

product decoder.

Increased decoding

complexity.

Roth et al. and Zhu et al.

[42][44]
Quasi-LPDC decoder

Constructed QC-LDPC codes

from isomorphism theory.

Good performance under

iterative decoding.

Algebraic and usually

results in codes with

regular degree

distributions

III. DEEP LEARNING CHANNEL CODING

In [54], it is reported that early research in neural

network applications in digital communication focused

more on learning decoders rather than encoders, as the

latter is more challenging in the specific problems they

must solve. Decoder training focuses on error propagation,

complexity matching, robustness of the channel model,

feedback mechanisms and coordination of the learning rate.

Whereas encoder training frequently concentrates on non-

linearity, quantization, latency and channel variability.

However, today ML algorithms are being introduced to

achieve optimal end-to-end performance in

communication systems. Nevertheless, it remains

uncertain to what extent ML can replace or complement

the domain expertise developed over the last century in

communication [55].

Recently, there have been increasing attention on the

application of ML in channel encoding schemes,

particularly involving deep neural network autoencoder

architecture, which can improve or provide solutions that

are not achievable with conventional coding techniques

[56, 57]. Deep learning (DL) has also been introduced in

digital communication applications to address channel

estimation problems [58, 59]. DL autoencoders have been

applied in real-world communication such as natural

language processing (text compression), image

compression and transmission (JPEG AI), speech and

audio compression (Google’s WaveNet), satellite

communication and image reconstruction (satellite and

remote sensing) and recommendation systems (Netflix

recommendation system [60, 61]. Autoencoders, being a

type of deep learning scheme, do not heavily rely on

heuristics of channel estimation, which allows them to

adapt to communicate over any channel, even for which no

information-theoretically optimal schemes are known.

Autoencoders have been shown to understand the

dynamics of end-to-end performance of the entire

communication system building blocks, as reported in [62].

It has been established in [63] that DL-based

communication systems, trained to optimize end-to-end

performance, act as universal function approximators with

superior algorithmic learning ability, even under complex

channel conditions. Apart from the type of autoencoder

used in Fig. 10, autoencoders have been used in a

communication system, and different configurations and

alternative autoencoders that have been investigated to

enhance modulation, data compression, and error

correction [64]. Some prominent modifications and

alternative autoencoder components used are variational

autoencoder, sparse autoencoder and denoising

autoencoder [65, 66]. However, Fig. 10 illustrates an end-

to-end autoencoder communication system [54] .

Journal of Communications, vol. 19, no. 2, 2024

114

Fig. 10. Representation of a channel autoencoder.

The current research trend in autoencoder schemes

involves training both the encoder and decoder with noisy

feedback [15]. The autoencoder is trained to produce an

efficient signal vector at the encoder, which can be

efficiently decoded to retrieve the original message signal

error-free, despite the presence of regularizers. Gaussian

noise and dropout are commonly used as regularizers

within the autoencoder model. Proper hyper-parameter

selection is crucial for setting up an efficient DL

autoencoder model, and an efficient training regime is

equally important.

In [15], the authors proposed a turbo-encoded

autoencoder, parameterized as convolutional neural

networks with interleavers, inspired by turbo codes. To

address the issue of locally optimal solutions in their

encoder/decoder, they proposed training strategies

involving alternate training of the encoder and decoder.

The authors in [67] also support this concept of systematic

training for their TurboNet decoder, which uses the max-

log-MAP decoding algorithm. In [54], a two-step

suboptimal training policy for the autoencoder with the

Adam optimizer has been proposed.

The significance of a proper training regime cannot be

overstated, as it has been reported that a perfectly trained

autoencoder can adapt to any environment and obtain

optimal codes for any block length. Authors generally

recommend a large batch size for separate systematic

encoder and decoder training, as it allows for easy

convergence and optimal performance, as shown in

experiments conducted in [15, 68].

Numerous studies, such as [15, 54, 62, 63, 69, 70, 71],

have demonstrated the superior performance of DL

communication applications over traditional codes and

channel estimation under non-linear system models. The

neural network architecture used in the deep learning

autoencoder in this study are convolutional neural

networks (CNNs) and recurrent neural networks (RNNs).

RNNs are used for sequential data analysis and CNNs are

widely used for image recognition [72]. The review of

performances is summarized in Table VI, while Tables IV

and V provide a selection list of commonly used hyper-

parameters in machine learning applications. It has been

observed that the sigmoid activation function, Adam

optimizer and binary cross-entropy loss functions are

commonly used in these applications.

TABLE IV: LOSS FUNCTIONS

Reference Name 𝒍(𝐮, 𝐯)

Shinde and Shah [60] MSE ‖u − v‖2
2

Douillard et al., Sattiraju et

al., Nachmani et al., Soltani

et al. [14, 31, 59, 62]

Binary

cross-

entropy

−∑ 𝑢𝑗 log(𝑣𝑗)
𝑗

TABLE V: ACTIVATION FUNCTIONS

Reference Name [𝝈(𝐮)]𝒊 Range

Sattiraju et al. [31] linear 𝑢𝑖 (−∞,∞)

Nachmani et al.

[52]
ReLU max(0, 𝑢𝑖) [𝟎,∞)

 Nachmani et al.

and Liu et al. [52,

60]

tanh tanh(𝑢𝑖) (−1,1)

Sattiraju et al.,

Nachmani et al.

Nachmani et al.

[31, 52, 59]

sigmoid
𝟏

𝟏 + 𝒆−𝒖𝒊
 (𝟎, 𝟏)

Liu et al. [60] softmax
𝑒𝑢𝑖

∑ 𝑒𝑢𝑗
𝑗

 (0,1)

IV. LESSONS LEARNT AND FUTURE RESEARCH DIRECTION

In this survey, we learnt that early research in neural

network applications in digital communication focused on

learning decoders rather than encoders, which was found

to be more challenging. Also, ML algorithms, such as DL

autoencoders, have been introduced to achieve optimal

end-to-end performance in communication systems,

surpassing traditional coding techniques. Autoencoders

improve performance robustly by adjusting to channel

circumstances and variations, adapting to difficult settings

to improve error correction. It also allows more effective

use of resources by lowering overhead and consequently,

optimizing the overall communication system.

ML applications produce effective representation for

robust signal recovery by learning from real-world

changing circumstances in non-linear system models [73].

Furthermore, proper hyper-parameter selection and

training regimes are crucial for the performance of DL

autoencoders, with large batch sizes and systematic

encoder/decoder training strategies being recommended

for optimal convergence and performance.

For future research directions, the in-depth exploration

of DL autoencoders and their applications in digital

Journal of Communications, vol. 19, no. 2, 2024

115

communication is still needed, with a focus on improving

the efficiency and effectiveness of encoder training.

Latency issues must also be looked at, especially in some

time-critical applications. Also, the investigation of novel

regularization techniques and hyper-parameter selection

methods that enhance the performance of autoencoder-

based communication systems are still needed from the

research community. Furthermore, research that explores

various autoencoder architectures beyond CNNs and

interleavers, to identify other potential approaches for

optimizing end-to-end performance is also necessary.

There is also a need to carry out comparative studies of

different DL communication applications and traditional

coding techniques under various system models and

channel conditions, to better understand the advantages

and limitations of each approach. Lastly, investigations of

the potential of transfer learning and adaptation techniques

to improve their performance in different communication

scenarios and environments are still needed (

TABLE VI: PERFORMANCE SUMMARY OF DEEP LEARNING APPLICATIONS IN CHANNEL CODING AND ESTIMATION

Ref. Proposed Technique Approach Results

Jiang et al. [15] Turbo autoencoder
introducing Turbo Autoencoder using the

neural structure and training algorithms.

Outperform traditional codes in the low to

middle SNR range. Performance is only worse

than LDPC and polar code.

He et al. [67]

TurboNet: Deep neural

network turbo code

decoder

for turbo decoding

that integrates DL into the traditional max-

log-maximum

Superiority in error-correction, ability, signal-

to-noise ratio generalization.

Devamane and Itagi [70]

Recurrent neural

network (RNN) turbo

decoder

Turbo decoders are constructed by two

means; neural Turbo decoder and deep

learning Turbo decoder. The performances

are examined

It is concluded that both neural and DL turbo

decoders perform better as compared to

conventional Viterbi decoders.

Balevi and Andrews [54] Autoencoder ECC

Using a concatenation of a turbo code and

an autoencoder. Utilizing turbo codes as an

implicit regularization. Suboptimum

training methods adopted.

The proposed coding technique outperforms

conventional turbo codes for one-bit

quantization.

Soltani et al. [62]

Autoencoder-based

optical wireless

communications

systems (OWS)

Proposed autoencoder based OWC.

Performance compared with the state-of-the-

art model-based OWC systems in terms of the

block error rate (BLER) metric. Results

indicate learning-based OWC system

outperforms the model-based one.

Mei et al. [71]

Machine learning-

based channel

estimation in OFDM

Simulated the performance of machine

learning-based channel estimation under

quasi-stationary channel conditions.

Simulation results exhibit the effectiveness and

convenience of machine learning-based

channel estimation under complex channel

models.

Nachmani et al. [68]

Novel deep learning to

improve belief

propagation algorithm

Used “soft” Tanner instead of the standard

Tanner graph. Properly weighting

messages, such that the effect of small

cycles in the Tanner graph was partially

compensated.

Improved BER performance.

Sattiraju et al. [62]
RNN turbo

encoder/decoder

Used the LTE variant of the turbo encoder

to encode the data.

Their testing accuracy produces 67% for turbo

encoding and 100% for turbo decoding.

IV. CONCLUSION

We conducted a comparative analysis of near-capacity

turbo codes and LDPC codes, highlighting their potential

and challenges. The traditional approach of designing

communication algorithms based on complex

mathematical models and heuristics was found to be sub-

optimal. They are characterized by a lack of accurate

model estimation. We also discussed the emergence of ML

applications in communication systems as a potential

solution to the limitations of conventional coding schemes.

Our survey revealed that while LDPC codes may offer

better performance than turbo codes, ML-based

approaches have shown competitive performance and

adaptability to channel conditions. The superiority of ML-

based end-to-end channel coding and estimation in non-

linear system models has been demonstrated in several

reviewed papers. We found that systematic training

schedules are generally favored in ML applications for

communication to prevent overfitting and local optima

issues. It has been established that a perfectly trained

autoencoder can dynamically adapt to channel interference

to find optimal error correction codes, although achieving

perfect training remains a challenge.

However, it should be noted that the theoretical

understanding of ML deep neural networks is still

unsatisfactory, and there may be a need to open the “black

boxes” of ML to fully comprehend and harness their full

potential. We believe that ML applications will eventually

replace communication algorithms with learned weights

derived from training deep neural network architectures,

eliminating the need for specialized expert channel coding

schemes that create unnecessary bottlenecks.

CONFLICT OF INTEREST

. The authors declare no conflict of interest

AUTHOR CONTRIBUTIONS

Kayode Olaniyi conceptualized and carried out the

research. Reolyn Heymann supervised the research. Theo

Swart helped with the data analysis and the result

discussion section. All authors approved the final version.

Journal of Communications, vol. 19, no. 2, 2024

116

REFERENCES

[1] S. Shao et al., “Survey of Turbo, LDPC, and Polar Decoder ASIC

Implementations,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp.

2309–2333, 2019, doi: 10.1109/COMST.2019.2893851.

[2] G. Battail, “A conceptual framework for understanding turbo codes,”

IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 245–254, 1998, doi:

10.1109/49.661112.

[3] C. Berrou, R. Pyndiah, P. Adde, C. Douillard, and R. Le Bidan, “An

overview of turbo codes and their applications,” Wirel. Technol. 2005,

Conf. Proc. - 8th Eur. Conf. Wirel. Technol., vol. 2005, pp. 1–10, 2005,

doi: 10.1109/ecwt.2005.1617639.

[4] K. Gracie and M.-H. Hamon, “Turbo and turbo-like codes: Principles

and applications in telecommunications,” Proc. IEEE, vol. 95, no. 6,

pp. 1228–1254, 2007.

[5] J. D. Kene and K. D. Kulat, “Soft Output Decoding Algorithm for

Turbo Codes Implementation in Mobile Wi-Max Environment,”

Procedia Technol., vol. 6, pp. 666–673, 2012, doi:

10.1016/j.protcy.2012.10.080.

[6] K. Ramasamy, B. Balakrishnan, and M. U. Siddiqi, “A new class of

asymmetric turbo code for 3G systems,” AEU - Int. J. Electron.

Commun., vol. 60, no. 6, pp. 447–458, 2006, doi:

10.1016/j.aeue.2005.09.007.

[7] B. Vucetic, Y. Li, L. C. Perez, and F. Jiang, “Recent advances in turbo

code design and theory,” Proc. IEEE, vol. 95, no. 6, pp. 1323–1344,

2007, doi: 10.1109/JPROC.2007.897975.

[8] M. Mohammed, A. Abdessadek, and E. H. Ali, “A comparative

simulation study on the performance of LDPC codes and

3Dimensional turbo codes,” Lect. Notes Networks Syst., vol. 25, pp.

21–35, 2018, doi: 10.1007/978-3-319-69137-4_3.

[9] Y. Yang and Y. Li, “Research and Implementation of Turbo Coding

Technology in High-Speed Underwater Acoustic OFDM

Communication,” J. Robot., vol. 2022, 2022.

[10] M. Arif, N. M. Sheikh, and A. U. H. Sheikh, “Design of two step

deterministic interleaver for turbo codes,” Comput. Electr. Eng., vol.

34, no. 5, pp. 368–377, 2008, doi:

10.1016/j.compeleceng.2007.10.009.

[11] T. Matsumine and H. Ochiai, “Capacity-Approaching Non-Binary

Turbo Codes: A Hybrid Design Based on EXIT Charts and Union

Bounds,” IEEE Access, vol. 6, pp. 70952–70963, 2018, doi:

10.1109/ACCESS.2018.2881243.

[12] T. Tonnellier, C. Leroux, B. Le Gal, B. Gadat, C. Jego, and N. Van

Wambeke, “Lowering the Error Floor of Turbo Codes with CRC

Verification,” IEEE Wirel. Commun. Lett., vol. 5, no. 4, pp. 404–

407, 2016, doi: 10.1109/LWC.2016.2571283.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near SHANNON

limit error-correcting coding and encoding: Turbo-codes (1),” IEEE

Int. Conf. Commun., no. 1, pp. 1064–1070, 1993, doi:

10.1109/icc.1993.397441.

[14] C. Douillard and M. Jezequel, “Turbo Codes: From First Principles

to Recent Standards,” Channel Coding Theory, Algorithms, Appl.

Acad. Press Libr. Mob. Wirel. Commun., pp. 1–52, 2014, doi:

10.1016/B978-0-12-396499-1.00001-7.

[15] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani, and P. Viswanath,

“Turbo Autoencoder: Deep learning based channel codes for point-

to-point communication channels,” Adv. Neural Inf. Process. Syst.,

vol. 32, no. NeurIPS, pp. 1–11, 2019.

[16] A. S. Babu and M. A. Ambroze, “From Convolutional Codes to

Turbo Codes,” Adv. Commun. Electron. Networks, Robot. Secur. Vol.

13, vol. 13, p. 105, 2016.

[17] H. Jin and R. J. McEliece, “Coding theorems for turbo code

ensembles,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1451–1461,

2002, doi: 10.1109/TIT.2002.1003833.

[18] R. Garzón Bohórquez, C. A. Nour, and C. Douillard, “On the

equivalence of interleavers for turbo codes,” IEEE Wirel. Commun.

Lett., vol. 4, no. 1, pp. 58–61, 2015, doi:

10.1109/LWC.2014.2367517.

[19] G. Matz and F. Hlawatsch, “Fundamentals of time-varying

communication channels,” in Wireless communications over

rapidly time-varying channels, Elsevier, 2011, pp. 1–63.

[20] G. R. Rao and G. S. Rao, “Performance analysis of 64QAM Turbo

coded OFDM for 4G applications,” Procedia Comput. Sci., vol. 143,

pp. 907–913, 2018, doi: 10.1016/j.procs.2018.10.363.

[21] S. V Zaitsev, V. V Kazymyr, V. M. Vasilenko, and A. V Yarilovets,

“Adaptive selection of parameters of s-random interleaver in

wireless data transmission systems with turbo coding,”

Radioelectron. Commun. Syst., vol. 61, pp. 13–21, 2018.

[22] R. Garzón Bohórquez, C. A. Nour, and C. Douillard, “Protograph-

Based Interleavers for Punctured Turbo Codes,” IEEE Trans.

Commun., vol. 66, no. 5, pp. 1833–1844, 2018, doi:

10.1109/TCOMM.2017.2783971.

[23] O. Işcan and W. Xu, “Window-Interleaved Turbo Codes,” IEEE

Commun. Lett., vol. 22, no. 4, pp. 676–679, 2018, doi:

10.1109/LCOMM.2018.2794359.

[24] K. Bhowmik, “A Review of Turbo Decoder for Wireless

Communication System through VLSI Design,” vol. 7, no. 05, pp.

451–455, 2018.

[25] A. H. Mugaibel and M. A. Kousa, “Turbo Codes: Promises and

Challenges,” King Fahd Univ. Pet. Miner. PO Box, vol. 1721, 1999.

[26] P. Pfeifer and H. T. Vierhaus, “Reconfiguration Aspects of PENCA

- An Area-efficient Reconfigurable Encoder Architecture with

Built-in Security Features for Flexible Error Detection and

Correction in Robust Dependable Communication Systems,” IFAC-

PapersOnLine, vol. 49, no. 25, pp. 390–395, 2016, doi:

10.1016/j.ifacol.2016.12.076.

[27] S. D. B and I. R.L., “A Review on Punctured Analysis of Turbo

codes,” Ijireeice, vol. 3, no. 12, pp. 140–142, 2015, doi:

10.17148/ijireeice.2015.31229.

[28] A. Mirza and S. A. Sheikh, “Performance Comparison of Turbo

Decoding Algorithms,” Can. J. Signal Process., vol. 1, no. 2, July,

2010.

[29] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and

implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,”

IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 8–17, 2010.

[30] Y. He, J. Zhang, S. Member, S. Jin, and S. Member, “Model-Driven

DNN Decoder for Turbo Codes : Design , Simulation and

Experimental Results,” vol. 6778, no. c, pp. 1–16, 2020, doi:

10.1109/TCOMM.2020.3010964.

[31] R. Sattiraju, A. Weinand, and H. D. Schotten, “Performance

Analysis of Deep Learning based on Recurrent Neural Networks for

Channel Coding,” 2018 IEEE Int. Conf. Adv. Networks Telecommun.

Syst., pp. 1–6, 2018, doi: 10.1109/ANTS.2018.8710159.

[32] J. Sodha, “Turbo code frame synchronization,” Signal Processing,

vol. 82, no. 5, pp. 803–809, 2002, doi: 10.1016/S0165-

1684(02)00159-7.

[33] C. Tanriover, B. Honary, J. Xu, and S. Lin, “Improving turbo code

error performance by multifold coding,” IEEE Commun. Lett., vol.

6, no. 5, pp. 193–195, 2002, doi: 10.1109/4234.1001661.

[34] C. Panem, V. R. Gad, and R. S. Gad, “Sensor’s data transmission

with BPSK using LDPC (Min-Sum) error corrections over MIMO

channel: Analysis over RMSE and BER,” Mater. Today Proc., vol.

27, no. xxxx, pp. 571–575, 2020, doi: 10.1016/j.matpr.2019.12.039.

[35] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance

of low density parity check codes,” Electron. Lett., vol. 33, no. 6,

pp. 457–458, 1997.

[36] J. Kim, W. Hur, A. Ramamoorthy, and S. W. McLaughlin, “Design

of rate-compatible irregular LDPC codes for incremental

redundancy hybrid ARQ systems,” IEEE Int. Symp. Inf. Theory -

Proc., pp. 1139–1143, 2006, doi: 10.1109/ISIT.2006.261962.

[37] W. Ullah and A. Yahya, “Comprehensive Algorithmic Review and

Analysis of LDPC Codes,” TELKOMNIKA Indones. J. Electr. Eng.,

vol. 16, no. 1, p. 111, 2015, doi: 10.11591/tijee.v16i1.1595.

[38] I. Develi and Y. Kabalci, “A comparative simulation study on the

performance of LDPC coded communication systems over Weibull

fading channels,” J. Appl. Res. Technol., vol. 14, no. 2, pp. 101–107,

2016.

[39] H. Saeedi and A. H. Banihashemi, “Design of irregular LDPC codes

for BIAWGN channels with SNR mismatch,” IEEE Trans.

Commun., vol. 57, no. 1, pp. 6–11, 2009.

[40] N. Andreadou, C. Assimakopoulos, and F.-N. Pavlidou,

“Performance evaluation of LDPC codes on PLC channel compared

to other coding schemes,” in 2007 IEEE Int. Symp. on Power Line

Commun. and Its Appl., 2007, pp. 296–301.

[41] H. Wei and A. H. Banihashemi, “ADMM check node penalized

decoders for LDPC codes,” IEEE Trans. Commun., vol. 69, no. 6,

pp. 3528–3540, 2021.

[42] C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8

pJ/bit/iter Quasi-Cyclic LDPC Decoder for IEEE 802.11n in 90 nm

CMOS,” IEEE Asian Solid-State Circuits Conf., pp. 8–11, 2010.

[43] A. Sariduman, A. E. Pusane, and Z. C. Taşkin, “An integer

programming-based search technique for error-prone structures of

LDPC codes,” AEU - Int. J. Electron. Commun., vol. 68, no. 11, pp.

Journal of Communications, vol. 19, no. 2, 2024

117

1097–1105, 2014, doi: 10.1016/j.aeue.2014.05.012.

[44] H. Zhu, B. Zhang, M. Xu, H. Li, and H. Xu, “Array based quasi-

cyclic LDPC codes and their tight lower bounds on the lifting

degree,” Phys. Commun., vol. 36, p. 100765, 2019, doi:

10.1016/j.phycom.2019.100765.

[45] V. A. Chandrasetty and S. M. Aziz, “Overview of LDPC codes,”

Resour. Effic. LDPC Decod., pp. 5–10, 2018, doi: 10.1016/b978-0-

12-811255-7.00002-2.

[46] W. E. Ryan, “An introduction to LDPC codes,” CRC Handb.

Coding Signal Process. Rec. Syst., vol. 5, no. 2, pp. 1–23, 2004.

[47] L. Mostari and A. Taleb-Ahmed, “High performance short-block

binary regular LDPC codes,” Alexandria Eng. J., vol. 57, no. 4, pp.

2633–2639, 2018, doi: 10.1016/j.aej.2017.09.016.

[48] J. Kim, A. Ramamoorthy, and S. W. McLaughlin, “Design of

efficiently-encodable rate-compatible irregular LDPC codes,”

IEEE Int. Conf. Commun., vol. 3, no. c, pp. 1131–1136, 2006, doi:

10.1109/ICC.2006.254899.

[49] H. Ben Thameur, B. Le Gal, N. Khouja, F. Tlili, and C. Jego, “A

survey on decoding schedules of LDPC convolutional codes and

associated hardware architectures,” Proc. - IEEE Symp. Comput.

Commun., pp. 898–905, 2017, doi: 10.1109/ISCC.2017.8024640.

[50] L. Costantini, B. Matuz, G. Liva, E. Paolini, and M. Chiani, “On the

performance of moderate-length non-binary LDPC codes for space

communications,” ASMS/SPSC 2010 2010 5th Adv. Satell.

Multimed. Syst. Conf. 11th Signal Process. Sp. Commun. Work., pp.

122–126, 2010, doi: 10.1109/ASMS-SPSC.2010.5586886.

[51] Y. Liu, X. Liu, Z. Ding, Y. Hu, and L. Zhao, “A new LDPC decoding

scheme based on BP and Gated Neural Network,” in 2020 5th Int.

Conf. on Info. Science, Comput. Tech. and Transportation (ISCTT),

2020, pp. 346–349.

[52] E. Nachmani, Y. Be’Ery, and D. Burshtein, “Learning to decode

linear codes using deep learning,” in 2016 54th Annual Allerton

Conf. on Commun., Control, and Comput. (Allerton), 2017, pp.

341–346, doi: 10.1109/ALLERTON.2016.7852251.

[53] H. Chaibi, A. Chehri, R. Saadane, and A. Zimmerman, “Parallel

genetic algorithm decoder scheme based on DP-LDPC codes for

industrial IoT scenarios,” Procedia Comput. Sci., vol. 176, pp.

3496–3505, 2020, doi: 10.1016/j.procs.2020.09.047.

[54] E. Balevi and J. G. Andrews, “Autoencoder-Based Error Correction

Coding for One-Bit Quantization,” IEEE Trans. Commun., vol. 68,

no. 6, pp. 3440–3451, 2020, doi: 10.1109/TCOMM.2020.2977280.

[55] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:

Channel auto-encoders, domain specific regularizers, and attention,”

2016 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2016, pp.

223–228, 2017, doi: 10.1109/ISSPIT.2016.7886039.

[56] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the

Physical Layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4,

pp. 563–575, 2017, doi: 10.1109/TCCN.2017.2758370.

[57] P. Li, Y. Pei, and J. Li, “A comprehensive survey on design and

application of autoencoder in deep learning,” Appl. Soft Comput., p.

110176, 2023.

[58] A. M. Tonello, N. A. Letizia, D. Righini, and F. Marcuzzi, “Machine

Learning Tips and Tricks for Power Line Communications,” IEEE

Access, vol. 7, pp. 82434–82452, 2019, doi:

10.1109/ACCESS.2019.2923321.

[59] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN

decoding of linear block codes,” arXiv Prepr. arXiv1702.07560,

2017.

[60] S. Liu, T. Wang, and S. Wang, “Toward intelligent wireless

communications: Deep learning - based physical layer

technologies,” Digit. Commun. Networks, vol. 7, no. 4, pp. 589–597,

2021, doi: 10.1016/j.dcan.2021.09.014.

[61] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Deep Learning

applications for COVID-19,” J. big Data, vol. 8, no. 1, pp. 1–54,

2021.

[62] M. Soltani, W. Fatnassi, A. Aboutaleb, Z. Rezki, A. Bhuyan, and P.

Titus, “Autoencoder-Based Optical Wireless Communications

Systems,” 2018 IEEE Globecom Work. GC Wkshps 2018 - Proc.,

no. December, 2019, doi: 10.1109/GLOCOMW.2018.8644104.

[63] T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep

learning for wireless physical layer: Opportunities and challenges,”

China Commun., vol. 14, no. 11, pp. 92–111, 2017, doi:

10.1109/CC.2017.8233654.

[64] S. Yu and J. C. Principe, “Understanding Autoencoders with

Information Theoretic Concepts,” no. October 2021, 2019, doi:

10.1016/j.neunet.2019.05.003.

[65] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”

arXiv Prepr. arXiv1312.6114, 2013.

[66] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,

“Extracting and composing robust features with denoising

autoencoders,” in Proc. of the 25th int. conf. on Machine learning,

2008, pp. 1096–1103.

[67] Y. He, J. Zhang, S. Jin, C. K. Wen, and G. Y. Li, “Model-Driven

DNN Decoder for Turbo Codes: Design, Simulation, and

Experimental Results,” IEEE Trans. Commun., vol. 68, no. 10, pp.

6127–6140, 2020, doi: 10.1109/TCOMM.2020.3010964.

[68] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode

linear codes using deep learning,” in 2016 54th Annual Allerton

Conf. on Commun., Control, and Comput. (Allerton), 2016, pp.

341–346.

[69] S. Krastanov and L. Jiang, “Deep Neural Network Probabilistic

Decoder for Stabilizer Codes,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017,

doi: 10.1038/s41598-017-11266-1.

[70] S. B. Devamane and R. L. Itagi, “Recurrent neural network based

turbo decoding algorithms for different code rates,” J. King Saud

Univ. - Comput. Inf. Sci., no. xxxx, 2020, doi:

10.1016/j.jksuci.2020.03.012.

[71] K. Mei, J. Liu, X. Zhang, and J. Wei, “Machine Learning Based

Channel Estimation: A Computational Approach for Universal

Channel Conditions,” 2019, [Online]. Available:

http://arxiv.org/abs/1911.03886.

[72] L. Alzubaidi et al., “Review of deep learning: Concepts, CNN

architectures, challenges, applications, future directions,” J. big

Data, vol. 8, pp. 1–74, 2021.

[73] D. Wang and M. Zhang, “Artificial intelligence in optical

communications: from machine learning to deep learning,” Front.

Commun. Networks, vol. 2, p. 656786, 2021.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Communications, vol. 19, no. 2, 2024

118

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

