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 Abstract—This article introduces to the best of our 

knowledge a novel approach for simultaneous estimation of 

time delay and frequencies in noisy complex sinusoidal 

signals received at two spatially separated sensors. The 

proposed method comprises two main components. Firstly, a 

Convolutional Neural Network (CNN) regression model is 

employed to estimate frequencies using data from the first 

sensor. The model is trained on a synthetic dataset 

specifically designed for this task. Secondly, a deep learning 

model is developed, incorporating densely connected layers 

and dropout layers for regularization, to effectively estimate 

the time delay between the received signal copies at the two 

sensors. Extensive computer simulations demonstrate the 

effectiveness of the proposed method, showcasing its 

accuracy in joint time delay and frequency estimation. This 

deep learning-based technique offers a promising alternative 

to classical signal processing approaches, enabling advanced 

signal analysis in diverse engineering domains. 
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I.  INTRODUCTION 

The problem of the Time Delay Estimation (TDE) 

between noisy signals received at two or more remote 

sensors has various applications such as sonar, acoustics, 

geophysics, positioning, tracking, speed sensing, 

Direction of Arrival (DoA) estimation, exploration, 

tracking the locations of sources estimation of the number 

of sources, separation of the individual sources and 

biomedical engineering [1−9]. The recent growth of 

machine learning methods redevelops the classical signal 

processing techniques, working around its restrictions [10].  

Analogously, accurate frequencies estimation is a 

necessity in several engineering domains, such as 

communications [11], 5G, IoT, e-health, radar or sonar 

[12], and detection of mechanical or structural faults [13]. 

It is very important also in several applications in the 

medical field, where the monitoring of the frequency 

changes of some bio signals acquired from the human 

body have a decisive role in diagnosis [14]. Standard 

frequency estimation methods are the Discrete Fourier 

Transform (DFT) and the Fast Fourier Transform (FFT). 

These methods work well for numerous applications but 

can fail if short signals with low frequency are analyzed 

because of the rough resulting frequency resolution. The 

large distance between two consecutive spectral lines 

makes the chance that the position of a spectral line 

matches the actual frequency to be small. A consequence 

is the so-called spectral leakage phenomenon. Different 

methods to increase the accuracy of the frequency estimate 

are proposed in the literature. One of them is finding the 

maximum of the curve that crosses two or three points in 

the DFT spectrum found by interpolation [15−22].  An 

alternative interpolation method is zero-padding [23]. A 

comprehensive review is given in [24].    

A deep learning network is used to find the frequency 

of a noisy sinusoidal wave. A three-layer neural network 

was designed to extract the frequency of sinusoidal waves 

that had been combined with white noise at a given Signal 

to Noise Ratio (SNR) of 25dB. One hundred thousand 

waves were prepared for training and testing the model. 

The neural network that could achieve a mean squared 

error of 4 × 10−5 for normalized frequencies. This model 

was written for the range 1 kHz ≤ f ≤ 10 kHz. The trained 

model can find frequency of any previously unseen noisy 

wave in less than a second [25].  

A learning-based approach is proposed for estimating 

the spectrum of a multi sinusoidal signal from a finite 

number of samples is considered in [26]. A neural network 

is trained to estimate the spectra of such signals on 

simulated data. Numerical experiments show that the 

approach performs competitively with classical methods 

designed for additive Gaussian noise at a range of noise 

levels and is also effective in the presence of impulsive 

noise. A machine-learning approach to estimate the 

frequency of each component in a multi-sinusoidal signal 

from a finite number of noisy samples uses a neural 

network to output a learned representation with local 

maxima at the position of the frequency estimates. a 

neural-network architecture that produces a significantly 

more accurate representation and combines it with an 

additional neural-network module trained to detect the 

number of frequencies [27]. 

The previous two problems were addressed together as 

a joint time delay and frequency estimation problem 

[28−33], several classical methods were applied. Recent 

advances in machine learning invite us to revisit our 

problem again. 
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This paper is structured as follows. In Section II, the 

system Adevelopment of the proposed method is 

presented in Section III. In Section IV, the performance of 

the proposed method is illustrated through simulations. 

Finally, some concluding remarks follow in Section V. 

II.  PROBLEM FORMULATION 

The problem of estimating the power spectral density 

of a noisy signal has been studied widely [29]. Many 

methods have been proposed for spectral estimation, 

which are divided into nonparametric and parametric 

methods roughly. The nonparametric methods include 

conventional periodogram, correlogram, temporal 

windowing, lag windowing, Daniell method, Welch 

method, Black-Tukey method and so on. The Parametric 

Methods are Autoregressive (AR), Moving Average (MA), 

Autoregressive Moving Average (ARMA) and so on.  It is 

possible to estimate the frequencies of complex exponents 

from the peaks of the spectrum estimated by many 

methods. Typically, the complex exponentials are the 

“information bearing” part of the signal. Simply, the 

estimation of frequencies, that is of interest rather than the 

spectrum itself. Subspace based methods were applied to 

estimate the frequencies, using both signal subspace-based 

methods like Blackman-Tukey, minimum variance, 

autoregressive and noise subspace-based methods like 

the minimum norm, Pisarenko, and MUSIC [34].  

Consider the discrete-time sinusoidal signals 𝑥(𝑛) and 

𝑦(𝑛) are the measurements of two sensors satisfying: 
 

      𝑥(𝑛) = 𝑠(𝑛) + 𝑢(𝑛) 

        𝑦(𝑛) = 𝑠(𝑛 − 𝐷) + 𝑧(𝑛),  𝑛 = 0,1, … , 𝑁 − 1        (1)  

where   

            
𝑠(𝑛) = ∑ 𝑎𝑖𝑒

𝑗𝜔𝑖𝑛𝑃
𝑖=1                              (2) 

 

The source signal 𝑠(𝑛) is modeled by a sum of P 

complex sinusoids where the amplitudes (𝑎𝑖) are unknown, 

complex-valued constants, and the normalized radian 

frequencies (𝜔𝑖) are different. Without a loss of generality, 

we considered 𝜔1 < 𝜔2 … < 𝜔𝑃. To simplify the problem, 

we have assumed the number of sources P either known or 

pre estimated.  The two terms 𝑢(𝑛)  and 𝑧(𝑛)  are 

representing the two zero mean, additive white complex 

gaussian noise processes independent of each other. Also, 

parameters N represent the number of samples collected at 

each channel. The variable D is the delay between the 

received copies of the signal 𝑠(𝑛) at the two separated 

sensors, which is unknown and is to be estimated. The 

same system model was used in our previous work in [28, 

29]. 

III. DEVELOPMENT OF PROPOSED METHOD 

In this section, we present the development of the 

proposed method for joint time delay and frequency 

estimation in noisy complex sinusoidal signals received at 

two spatially separated sensors. The approach is inspired 

by recent advancements in deep learning techniques, 

which have shown promising results in signal processing 

tasks [35, 36]. 

A. Frequency Estimation Methodology 

The first component of our proposed method focuses 

on frequency estimation using a Convolutional Neural 

Network (CNN) regression model. This model is adapted 

from the work by Bhowmik et al. [36], where they 

successfully applied deep learning for frequency 

estimation of sinusoidal waves with noise. The CNN 

model is trained on a synthetic dataset specifically 

generated to reflect real-world complexities and 

uncertainties in signal acquisition [2]. We leverage the 

principles of dropout regularization, as introduced by 

Srivastava et al. [37], to prevent overfitting during training. 

Additionally, batch normalization, following the approach 

proposed by Ioffe and Szegedy [38], is incorporated to 

accelerate the training process and enhance the model's 

generalization ability. The model architecture comprises 

multiple layers, including convolutional layers and fully 

connected layers, designed to capture underlying patterns 

in the input signals [36].  The synthetic dataset used in this 

study is generated using a custom function that produces 

complex-valued signals composed of multiple frequency 

components. Gaussian noise with a specified noise 

amplitude is added to the signals to simulate realistic 

conditions. The visualization of the frequency estimation 

model architecture is shown in Fig. 1. 

The dataset is then divided into training and testing sets. 

To accommodate the CNN architecture, the input data is 

reshaped into a three-dimensional array. The CNN 

regression model is constructed using the Sequential API 

of Keras. It comprises a series of layers designed to capture 

the underlying patterns in the input signals. The initial 

layers consist of a 1D convolutional layer followed by a 

max pooling layer to extract relevant features. A dropout 

layer is introduced to prevent overfitting, while batch 

normalization enhances the model's generalization ability. 

The subsequent layers flatten the feature maps and pass 

them through fully connected layers with rectified linear 

unit (ReLU) activation. The output layer has a number of 

neurons equal to the desired number of frequency 

components to predict. 

B. Time Delay Estimation Methodology 

The second component of our proposed method is 

dedicated to time delay estimation. For this purpose, we 

develop a deep learning model that builds upon the 

concepts used for frequency estimation. The model is 

inspired by the work of Bhowmik et al. [35], where they 

successfully applied deep learning for time delay 

estimation in sinusoidal signals received at two spatially 

separated sensors. In this model, we combine real and 

imaginary components of the signals to capture their 

temporal characteristics effectively.  

The architecture includes densely connected layers and 

dropout layers, similar to the frequency estimation model, 

for regularization and feature extraction [35]. The 

proposed method employs a deep learning model 

constructed using the Keras library, a popular framework 

for developing neural networks. The model architecture 
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comprises multiple layers, including densely connected 

layers and dropout layers for regularization. To capture the 

temporal characteristics of signals, we utilize a 

combination of real and imaginary components. By 

incorporating both components, our model can extract 

relevant features and patterns from the input data. The 

visualization of the time delay estimator model 

architecture is shown in Fig. 2. 
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Fig. 1. The visualization of the frequency estimation model architecture. 

 

C. Training and Optimization 

Both the frequency estimation and time delay 

estimation models are trained using Adam optimization, as 

proposed by Kingma and Ba [1, 2]. The Mean Squared 

Error (MSE) loss function is employed to measure the 

discrepancy between predicted and actual frequencies or 

time delays. The synthetic datasets used for training and 

evaluation ensure a controlled environment with realistic 

signal conditions. The training process involves 

monitoring the loss on both training and validation sets to 

assess convergence and prevent overfitting [1, 2]. 
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Fig. 2. The visualization of the time delay estimator model architecture. 

 

D. Evaluation and Performance 

To evaluate the performance of our proposed method, 

extensive computer simulations are conducted. The results 

demonstrate the effectiveness of the deep learning-based 

approach in accurately estimating joint time delay and 

frequencies. The models exhibit high accuracy in 

capturing underlying patterns in complex-valued signals, 

enabling precise estimation even in the presence of noise. 

IV.  SIMULATION RESULTS 

Extensive experiments are conducted to evaluate the 

performance of the proposed CNN regression model. In 

this section, we present the simulation results of the 

proposed frequency and time delay estimators. 

A. Frequency Estimation 

The synthetic dataset, consisting of 2000 samples with 

three frequency components per sample, is used for 

training and testing. Normalized frequency range is 

considered. The model is trained for 30 epochs with a 

batch size of 32, and a validation split of 0.33 is employed 

for model selection. The results demonstrate that the 

proposed CNN regression model achieves high accuracy 

in frequency prediction tasks. The training and validation 
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loss curves exhibit a decreasing trend, indicating the 

model's ability to capture the underlying patterns in the 

complex-valued signals. The evaluation on the testing set 

confirms the model's effectiveness, with the test loss 

providing a quantitative measure of its performance. The 

utilization of deep learning techniques, specifically CNNs, 

in signal processing tasks has shown promising results. 

The proposed model leverages the inherent capabilities of 

CNNs, such as feature extraction through convolutional 

layers and non-linear mapping through fully connected 

layers, to capture the underlying patterns in complex-

valued signals. The addition of dropout and batch 

normalization layers further enhances the model’s 

performance and generalization ability. The synthetic 

dataset generation process ensures a controlled 

environment for training and evaluation. By incorporating 

multiple frequency components and Gaussian noise, the 

dataset reflects real-world complexities and uncertainties. 

The training process utilizes the Adam optimizer and mean 

squared error loss function which effectively optimizes the 

model parameters to minimize the discrepancy between 

predicted and actual frequencies. The experimental results 

in Fig. 3 demonstrate the model's ability to accurately 

predict frequencies in complex-valued signals. The 

decreasing trend in training and validation loss curves 

indicates the model’s capability to learn and generalize 

from the dataset. The evaluation on the testing set provides 

quantitative validation of the model’s performance. 

 
Fig. 3. Training and validation loss for frequencies estimator. 

B. Time Delay Estimation 

We generated a synthetic dataset consisting of 3000 

samples, each with a varying delay and two signal 

components. The delays were randomly generated within 

a specified range, while the frequencies of the signal 

components were uniformly distributed. We added AWG 

noise to both signal components. to simulate realistic 

conditions. The resulting signals were concatenated, 

forming the input data for the deep learning model. The 

dataset was divided into training and testing sets, with 

2400:600 split. The architecture of the deep learning 

model employed for signal delay estimation is shown in 

Fig. 4. The figure provides a visual representation of the 

sequential arrangement of the model’s layers. The model 

consists of three types of layers: dense (fully connected) 

layers, dropout layers, and the final output layer. The input 

layer receives signals that are concatenated representations 

of the real and imaginary ccomponents. The model’s 

architecture includes two dense layers with 16 and 8 

neurons, respectively, which are responsible for learning 

and extracting relevant features from the input data. 

Dropout layers are incorporated after each dense layer to 

prevent overfitting by randomly setting a fraction of the 

input units to zero during training. The final layer is a 

dense layer with a single neuron, serving as the output 

layer responsible for estimating the delay. The scatter plot 

in Fig. 4 illustrates the comparison between the predicted 

delays and the true delays in the test set. Each data point 

represents a sample, where the x-coordinate represents the 

true delay, and the y-coordinate represents the 

corresponding predicted delay. The points are depicted in 

blue with an alpha value of 0.5 to indicate the density of 

the data. Additionally, a red line is plotted, representing 

the ideal case where the predicted delays perfectly align 

with the true delays. By visually assessing the plot, we can 

observe the proximity of the data points to the red line, 

which serves as a measure of the accuracy of the model’s 

delay estimation.  

 
Fig. 4. Predicted delays vs true delays. 

 

Fig. 5 presents the training and validation loss curves 

during the model’s training process. The plot displays the 

loss values on the y-axis and the number of epochs on the 

x-axis. The blue line represents the training loss, while the 

red line represents the validation loss. By examining the 

plot, we can analyze the convergence and generalization 

capability of the model. A decreasing trend in both training 

and validation loss indicates that the model effectively 

learns the underlying patterns in the data without 

overfitting. Conversely, a significant divergence between 

the two lines could suggest potential overfitting or 

underfitting issues. Thus, Fig. 4 serves as a valuable tool 

for assessing the model's performance and determining the 

optimal number of training epochs. These two figures 

provide a comprehensive visual representation of the 

model's performance and training progress. They offer 

insights into the accuracy of the delay estimation and the 

model's convergence during training, further supporting 

the effectiveness and reliability of our proposed deep 

learning-based approach. 
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Fig. 5. Training and validation Loss for time delay estimator. 

V.  CONCLUSION 

We proposed a Deep Learning-Based technique for 

joint time delay and frequencies estimation of sinusoidal 

signals received at two separated sensors. We trained the 

deep learning model on the training set and evaluated its 

performance on the testing set. The model was optimized 

using mean squared error loss and the Adam optimizer. 

During training, we monitored the loss on both the training 

and validation sets to assess the model's convergence and 

generalization capability. Overall, the proposed method 

showcases its potential as an alternative to classical signal 

processing techniques, offering advanced signal analysis 

capabilities across various engineering domains. 
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