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 Abstract—Recently, Vehicular Ad hoc Networks (VANETs) 

are becoming increasingly popular. VANETs are a 

subcategory of Mobile Ad hoc Networks (MANETs) in which 

nodes represent vehicles equipped with On-Board Units 

(OBUs). The fundamental reason is that VANETs improve 

safety for road users by providing vehicles with real-time 

road-related information. However, the increasing number 

of vehicles being introduced into these networks causes 

handover delays, and end-to-end delays, among other things. 

Therefore, the Quality of Service (QoS) is affected. This 

article proposes an Intelligent Metaheuristic-based 

Handover Algorithm (IMHA) to improve QoS in VANETs. 

The proposed IMHA is designed and implemented by 

integrating two of the most popular and recent optimization 

methods, namely disturbance Particle Swarm Optimization 

(d-PSO) and Ant Colony Optimization (ACO), wherein d-

PSO assigns different priority levels to vehicles on the road to 

ensure safety meanwhile ACO determines the most profitable 

routes from the source to the destination. Furthermore, the 

Congestion Problem Reduction (CPR) algorithm is 

implemented in the IMHA to define the requests to process in 

priority order. The ACO and d-PSO hybrid methods have 

been tested and evaluated in real-world VANETs, giving us 

more confidence in their performance and robustness. 

Network Simulator 2 (NS-2) is used to simulate the proposed 

algorithm. Based on the outcomes, IHMA reduces end-to-end 

and handover delays and improves throughput at different 

vehicle velocities and network packet sizes. Consequently, 

this proposed solution guarantees improved QoS in VANETs. 

The experiment results show the proposed method 

outperforms existing handover algorithms, with a 

throughput of 92%, an end-to-end delay of 0.8 seconds, a 

handover delay and a computation time of less than 2.0 

seconds, and an average memory usage of 60%. 

 

Keywords—VANETs, optimization, Handover, ACO, d-PSO, 

QoS 

 

I. INTRODUCTION 

In this digital age, the tsunami of digital technology 

tools and solutions has changed how the world’s 

population exchanges and consumes essential information 

[1]. Vehicular Ad hoc Networks (VANETs) are imperative 

in ensuring better communication between drivers on the 

 
 Manuscript received July 19, 2022; revised October 24, 2022; accepted 

February 21, 2023. 

road. VANETs promote the exchange of road-related 

information without being restricted by time and place. 

This has led to a lot of research on facilitating 

communication between vehicles and the Internet. 

VANETs have a dynamic topology where each node can 

go about as a client or server and run routing algorithms in 

a distributed environment. VANETs mimic the behavior 

of Mobile Ad hoc Networks (MANETs) in which vehicle 

nodes can determine mobile or wireless communication 

[2]. 

VANETs, also known as Intelligent Transportation 

Networks (ITNs), play a vital role in Smart Transportation 

Systems (STSs). The research VANETs introduced to 

ensure road safety, passenger entertainment, and other 

related road services. Fatemidokht and Rafsanjani [3] 

characterized VANETs as a subcategory of MANETs; 

however, their architecture, testing capabilities, and 

applications differ. The research in [3, 4] also agreed that 

VANETs are a subset of MANETs where information can 

be transmitted between nearby vehicles and road 

infrastructure using Wireless Fidelity (Wi-Fi), ZigBee, 

Long-Term Evolution (LTE), and Visible Light 

Communications (VLC). Hence, one may presume that 

any VANET is a sub-form network made by applying the 

standards of MANETs to advance remote vehicle 

communication between vehicles in nearness. Therefore, 

these networks promote road safety and entertain users [3, 

5]. Today, vehicles are equipped with sensors and 

specialized gadgets to send and receive essential and real-

time information, for example, road conditions, traffic, and 

many more. VANETs support a wide range of applications. 

The research in [3] characterized two types of VANET 

applications: safety and comfort. Safety applications 

include collaborative traffic monitoring, destination route 

optimization, and collision avoidance [3]. On the other 

hand, comfort applications include weather forecasts, 

restaurants, gas stations, and hotel locations [3]. These 

applications include; electronic brake lights, platooning, 

traffic information systems, truck emergency services, and 

highway services. The qualities of these organizations 

incorporate self-association, dynamic attributes, and 

profoundly versatile nodes [3, 6].  
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The research in [3, 7−9] characterized two 

communication channels available in VANET, 

specifically, Vehicle-2-Vehicle (V2V) and Vehicle-2-

Infrastructure (V2I). Generally, VANETs utilize IEEE 

802.11p to locally uphold V2V and V2I communications 

using On-Board Units (OBUs) and Road-Side Units 

(RSUs), respectively. Vehicles use OBUs or even 

Application Units (AUs) for communication. RSUs 

transmit information to/from the Internet. Regularly, V2V 

depends on dedicated proximity communication channels; 

meanwhile, V2I depends on General Packet Radio Service 

(GPRS), Wireless Fidelity (Wi-Fi), or Worldwide 

Interoperability for Microwave Access (WiMAX) [10]. 

RSUs are Wireless Access Vehicular Environment 

(WAVE) devices located next to roads, such as an 

intersection or nearby parking spaces [3, 11]. Additionally, 

V2V maintains remote communication between vehicles 

in a direct and multi-hop manner; meanwhile, V2I 

maintains vehicle-to-RSU communications [5, 10], as 

shown in Fig. 1. These investigations employ both V2V 

and V2I to determine vehicle priority and establish the 

shortest route to the destination. The objective is to address 

the performance bottleneck and improve the QoS. 

The advantages of VANETs include increased safety, 

effective traffic management, reduced road accidents, and 

further ensuring that travelers feel comfortable by 

facilitating valuable information exchange and rapid 

decision-making via the Internet [12]. In this manner, these 

networks can be considered innovations to promote 

security-related applications [10]. Therefore, the 

deployment of these networks is based on network 

connections [13, 14]. 

In recent years, advanced Internet of Things (IoT) 

devices and vehicles on roads have been increasing [3, 9, 

13], resulting in more demand for VANET resources and 

services. However, the advanced vehicles can cause delays 

in handover and end-to-end communication, leading to 

problems such as congestion and poor Quality of Service 

(QoS) in VANETs [5]. 

Recently, nature-inspired metaheuristics and algorithms 

have been developed and widely adopted to tackle the 

abovementioned challenges. Despite their widespread use, 

these algorithms often suffer from unreliable performance, 

insufficient validation, overused comparisons, and 

immature usage and investigation procedures [15]. 

Meanwhile, most existing algorithms require high 

computational power, increasing nodes’ energy 

consumption and reducing energy efficiency. On the other 

hand, some algorithms use the traditional carry-and-

forward method when the next packet forwarder vehicle 

cannot be located. This method involves vehicles 

continuously sending data until they connect with another 

vehicle, which can cause data loss and delays. Furthermore, 

none of the existing algorithms includes a prioritization 

component. Prioritizing is crucial to ensure a certain level 

of performance during the handover and delivery 

processes. 

Therefore, this paper proposes an Intelligent 

Metaheuristic-based Handover Algorithm (IMHA) to 

improve the QoS in VANETs. IMHA defines different 

vehicle priorities and restricts the number of vehicle 

requests to process at a time. The proposed algorithm 

integrates two advancement algorithms to be specific: 

disturbance Particle Swarm Optimization (d-PSO) and Ant 

Colony Optimization (ACO). The d-PSO is a dynamic 

optimization algorithm that can adjust the priority levels of 

vehicles in real time based on environmental changes. It 

can consider vehicle speed, direction, and type to ensure 

road safety and efficient road network use. This study uses 

d-PSO to provide different priority levels for every vehicle 

node in the network. However, d-PSO is a complex 

algorithm that requires a lot of computational resources to 

implement, and this can be a disadvantage in real-time 

systems where speed and efficiency are critical. 

Conversely, ACO is a meta-heuristic algorithm that can 

find the optimal routes in a VANET based on traffic 

conditions, road conditions, and vehicle information. 

However, ACO may not consider real-time changes in the 

environment and may be unable to respond quickly to 

unexpected events such as accidents or road closures. It 

has been used to determine and make decisions on the most 

profitable path between the source and destination of each 

vehicle. This helps to eliminate significant long routes and 

thus reduce end-to-end delays. By combining the strengths 

of ACO and d-PSO, the hybrid method provides a more 

robust and dynamic solution for routing in a VANET. The 

ACO algorithm aids in providing optimal routes based on 

the available data. In contrast, the d-PSO algorithm aids in 

adjusting the priority levels in real-time to ensure road 

safety and efficient use of the road network. This results in 

improved road safety, routing efficiency, and a more 

dynamic and responsive system that can adapt to 

environmental changes and provides real-time vehicle 

updates. Furthermore, the research considered that it is not 

feasible to handle all vehicle requests simultaneously. To 

mitigate this, which contributes to congestion, we 

employed the Congestion Problem Reduction (CPR) 

algorithm to limit the number of vehicle requests to 

respond to at a time. 

Some potential advantages of the proposed IMHA are: 

• ACO and d-PSO can handle large-scale networks with 

many nodes, making them suitable for VANETs. 

• These methods can adapt to network changes, making 

them suitable for VANETs where the network 

topology is constantly changing. 

• These methods improve QoS by providing low end-

to-end delay and high packet delivery ratio, making 

them suitable for VANETs requiring a low end-to-end 

delay and high packet delivery ratio. 

• These methods have been tested and evaluated in real-

world VANETs, giving more confidence in their 

performance and robustness than others. 

The experiments comparing the proposed IMHA to the 

most advanced techniques have validated its effectiveness. 

This study used Network Simulator 2 (NS-2) to simulate 

and evaluate IMHA. The performance of IMHA was 

compared to the Adaptive Intersection Selection 

Mechanism (AISM), Efficient Geographical Source 

Routing (EGSR), and Chimp Optimization and Hunger 

Journal of Communications, vol. 18, no. 9, September 2023

590



Games Search (ChOA-HGS) [6, 15, 16]. The results 

showed that IMHA outperformed the other techniques by 

reducing handover and end-to-end delays, improving 

throughput, and reducing computation time and memory 

usage.  

The rest of the study is structured as follows. Section II 

analyzes related research. Section III examines the d-PSO 

and ACO algorithms. Section IV introduces the design and 

architecture of the system. Section V provides a discussion 

of the algorithm implementation and analyses the results. 

Finally, Section VI summarizes and discusses future 

improvements. 

II. RELATED WORKS 

In recent decades, much research has been conducted in 

the field of VANETs. Therefore, various algorithms have 

been proposed, designed, and implemented. However, 

previous research paid more attention to security, but the 

time delays and congestion issues were not well addressed.  

Sasirekha et al. [2] introduced a heuristic method to 

reduce network overhead by eliminating the worst-

performing node that transmits a copy of the message to 

the destination. In this research, ACO was used to ensure 

that routing is optimized. This leads to the correct selection 

of neighboring nodes. Route Mapping Ant Colony 

Optimization (RMAP-ACO) was proposed to ensure 

proper decision-making during route establishment and to 

adopt similar features by tracking local information and 

intermediate nodes. RMAP-ACO claims to reduce 

network overhead but does not reduce the message 

delivery rate. It also reduces data packet transmission 

delays within distributed networking environments. 

RMPACO also provides adaptive features and scalability 

in dense networks. Compared to other technologies, this 

model shows better compensation. However, their study 

found that recent studies have proposed evaluating model 

performance with machine learning algorithms.  

Goswami et al. [4] proposed a clustering algorithm that 

works well on V2V communication. The proposed 

algorithm is a hybrid clustering mechanism called Genetic 

Algorithm-Ant Colony Optimization (GA-ACO) to 

enhance the lifetime and consistency of the network 

topology. The algorithm deals with the constant changing 

of VANET environments in terms of its topology. 

Experimental evaluations show that GA-ACO clustering 

technology performs much better than ACO, MOPSO, and 

CLPSO clustering algorithms regarding network stability 

and efficiency, reducing communication overhead. 

However, further investigation is proposed into more 

extensive networks. Meanwhile, system resources 

(memory and central processor time) are utilized the least, 

so further examination is suggested.  

Fatemidokht and Rafsanjani [3] proposed and 

developed Fuzzy Ant Colony Optimization (FAnt) for 

fuzzy logic-based ACO theory in VANETs to maximize 

packet rate and minimize the end-to-end delay. This model 

was proposed depending on the features and applications 

of VANETs to ensure efficient routing. FAnt was 

considered in contrast to other protocols for routing, 

including Ad hoc On-Request Distance Vector (AODV), 

ACO, and more. The test assessment showed that FAnt 

produces an improved packet transfer rate, delay, 

throughput, routing overhead, and packet loss and thus 

performs better compared to other traditional algorithms. 

However, further assessment is proposed to improve the 

framework to support other QoS necessities (such as 

security and insurance) in highway scenarios. 

Prakash et al. [9] proposed an intelligent adaptive route 

algorithm based on QoS for vehicles in Coimbatore. This 

algorithm uses ACO and AQRV optimization in VANETs. 

This is to achieve the best intelligent route and association 

between RSUs and vehicles. The algorithm adaptively 

selects the connections on each available node, and the 

data packets are released through these connections to 

reach the destination. The algorithm was expected to meet 

QoS prerequisites and the best QoS regarding network 

connectivity, probability, the delivery rate of packets, and 

end-to-end delay. The results showed that the likelihood of 

intelligent routes can be expanded. Tracking the best route 

around the city reduces travel expenses and deferrals. 

However, an idea was made for additional examination to 

track down the level of the metropolitan populace.  

Mouhcine et al. [17] proposed another intelligent traffic 

routing and control framework, which can viably decrease 

and stay away from traffic congestion on the driver's route. 

The proposed procedure depends on the network 

architecture and is combined with the Distributed Ant 

Framework (DAS) algorithm. DAS shows better results 

during the search for the best and shortest routes. The 

whole framework depends on different innovations that 

make the interaction simple to handle and produce helpful 

outcomes. With this technique, road users can stay away 

from heavily congested routes. Exploratory assessments 

show that the recommended algorithm reduces traffic 

congestion by providing vehicles with information on 

routes with less traffic and thus reducing delays caused by 

waiting on traffic-congested routes. However, further 

exploration is suggested to implement a mobile application 

solution that users will use to drive and navigate. 

Srivastava et al. [6] proposed an algorithm called the 

Adaptive Intersection Selection Mechanism (AISM) for 

VANETs, which utilizes ACO. AISM expressed that 

establishing a consistent route between two crossing points 

rather than a long route is considered an improved solution. 

This research claimed that when sending data packets, the 

best path within two convergences with a better network 

connection guarantees the sufficiency of the route. The test 

evaluation showed that, compared to other algorithms, 

AISM provides better results. However, the authors 

proposed an additional investigation on overhead control. 

Meanwhile, network clogs were also an issue for future 

exploration. 

Gupta et al. [18] presented a new approach for efficient 

multi-hop clustering in VANETs using a prediction-based 

method and adaptive relay node selection. The proposed 

system used a prediction-based algorithm to select relay 

nodes expected to have good connectivity with other nodes 

in the network. This improved the clustering process's 

overall efficiency and reduced the number of control 

messages needed for cluster formation. The authors also 
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presented an adaptive relay node selection algorithm that 

considers the node's mobility, remaining energy, and 

position to select the best relay node. This improved the 

overall performance of the multi-hop clustering process 

and increased the network's lifetime. Simulation results 

showed that the proposed approach outperforms existing 

methods regarding network lifetime and packet delivery 

ratio. However, the proposed system was evaluated for 

very large-scale networks, so it would be beneficial to test 

it in such scenarios to assess its scalability. In addition, the 

approach was not evaluated for its security and privacy 

features. 

Mouhcine et al. [15] proposed a hybrid solution to 

tackle clustering and multi-hop routing optimization 

challenges in Underwater Wireless Sensor Networks 

(UWSNs). The method combines ChOA and HGS, Ant-

Lion Optimization (ALO) Algorithm, and Neural 

Networks (NNs). Incorporating ChOA and HGS into a 

hybrid approach enhanced the node clustering process, 

while the ALO algorithm addressed optimization issues 

and sensor selection. ALO has been utilized for 

optimization problems in various fields, such as image 

compression, feature selection, and energy optimization in 

wireless sensor networks (WSNs); however, it may not be 

the most appropriate approach for optimization problems 

that involve a large number of variables, like those found 

in VANETs. Simulation results indicated that the proposed 

hybrid ChOA-HGS algorithm outperforms traditional 

ChOA and HGS algorithms regarding energy efficiency 

and network lifespan. However, its performance in large-

scale networks remains untested and requires further 

evaluation. The method's focus on UWSNs limits its 

generalizability and potential applications to other network 

types, such as VANETs. Moreover, its security and 

privacy evaluations are also a concern. Additionally, the 

convergence time of ChOA-HGS to a good solution may 

be prolonged, which can be an issue in time-sensitive 

applications. Finally, its susceptibility to noise and 

disturbances may also limit its ability to find optimal 

solutions in certain scenarios. 

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION AND 

ANT COLONY OPTIMIZATION ALGORITHMS 

This research incorporates d-PSO and ACO to curb the 

different research gaps encountered in the existing QoS 

and VANET handover algorithms. 

A. Disturbance Particle Swarm Optimization (d-PSO) 

PSO was generally proposed to optimize continuous 

nonlinear functions [19−21]. This stochastic algorithm 

mimics the navigation and forging of a school of fish, a 

flock of birds, and more. In this algorithm, each solution 

to the problem is treated as a particle [19]. Navigation and 

forging include cohesion to ensure that particles can 

conjoin, separation to prevent them from coming too close 

to each other, and alignment to ensure that each particle 

follows the swarm [14]. The objective is to imitate an 

arbitrary pursuit in the solution space to obtain the most 

extreme value of the target [19]. This study employs a 

modified PSO known as disturbance PSO (d-PSO). It is an 

optimization algorithm that is based on the traditional PSO 

algorithm but with the addition of a disturbance term. 

Using a disturbance term in the algorithm allows the 

particles to expand their search space more extensively, 

improving their ability to find global solutions. This helps 

prevent particles from getting stuck in local optima, 

reducing the likelihood of premature convergence. 

Additionally, the disturbance term enables the particles to 

adapt to changing parameters of the optimization problem, 

making d-PSO suitable for problems with dynamic 

conditions. However, this algorithm may require fine-

tuning parameters to achieve the optimal solution, which 

can be time-consuming and may not always result in the 

best solution for VANETs. 

B. Ant Colony Optimization (ACO) 

ACO simulates the cooperation of how ants behave in 

real-time, looking for a profitable route between two points 

[22]. Naturally, ants leave a synthetic substance called a 

pheromone to mark the path between the colony and the 

food source [21−23]. Therefore, the others could follow 

the trail of the deposited pheromone. The route of higher 

concentrations of pheromone attracts more ants [19]. The 

ACO performs random route searches and converges these 

searches to a more efficient path [20] to reduce delay and 

collision problems. It can run consistently and 

continuously adjust to changes to improve the QoS of 

network routing. However, ACO may require a high 

computational power, which can result in increased energy 

consumption and reduced battery life for nodes in 

VANETs. 

IV. SYSTEM DESIGN AND ARCHITECTURE 

This section discusses the architectural design and 

introduces the integration of d-PSO and ACO in the 

proposed IMHA. Furthermore, it analyzes various system 

components and configurations to optimize QoS during 

the VANETs handover processes. 

A. System Architecture 

Fig. 1 shows the proposed VANET composed of RSUs 

and OBUs. These nodes communicate freely in the 

network, whereby each vehicle node is identified by its 

assigned address. The algorithm runs at the distribution 

layer to promote prioritization and ensure a fair 

distribution of available network resources and services. 

The proposed network architecture displays a 

distribution plan for vehicles to communicate and 

exchange critical information. It comprises three main 

parts: communicating vehicle nodes, OBUs, and RSUs. 

The vehicle nodes have OBUs for communication with 

RSUs. The OBUs are the primary communication device, 

providing the necessary processing power and memory for 

routing and data dissemination. RSUs are positioned along 

the roads to assist the vehicle nodes. To guarantee efficient 

communication, the IMHA hybrid algorithm of ACO and 

disturbance PSO operates at the distribution level. The 

ACO part finds cost-effective paths for vehicles; 

meanwhile, the PSO part prioritizes vehicles based on 

factors like speed. Another algorithm called CPR is used 
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to control the number of requests from vehicles to ensure 

efficient processing. Communication between the vehicle 

nodes and RSUs is through wireless technologies like Wi-

Fi, ZigBee, or LTE, and communication between the RSUs 

and network infrastructure is through wired connections 

like Ethernet or 3G/4G cellular networks. The architecture 

is adaptable to support changes in the network and has 

mechanisms for fault tolerance and network recovery for 

reliability. 

 

 

Figure 1. Proposed network distribution scenario. 

 

B. System Model 

The IMHA assimilates two popular techniques in the 

optimization environment, the traditional PSO modified in 

[17] and ACO proposed in [18]. Furthermore, the CPR 

algorithm is implemented to define limits regarding the 

number of vehicle demands to process in the order of 

priority at a given time. This is to guarantee QoS and save 

time and resource requirements.  

In the network, we assume that there are 𝑛 

communicating vehicles. The position of each vehicle is 

represented by (𝑥𝑖 , 𝑦𝑖). To optimize the distribution of 𝑛 

vehicles, each solution (particle) can be defined 

as (𝑥1, 𝑦1, 𝑥2,𝑦2, … 𝑥𝑛, 𝑦𝑛). This means the particle is 2𝑛-

dimensional for 𝑛 vehicles. On the other hand, the velocity 

is calculated using Eq. (1). 

𝑣𝑖𝑑(𝑡 + 1) = 𝑐0 × 𝑟𝑎𝑛𝑑𝑛()
+ 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝

𝑖𝑏𝑒𝑠𝑡
−  𝑥𝑖𝑑)
+  𝑐2  × 𝑟𝑎𝑛𝑑()  × (𝑝

𝑔𝑏𝑒𝑠𝑡

−  𝑥𝑖𝑑) 

(1) 

where 𝑐0 represents the amplitude of the disturbance. This 

model sets 𝑐1 and 𝑐2 to 1, and c0 to the number of sensors, 

sensing range, and space. The 𝑝𝑖𝑏𝑒𝑠𝑡 represents the best 

position ever found for each i-th particle and 𝑝𝑔𝑏𝑒𝑠𝑡 

represents the global best position. The 𝑟𝑎𝑛𝑑() represents 

random numbers between 0 and 1 independently. 

Meanwhile, the formula 𝑟𝑎𝑛𝑑𝑛 is a standard normal 

distribution with an average zero and the unit standard 

deviation. This unique feature lowers the risk of local 

optimization, as in the traditional PSO algorithm. This is 

because the best position and global best solution may be 

in a suboptimal position. The disturbance allows the 

particle to jump away from the local optimal position.  

On the other hand, IMHA ensures that each vehicle can 

send and receive messages to/from other vehicles through 

Eq. (2): 
𝑚n ∈ 𝑣    (2) 

where m represents each vehicle n being part of vehicles 𝑣 

communicating to share valuable information on the road. 

This information includes traffic and more.  

On the other hand, each vehicle can communicate with 

the nearest RSU, 𝑡, to establish the shortest route to the 

next RSU. This is achieved by ACO as shown in Eq. (3): 

𝑃𝑡1𝑡𝑛

(𝑟)
= {

𝜏𝑡1𝑡𝑛
∝

∑ 𝜏𝑡1𝑡𝑛
∝

𝑡𝑛∈𝑁𝑡1

(𝑟)
 𝑖𝑓 𝑡𝑛 ∈ 𝑁𝑡1

(𝑟)

0 𝑖𝑓 𝑡𝑛∄𝑁𝑡1

(𝑟)

 (3) 

where vehicle v, located anywhere, communicates with the 

nearest RSU, t1, and uses the pheromone trail τt1tn
∝  to 

calculate the probability, defined by P, to choose tn as its 

next RSU. ∝  is the degree defined to represent the 

importance of the identified pheromones. 𝑁t1

(r)
 represents 

sets of adjacent RSUs close to RSU t1. The neighborhood 

of RSU t1 has information about other RSUs to 

communicate with RSU t1 besides its predecessor RSU. 

This ensures that a vehicle does not return to the RSU that 

has been visited. Every vehicle communicates with its 

RSU to the next, in close proximity, to find the most 

profitable route from its place of departure and destination. 

ACO ensures that the nth ants' deposit ∆τr of pheromone 

on the visited arcs of the RSU. The pheromone value 

τt1tn
on the visited arc (t1, tn) is updated as shown in Eq. 

(4): 
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𝜏𝑡1𝑡𝑛
← 𝜏𝑡1𝑡𝑛

+ ∆𝜏(𝑟)                           (4) 

The probability of the arc being visited by the vehicles 

increases. This is because of the increasing pheromone. 

However, as vehicles move to the next RSUs to search for 

the shortest routes, the pheromones evaporate based on the 

relation of the arcs, as shown in Eq. (5): 

𝜏𝑡1𝑡𝑛
← (1 − 𝑝)𝜏𝑡1𝑡𝑛

;  ∀(𝑡1, 𝑡𝑛) ∈ 𝐴                 (5) 

where p ∈ (0,1) and A represent the arcs visited by any 

vehicle v to identify the cost-effective path from its origin 

to its destination. The increase in the intensity of the 

pheromone reduces delays as it helps vehicles not to take 

long paths toward their destination and, thus, improves 

path selection. Therefore, this iteration becomes a 

complete cycle that involves the movement of vehicles, 

evaporation, and pheromone deposits. This means that the 

pheromone information is updated as the vehicle reaches 

its destination, as shown in Eq. (6): 

τt1tn
= (1 − p)τt1tn

+ ∑ ∆τt1tn

(r)N
r=1                      (6) 

where p ∈ (0,1) is defined as the pheromone decay factor. 

Meanwhile ∆τt1tn

(r)
calculates the density of pheromones 

deposited on the arc on RSU t1tn  by the best node. 

Naturally, the pheromone is constantly updated to increase 

the value that is associated with what is identified as the 

most profitable routes. The pheromone on the arc t1tn by 

the best nodes is calculated as shown in Eq. (7): 

∆τt1tn

(r)
=

Q

Lr
   (7) 

where Q represents constant, and Lr represents the distance 

each vehicle travels to the destination.  

Finally, the IMHA defines limits in terms of the number 

of vehicles that can communicate with one another 

simultaneously to address congestion problems. The CPR 

algorithm aids in this by defining the number of vehicle 

nodes to communicate with each other or RSUs. Therefore, 

at most, for example, only ten vehicles can communicate 

with each other. This is done in the order of priority. 

 

Algorithm 1 Congestion Problem Reduction (CPR) 

1. INPUT: Number of vehicle requests 

2. OUTPUT: 

3. DO WHILE number of requests > 0 

4. IF the number of requests > 10 THEN 

5. DO 

6. Process these requests in priority order. 

7. Once these requests have been processed, proceed to 

the other vehicle's request.  

8. LOOP UNTIL number of requests < 11 

9. ELSE 

10. Process these requests in priority order. 

11. Until every vehicle's request is processed 

12. END IF 

13. LOOP 

 

As mentioned above, the CPR algorithm ensures that a 

predefined number of vehicle demands are processed at a 

given time in an orderly manner. This process is repeated 

to process all demands. The goal is to reduce message 

congestion and processing delays. Limiting the number of 

requests by each vehicle makes the system more scalable, 

making it suitable for large-scale VANETs. Also, limiting 

the number of requests by each vehicle reduces congestion, 

making the network more reliable and efficient. 

V. IMPLEMENTATION OF INTELLIGENT METAHEURISTIC-

BASED HANDOVER ALGORITHM 

This section discusses the implementation of IMHA. 

We also discuss and analyze the simulation results. 

Performance metrics, including throughput, end-to-end, 

handover delay, computation time, and memory usage, are 

considered in the simulation because these metrics 

significantly affect QoS during handover processes in 

VANETs. 

A. Evaluation Metrics  

• Throughput – measures the transmission between two 

nodes at a given time. 

• End-to-end Delay – measures how long the data takes 

to reach the destination. 

• Handover delay – measures the time required for 

continuous connections between providers. 

• Computation time – measures how long it takes to 

perform a computation process or task. 

• Memory usage - measures how much data is stored on 

or transferred from a device. 

B. Simulation Environment  

NS-2 Version 2.35 (NS-2.35) was used to conduct the 

simulations and generate network traffic mobility 

deployed on Windows (OSs). The simulation topology is 

illustrated as shown in Fig.2. It comprises 20 RSUs and 

100 vehicles. The IMHA was deployed at the distribution 

layer of the network. The simulation was performed 20 

times to provide accurate results. The simulation time was 

300 s. The NS-2 results are analyzed based on throughput, 

end-to-end, handover delays, computation time, and 

memory usage. The proposed IMHA was evaluated and 

compared with AISM, EGSR, and ChOA-HGS.  

Table I shows the parameters and values used during the 

simulations. 

TABLE I: SIMULATION PARAMETERS 

Parameter Value 

Communication Range 300 m 

Medium Access Control (MAC)  IEEE 802.11p 

Simulation Time 300 seconds 

Vehicle Speed 10 – 100 Km/h 

Propagation Model TwoRayGround 

Queue Type Queue/DropTail/PriQueue 

Data Packet Size 1 – 6 Mb/s 

Simulation Area 1800m x 840m 

 

Network Animator (NAM) is a tool for visualizing and 

analyzing network traffic. It is used to view the flow of 

packets between devices on a network and can help with 

troubleshooting, performance analysis, and security 

investigations. It displays information such as the source 

and destination of packets, the type of packet, and the size 

of the packet. Fig. 2 shows the NAM created to simulate 

the network used in this work. 
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Figure 2. Simulation scenario. 

C. Results and Analysis  

This section compares the results of the IMHA 

algorithm with AISM, EGSR, and ChOA-HGS to assess 

its performance. AISM and EGSR are similar in traffic 

scenarios and aim to improve network throughput, end-to-

end delay, handover delays, computation time, and 

memory usage. However, as seen in Fig. 3, all three 

algorithms, including AISM, EGSR, and ChOA-HGS, 

experience a decline in packet delivery rate due to the 

increase in routing control overhead in dynamic VANETs 

where nodes frequently move in and out of range. This 

leads to substantial routing overhead, slower 

communication, and increased delays in large-scale 

VANETs, where fast communication is critical. 

AISM and EGSR use geographic information for 

routing, which may cause increased communication 

latency and be unsuitable for low-latency applications such 

as real-time safety alerts or navigation updates. 

Additionally, these algorithms are vulnerable to security 

threats like eavesdropping, tampering, and spoofing, 

requiring robust security measures.  

On the other hand, ChOA-HGS has limited scalability 

due to its centralized approach, making it difficult to 

handle large networks and resulting in increased latency 

and decreased overall performance in large-scale VANETs. 

The central node in ChOA-HGS is a single point of failure, 

making it a security and privacy concern. 

Moreover, none of these algorithms considered 

prioritizing vehicles during handover and delivery, leading 

to poor Quality of Service (QoS). 

Despite its advantages, the ACO algorithm has a 

significant disadvantage where its convergence speed 

decreases as the number of iterations increases [24]. 

Furthermore, it has trouble with negative numbers and can 

get stuck in a stagnant phase. This issue is particularly 

pronounced in small cities with more ants. The algorithm 

also relies on local information sharing among vehicles, 

which can lead to suboptimal solutions if global 

information is unavailable. Additionally, it does not 

consider essential objectives such as security and privacy 

in VANETs. The d-PSO may also not be suitable for 

certain prioritization problems involving non-

differentiable or non-continuous objective functions and 

relies on local information sharing, resulting in suboptimal 

solutions without global information. Hence, it is essential 

to consider alternative algorithms, such as the African 

Buffalo Algorithm (ABA) and others, for future work. 

However, like any optimization algorithm, the ABA has its 

drawbacks and should be carefully considered before using 

it in practical situations. The ABA has only been 

developed and evaluated for a limited number of 

optimization issues, and its effectiveness for other problem 

types is uncertain.  

 

Figure 3. Throughput. 

Throughput refers to the rate at which data is transmitted 

between two nodes at a specific time. The proposed IMHA 

method improves the average throughput, as demonstrated 

in Fig. 3. The proposed algorithm improves throughput by 

reducing routing overhead and prioritizing network 

communication. By combining the shortest route-finding 

capabilities of ACO with the disturbance-handling 

capabilities of PSO, the hybrid algorithm can find and 

maintain efficient communication routes between vehicles 

quickly. This results in less time spent retransmitting lost 

or corrupted packets, increasing overall network efficiency 

and improving throughput. The proposed CPR algorithm 

limits the number of vehicle demands processed over time, 

reducing processing delays and ensuring that high traffic 

loads do not impact the network performance. In addition, 

the hybrid algorithm can adapt to changes in the network 

conditions more quickly and efficiently than AISM, EGSR, 

and ChOA-HGS. This results in fewer delays in 

communication and improved overall network 

performance, further contributing to increased throughput. 

In conclusion, IMHA improves the efficiency and 

reliability of communication and ensures a high level of 

QoS for the VANETs, leading to improved throughput 

compared to AISM, EGSR, and ChOA-HGS. 

The end-to-end delay measures the duration for the data 

to arrive at its final destination. The results in Fig. 4 

indicate that the proposed IMHA method has significantly 

reduced end-to-end latency compared to AISM, EGSR, 

and ChOA-HGS algorithms. The proposed algorithm 

improves end-to-end delay by combining the benefits of 

different algorithms to address routing and prioritization in 

VANETs. The ACO algorithm helps find the shortest route, 

reducing the distance data needs to travel and reducing 

end-to-end delay. The d-PSO helps prioritize the requests, 

ensuring that the most important requests are addressed 

first, reducing the delay caused by unimportant requests. 
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Limiting the number of requests by each vehicle using 

CPR reduces congestion, making the network more 

reliable and efficient and reducing end-to-end delay. 

Additionally, the proposed approach can be designed to 

handle failures and disruptions, making the network more 

reliable and reducing the delay caused by network 

disruptions. In conclusion, IMHA improves end-to-end 

delay by reducing delays caused by congestion, network 

disruptions, and unimportant requests. 

 

Figure 4. End-to-end delay. 

 

Figure 5. Handover delay. 

The handover delay measures the time necessary for 

uninterrupted connections during transitioning from one 

service provider to another. Fig. 5 shows that IMHA 

outperforms AISM, EGSR, and ChOA-HGS algorithms in 

terms of reducing handover delays. The proposed 

algorithm significantly improves handover delay in 

VANETs. The ACO algorithm helps find the shortest route 

between the source and the destination, reducing the time 

it takes for a vehicle to move from one network to another. 

The d-PSO algorithm, on the other hand, prioritizes the 

requests, ensuring that the most important ones are 

addressed first. By prioritizing the requests, the handover 

process becomes smoother and more efficient, reducing 

the delay. Additionally, the algorithm uses CPR to limit 

the number of requests by each vehicle which helps reduce 

congestion, making the network more reliable and efficient. 

The reduced congestion also minimizes the handover delay 

as fewer requests are processed simultaneously, allowing 

the vehicles to switch between networks more quickly. In 

conclusion, IMHA provides a more optimized solution, 

reducing handover delay and ensuring a more seamless 

user experience. 

 

Figure 6. Computation time. 

The computation time measures the duration required 

for a computational operation or assignment. Fig. 6 

illustrates that the proposed IMHA decreases the 

computation compared to AISM, EGSR, and ChOA-HGS 

algorithms. The proposed algorithm improves 

computation time by leveraging the strengths of ACO, d-

PSO, and CPR algorithms. As mentioned previously, the 

ACO algorithm uses a swarm intelligence approach to find 

the shortest route, reducing the time to find a solution. The 

d-PSO algorithm, on the other hand, uses particle swarm 

optimization to prioritize the requests, reducing the time 

taken to make decisions. By combining these algorithms, 

the system is able to find solutions faster and more 

efficiently, reducing computation time. Additionally, by 

limiting the number of requests by each vehicle, the system 

reduces congestion, reducing the time to process requests. 

Furthermore, using this approach, the system can be 

optimized for performance, reducing the time to find 

solutions and making it more cost-effective. All these 

factors combined contribute to a significant improvement 

in computation time. 

Memory usage, however, measures the data stored or 

moved from a device. Fig. 7 illustrates that the IMHA 

approach reduces memory usage compared to AISM, 

EGSR, and ChOA-HGS algorithms. The proposed 

algorithm helps to improve memory usage in VANETs by 

using the strengths of different algorithms. This hybrid 

approach helps reduce the memory footprint by limiting 

the amount of stored and processed data. The ACO 

algorithm is designed to find the shortest route with 

minimum memory usage. On the other hand, the d-PSO 
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prioritizes the requests to minimize the amount of data 

stored in memory. Additionally, the CPR algorithm to 

limit the number of requests by vehicles helps to reduce 

the amount of data stored in memory by restricting the 

number of requests processed. By combining these 

different algorithms, this hybrid system provides a more 

efficient and optimized solution for memory usage in 

VANETs. This helps conserve memory resources and 

improve the network's overall performance. 

 

 

Figure 7. Memory usage. 

D. Sensitivity Analysis of IMHA  

The objective of this section is to examine the 

responsiveness of the IMHA to various parameter values. 

The aim was to evaluate the efficiency of the proposed 

hybrid algorithm to identify the ideal parameters for 

optimal outcomes. The algorithm was run for several 

iterations with stopping criteria of 10% error. 

• The ACO parameters were tested by varying the 

number of ants from 10 to 100, and the results were 

analyzed. It was discovered that a higher number of 

ants led to improved performance but also resulted in 

a higher computational cost. The optimal number was 

found to be 30. The pheromone decay rate was also 

varied from 0.1 to 0.9 and analyzed, with a rate of 0.5 

being determined as the best option. Finally, the 

pheromone update rule was changed between global 

and local, and the results were evaluated. 

• The parameters for the d-PSO algorithm were 

examined by changing the population size from 20 to 

100. The results showed that increasing the population 

size enhanced the algorithm's performance but also 

increased the computational cost. The optimal 

population size was found to be 40. The number of 

particles was also adjusted from 10 to 50 and analyzed. 

The findings revealed that more particles improved 

the algorithm's performance but came at an increased 

computational cost. The optimal number of particles 

was determined to be 30. The velocity was tested from 

10 to 100, which showed that the best results were 

achieved with an initial velocity 10. 

• The problem size was determined by the variation in 

the number of nodes and edges, ranging from 10 to 50. 

The findings indicated that as the number of nodes and 

edges increased, the algorithm's performance 

improved, leading to a rise in computational cost. 

• The objective function was altered to prioritize the 

shortest distance for each vehicle. Still, the results 

indicated that the original objective function, which 

was focused on the total distance traveled by all 

vehicles, produced the best results. 

• The stopping criteria varied from 5% error to 10% 

error, and the outcome indicated that the best results 

were obtained with stopping criteria of 10% error. 

VI. CONCLUSIONS 

In this study, the authors proposed, designed, and 

implemented IMHA, a new approach to improving the 

QoS performance in VANETs. This was achieved by 

integrating ACO and d-PSO algorithms. The aim was to 

tackle performance bottlenecks related to handover delays, 

end-to-end delays, throughput, computation time, and 

memory usage. The ACO algorithm was used to determine 

the most efficient route between the source and destination 

for each vehicle on the road; meanwhile, d-PSO was 

employed to prioritize vehicles for road safety. In addition, 

the authors also implemented a CPR algorithm to process 

vehicle demands in priority order and prevent congestion 

problems. 

Experimental evaluations using NS-2 simulations 

showed that IMHA outperforms existing approaches, such 

as AISM, EGSR, and ChOA-HGS. With a throughput of 

92%, an end-to-end delay of 0.8 seconds, a handover delay 

and computation time of less than 2.0 milliseconds, and an 

average memory usage of 60%, IMHA demonstrates 

significant improvements in QoS performance. 

In conclusion, the proposed IMHA algorithm improved 

routing efficiency, road safety, system responsiveness, and 

low end-to-end delay and high packet delivery ratio, 

making it suitable for VANETs requiring a low end-to-end 

delay and high packet delivery ratio. The authors suggest 

that future research should focus on the algorithm's 

security, given the increasing reliance on the Internet of 

Things (IoT) and the widespread adoption of modern 

MAC protocols, such as 802.11ac or the latest 802.11ax. 
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