
Multicommodity Flow Reliability for Energy

Harvesting Wireless Sensor Networks

John Penaflor and Mohammed Elmorsy *

Department of Computer Science, MacEwan University, Edmonton, Canada;

Email: penaflorj2@mymacewan.ca (J.P.)

*Correspondence: elmorsym@macewan.ca (M.E.)

Abstract—This paper considers energy harvesting wireless

sensor networks (EH-WSN) with multiple sinks supporting

concurrent applications. Each application is associated with

a set of sensor nodes that generate and send traffic to the

associated application sink. Each node can relay any

application traffic toward the application sink. In addition,

each node uses an energy management unit to control the

amount of traffic the node can relay based on its available

energy. With the nodes’ energy levels fluctuations, it is

essential to quantify the network's ability to fulfill the

different applications’ quality of information and service

requirements. Therefore, a novel multicommodity flow

reliability problem (called MultiFlowRel) is formalized to

estimate the likelihood that at least a certain amount of each

application traffic is delivered to the associated application

sink. The proposed problem is proven to be #P-hard, and an

iterative bounding framework is proposed for deriving lower

bounds on the exact reliability solutions. The proposed

framework compute’s exact reliability solutions if allowed a

sufficient number of iterations. Numerical results show the

effectiveness of using the proposed solution to obtain good

lower reliability bounds and exact solutions in reasonable

running times. Furthermore, the results show examples of the

use of the proposed framework in solving some interesting

network design problems (e.g. optimal sink locations and

appropriate transmission parameters).

Keywords—energy harvesting wireless sensor network,

network reliability, energy management, multipurpose

wireless sensor networks, iterative methods, probabilistic

graphical models

I. INTRODUCTION

The use of wireless sensor networks has received

considerable preference in many applications, e.g., health

monitoring, environmental and industrial applications. A

wireless sensor network (WSN) consists of sensor nodes

with limited energy resources that sense some of interest

phenomena from the surrounding environment and send

the sensed data to one or more sink nodes in the network.

Extensive research work on WSNs has been done over the

past decade. This research is diversified and includes many

directions, such as: using localization techniques for

estimating sensor nodes’ locations (e.g. [1–4]), using

 Manuscript received December 9, 2022; revised May 26, 2023, accepted

June 20, 2023.

network deployment techniques for enhancing the wireless

sensor network quality of information and services (e.g.,

[5, 6]), using energy harvesting techniques (e.g., [7–10])

and energy provisioning techniques (e.g., [11, 12]) for

constructing WSNs with prolonged lifetime. In an energy

harvesting WSN (denoted EH-WSN), each node harvest

energy from the surrounding ambient sources (e.g.,

harvesting solar and wind energies) and use the harvested

energy to recharge its battery. In addition, each node can

use energy provisioning techniques to optimize its energy

consumption and balance the energy use among the

network nodes. Energy provisioning techniques

introduced in the literature include energy efficient routing

protocols (e.g., [11], [13–22]), energy efficient scheduling

protocols (e.g., [23]) and topology control techniques (e.g.,

[24, 25]).

As a brief discussion about some recent research work

for EH-WSNs, Nguyen et al. [26] proposed an energy-

aware routing protocol for EH-WSNs. In their work,

routing decisions are based on each node’s available

energy and distance from the sink. In addition, each node

adjusts the active/sleep scheduling of its communication

module based on its available energy level. The authors of

[27, 28], proposed energy-aware opportunistic routing

protocols for EH-WSNs. In an opportunistic routing

protocol, nodes are unaware of the network topology.

Instead, each node utilizes the broadcast nature of the

wireless medium that allows adjacent nodes to receive

copies of the node’s sent traffic. In opportunistic routing,

when a node attempts to deliver a packet to the sink, it

broadcasts its packet to its adjacent nodes. After that, one

of these adjacent nodes is selected based on some

computed priority factor to forward the received packet

toward the sink. Shafieirad et al. [27] proposed that the

priority factor for each adjacent node is calculated based

on the node’s available energy and the distance between

this node and the sink. Li et al. [28] proposed a Long short-

term memory (LSTM) solar prediction model that allows

each node to predict its harvested energy. The priority

factor of each adjacent node is estimated based on the

current node's available energy, the predicted harvested

Journal of Communications, vol. 18, no. 9, September 2023

571doi:10.12720/jcm.18.9.571-580

mailto:penaflorj2@mymacewan.ca

energy, the node distance from the sink and the packet

delivery ratio between the originating node and this node.

Another recent research direction considers WSNs

shared between multiple applications. In such a network,

WSN nodes serve multiple applications’ requests while

aiming to meet each application-defined quality of service

and information metrics. For such networks, some recent

researches aim to construct resource allocation and

network management frameworks (e.g., [29]). As a brief

review of some of the introduced work in this direction,

Yıldırım and Tatar [30] considered using middleware

server systems (MBSS) to process incoming application

requests. The authors proposed a software framework

called Firat Virtual WSN framework (FVWSN) that runs

in MBSSs, collects the uploaded client application logic

and allocates sensor nodes’ resources for serving each

application request. Delgado et al. [31] proposed an

application admission and resource allocation framework.

The proposed framework allocates network resources for

application requests while achieving the defined

applications’ sensing coverage requirements. In addition,

the proposed framework considers sensor node level

constraints (e.g., processing, energy and storage

capabilities) and network constraints (e.g., bandwidth of

communication links and routing protocols). Hajian et al.

[32] proposed a software-defined networking-based

routing protocol for achieving load balancing across sensor

nodes that serves multiple applications. Gao et al. [33]

defined a data-sharing problem between various

applications. Each application requests data sampling

intervals from sensor nodes. The requested sample

intervals can have some overlapping. The problem calls for

finding common sampling intervals between the

application requests. Therefore, the problem aims to

minimize the generated and sent traffic across the network.

The authors propose a greedy framework for solving their

defined problem.

This paper considers energy harvesting wireless sensor

networks shared between multiple applications. To

quantify the ability of such networks in fulfilling the

different applications’ quality of service and information

requirements, a novel flow reliability problem (called

MultiFlowRel) is formalized. In this problem, each

application has a set of sensor nodes and an associated sink

node. Therefore, the considered network contains multiple

sinks. Each application sensor node periodically generates

traffic and sends it to the corresponding application sink.

Each node runs independently an energy management unit

that allows the node to adjust its transmission capacity

based on its available energy. The node transmission

capacity represents the maximum amount of traffic the

node can send in a certain time interval. The problem calls

for estimating the likelihood that each application sink

node receives a certain amount of its application sensor

nodes’ generated traffic. To the best of the authors’

knowledge, the proposed work is the first to discuss a flow

reliability problem for multi-sink energy harvesting

wireless sensor networks shared between multiple

applications. As a summary of some related literature work,

Oteafy and Hassanein [34] proposed a resource-sharing

framework for wireless sensor networks shared between

various applications. Chakraborty et al. [35] consider a

network reliability problem for wireless sensor networks

with a single sink. Each node is assumed to have unlimited

transmission capacity and can be either sensing and

communicating, communicating only or failing. The

considered problem calls for estimating the likelihood that

a certain amount of traffic arrives at the sink. The authors

propose an exact algorithm for solving the considered

problem. Elmorsy and Elmallah [36] formalized a flow

reliability problem for energy harvesting wireless sensor

networks with a single sink node and a single application

utilizing the network resources. The authors propose an

iterative framework for deriving lower bounds to the exact

reliability solutions.

Below is a summary of the proposed contributions in

this paper:

(1) A novel flow reliability problem (called MultiFlowRel)

is formalized and proven to be #P-hard.

(2) An iterative framework that utilizes special structures,

known as pathsets, is proposed for deriving lower

bounds to the exact reliability solutions.

(3) A key ingredient in the proposed iterative framework

is obtaining a set of high probable pathsets. Therefore,

the optimal extension to pathset (denoted E2P)

problem is formalized to construct high probable

pathsets. The E2P problem is proven to be NP-hard.

(4) A heuristic algorithm is proposed to solve the

proposed E2P problem.

(5) The obtained numerical results show the effectiveness

of the proposed iterative framework and how it can

solve interesting network design problems.

The rest of the paper is organized as follows. Section II

formalizes the MultiFlowRel problem and introduces some

solution concepts for constructing the proposed iterative

framework. Section III presents an overview of the

proposed iterative framework. Section IV formalizes the

E2P problem and the proposed heuristic for solving this

problem. Lastly, Section V presents the obtained

numerical results.

II. PROBLEM FORMULATION

In this section, the MultiFlowRel problem is formalized.

In addition, some of the concepts used in developing a

solution are introduced.

A. System Model

An energy harvesting wireless sensor network (EH-

WSN) is considered that utilizes a time-slotted model

where time is divided into equal time slots. In each time

slot, each node uses a flow-based energy management

scheme to maximize the node’s lifetime. At the start of

each time slot, the energy management unit of each node

independently estimates its energy level and decides the

maximum number of packets the node can transmit during

this time slot. A node's chosen maximum allowed number

Journal of Communications, vol. 18, no. 9, September 2023

572

L

L

L

L

of transmitted packets includes the node’s generated

packets and the relayed packets received from other nodes.

A node a can communicate with node b if b lies within a's

transmission range.

To model a node’s behaviour, each node n is assumed

to exist in one of the possible energy states (denoted 𝐸𝑆 =
 {𝑠1, 𝑠2,· · · , 𝑠𝑚}) in each time slot based on its energy level.

Each energy state 𝑠𝑖 for each node n has a corresponding

maximum number of transmitted packets denoted

𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖) that includes both node n generated and

relayed packets. For example, a node n exists in state 𝑠1 in

a time slot if the node’s energy level is within [80%, 100%]

of its energy stored capacity with a corresponding

𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠1) = 10 packets that n can, at most, transmit

during this time slot. The probability that node n exists in

an energy state 𝑠𝑖 is denoted 𝑝(𝑛, 𝑠𝑖) . Therefore,

∑ 𝑝(𝑛, 𝑠𝑖) = 1𝑚
𝑖=1 where m is the number of possible

energy states for node n. Such probabilities can be

estimated by running experiments for the considered

network over a WSN simulator where time is divided into

suitable time slots. Then for each node n and each possible

state 𝑠𝑖, 𝑝(𝑛, 𝑠𝑖) is estimated as the number of time slots,

in which node n exists in state 𝑠𝑖 , divided by the total

simulation time.

The considered EH-WSN is assumed to be shared

between a set of applications denoted 𝐴𝑃𝑃 = {𝑎𝑝𝑝1,
𝑎𝑝𝑝2, … , 𝑎𝑝𝑝𝑘}. Each application 𝑎𝑝𝑝𝑖 reserves a set of

sensor nodes (denoted 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)) and a sink node

(denoted 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖)). Each sensor node can be at

most associated with a single application. However, some

nodes may not be associated with any application. Each

sensor node n, associated with application 𝑎𝑝𝑝𝑖, generates

an amount of data packets denoted 𝑔𝑑𝑎𝑡𝑎(𝑛), and sends

them to the application sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖). Each

node in the network (including applications’ associated

nodes and sinks) can relay traffic from any source node

toward its destination sink node in each time slot. To

satisfy each application 𝑎𝑝𝑝𝑖 requirements, at least a

specified number (denoted 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖)) of data packets

should be delivered from 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) nodes to 𝑎𝑝𝑝𝑖

sink node. The following formalizes the proposed

MultiFlowRel problem.

Definition (the MultiFlowRel problem): Let an EH-

WSN represented by a probabilistic directed graph 𝐺 =
 (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠, 𝐸) that uses a time slotted model and is

shared between a set of applications 𝐴𝑃𝑃 = {𝑎𝑝𝑝1,· · ·
 , 𝑎𝑝𝑝𝑘}. In each time slot, each node 𝑛 ∈ (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠)

exists in an energy state 𝑠𝑖 ∈ 𝐸𝑆 set of possible energy

states with probability 𝑝(𝑛, 𝑠𝑖) where 𝑛 can transmit at

most 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖) packets. Each application 𝑎𝑝𝑝𝑖 has a

set of associated nodes denoted 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) ⊂ 𝑉

and an associated sink denoted 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) ∈ 𝑆𝑖𝑛𝑘𝑠.

In each time slot, each node 𝑛 ∈ 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)

generates 𝑔𝑑𝑎𝑡𝑎(𝑛) packets to be transmitted to

𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) . The problem calls for finding the

probability denoted 𝑀𝐹𝑅𝑒𝑙(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃,
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) that the network is in a state where

for each application 𝑎𝑝𝑝𝑖 , at least a defined amount

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) of data packets are delivered from

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖).

Example 1: Fig. 1 shows an instance of the

MultiFlowRel problem where the network is shared

between 2 applications (denoted 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2) with the

following assumptions:

• The first application has sensor nodes

(𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1)) 8 and 9. Also, its sink node

(𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1)) is 1 and 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) = 10. Nodes 8

and 9 generate 5 and 6 data packets in each time slot.

• The second application has sensor nodes

(𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2)) 3 and 6. Also, its sink node

(𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2)) is 7 and 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝2) = 4 .

Nodes 3 and 6 generate an equal amount of data

packets 𝑔𝑑𝑎𝑡𝑎(3) = 𝑔𝑑𝑎𝑡𝑎(6) = 4.

• 𝐸𝑆 = {𝑠ℎ𝑖𝑔ℎ, 𝑠𝑙𝑜𝑤, 𝑠𝑓𝑎𝑖𝑙}

• Each node 𝑛 ∈ (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠) has the following

states’ information: {(𝑝(𝑛, 𝑠ℎ𝑖𝑔ℎ) =
0.25, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠ℎ𝑖𝑔ℎ) = 16), (𝑝(𝑛, 𝑠𝑙𝑜𝑤) =
0.5, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑙𝑜𝑤) = 8), (𝑝(𝑛, 𝑠𝑓𝑎𝑖𝑙) =
0.25, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑓𝑎𝑖𝑙) = 0)}.

Figure 1. An instance of the MultiFlowRel problem.

Theorem 1. MultiFlowRel is #P-hard

Proof. AboElFotoh and Colbourn [37] shows that the

two-terminal reliability problem (2REL) is #P-Complete

even if it is restricted to partial grid networks with equal

nodes’ communication ranges and operating probabilities.

An instance of the 2REL problem consists of a

probabilistic graph 𝐺 = (𝑉, 𝐸) that contains two distinct

vertices s and t. Each vertex 𝑣 ∈ 𝑉 has an operating

probability p. The 2REL problem calls for computing the

probability (denoted 𝑅𝑒𝑙(𝐺, 𝑠, 𝑡)) that the network 𝐺 is in

a state with at least one operating path from s to t. To prove

that the MultiFlowRel problem is #P-hard, a polynomial

time reduction from any instance (𝐺, 𝑠, 𝑡) of the 2REL

problem to an instance

(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) of the

MultiFlowRel problem is proposed. The reduction works

as follows:

Journal of Communications, vol. 18, no. 9, September 2023

573

L

L

(1) Create the graph 𝐺 = (𝑉, 𝐸) of the MultiFlowRel

instance with all vertices and edges of the 2REL

problem instance graph.

(2) For each vertex 𝑣 ∈ 𝑉 of the MultiFlowRel instance,

create two possible energy states with the following

capacity-probability pairs: (1, 𝑝) and (0, 1 − 𝑝)

where 𝑝 is the node operating probability in the 2REL

instance.

(3) For node 𝑠 in the constructed of MultiFlowRel

problem, set 𝑔𝑑𝑎𝑡𝑎(𝑠) to 1.

(4) For each other node 𝑛 ≠ 𝑠 , set 𝑔𝑑𝑎𝑡𝑎(𝑛) = 0.

(5) Create an application (denoted 𝑎𝑝𝑝1) in the

MultiFlowRel instance with the following information:

• 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) = {𝑠}

• 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1) = {𝑡}

• 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) = 1

The proof follows since 𝑅𝑒𝑙(𝐺, 𝑠, 𝑡) =

 𝑀𝐹𝑅𝑒𝑙(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞).

B. Solution Concepts

Here, the solution concepts used in the proposed

iterative framework are presented. These concepts include:

• Network State. In a network state, each node is

assigned a state. Note that, for a network of size 𝑁 nodes

where each node has 𝑁𝐸𝑆 possible energy states, the

number of possible network states is (𝑁𝐸𝑆)𝑁 states. For

example, if a network contains 6 nodes where each node

has 3 possible states, the total number of possible

network states is 36 states.

• Network Configuration. In a network configuration

(denoted as C), some nodes (but not necessary all) are

assigned states. The probability that a configuration C

arises is 𝑃𝑟(𝐶) = ∏ 𝑝(𝑛, 𝑠𝑖)(𝑛,𝑠𝑖)∈𝐶 where (𝑛, 𝑠𝑖) ∈ 𝐶.

Two network configurations are statistically disjoint

(abbreviated as s-disjoint) if a node exists in both

configurations with different states.

Example 2. If 𝐶1 = {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠𝑙𝑜𝑤)} and 𝐶2 =

 {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠ℎ𝑖𝑔ℎ)} , then 𝐶1 and 𝐶2 are s-disjoint

configurations as node 2 exists in 𝐶1 and 𝐶2 with different

states. Thus, Pr(𝐶1 ∪ 𝐶2) = Pr(𝐶1) + Pr(𝐶2).

• Pathset. a MultiFlowRel pathset is an operating

configuration where for each application 𝑎𝑝𝑝𝑖, at least

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) data packets are delivered from

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) sink node.

Example 3. For the MultiFlowRel instance in Fig. 1,

each node has three possible energy states

(𝑠ℎ𝑖𝑔ℎ, 𝑠𝑙𝑜𝑤, 𝑠𝑓𝑎𝑖𝑙) with the following transmission

capacities (16, 8, 0), respectively. The configuration 𝐶 =

{(9, 𝑠ℎ𝑖𝑔ℎ), (8, 𝑠𝑙𝑜𝑤), (6, 𝑠ℎ𝑖𝑔ℎ), (5, 𝑠ℎ𝑖𝑔ℎ), (4, 𝑠ℎ𝑖𝑔ℎ),

(1, 𝑠ℎ𝑖𝑔ℎ), (7, 𝑠ℎ𝑖𝑔ℎ)} is a pathset since it guarantees that

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) = 10 data packets are delivered from

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1) sink, and

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝2) = 4 data packets are delivered from

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2) nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2) sink.

The main objective of the proposed iterative framework

is to generate a set of s-disjoint pathsets and use it to derive

lower bounds of the exact reliability solutions.

III. OVERVIEW OF THE ITERATIVE FRAMEWORK

The proposed iterative framework generates a set of s-

disjoint pathsets (denoted P) and uses them to derive

lower bounds (denoted LBs) to the exact reliability

solutions. Furthermore, the proposed framework

compute’s exact reliability solutions if sufficient iterations

are allowed to generate a maximal set of s-disjoint

pathsets. To generate a set of s-disjoint pathsets, the

proposed framework uses the factoring method introduced

in [38] to generate s-disjoint configurations from an input

configuration. The framework starts by generating an

empty configuration, extending it to a high probable

pathset and marking the obtained pathset as unprocessed.

Then, in each iteration, the framework selects the highest

probable unprocessed pathset generated but not used in the

previous iterations to generate other s-disjoint

configurations. The framework then marks the selected

pathset as processed and uses it to generate s-disjoint

configurations. Lastly, the framework extends the

generated configurations (if possible) to pathsets and

marks the generated pathsets as unprocessed. The

framework terminates after a defined number of iterations

(denoted 𝑁𝐼𝑇), or there is no unprocessed pathset to be

processed. Lastly, the framework uses the generated set of

s-disjoint pathsets (P) to drive lower bounds to the

reliability solutions using the following equation:

∑ Pr(𝑃𝑖) ≤ 𝑀𝐹𝑅𝑒𝑙

𝑃𝑖∈𝑃

where Pr(𝑃𝑖) is the probability of pathset 𝑃𝑖.

A key component in the proposed framework is how

to extend an input configuration to a high probable

pathset which is discussed in the next section.

IV. OPTIMAL EXTENSION TO PATHSET

This section formalizes the optimal extension to pathset

(denoted E2P) problem. In addition, a heuristic algorithm

is presented to solve this problem.

A. E2P Problem Definition

Given an instance (𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃,
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) of the MultiFlowRel problem and a

configuration C, the problem calls for finding a

configuration 𝐶𝑛𝑒𝑤 such that: (1) 𝐶 ∪ 𝐶𝑛𝑒𝑤is a pathset, (2)

and 𝐶 ∪ 𝐶𝑛𝑒𝑤 are node disjoint, and (3) Pr(𝐶 ∪ 𝐶𝑛𝑒𝑤) is

as high as possible.

Theorem 2. E2P problem for MultiFlowRel problem is

NP-hard.

Proof. To prove that E2P for MultiFlowRel problem is

NP-hard, a reduction from the Exact Cover by 3 sets

(denoted X3C) problem to the formulated E2P problem is

proposed. The X3C problem [39] is an NP-complete

Journal of Communications, vol. 18, no. 9, September 2023

574

problem. An instance of the X3C problem has two inputs:

a set X of elements and a set of subsets Y. Each subset in Y

contains exactly 3 elements of X. The size of the set X is

3q, where q is a positive integer value. The X3C problem

asks whether Y contains a collection Y’ of q subsets from

Y such that each element 𝑥 ∈ 𝑋 occurs exactly in one

subset of Y’.

The reduction from the 𝑋3𝐶(𝑋, 𝑌) instance to the

proposed 𝐸2𝑃(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑝, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡,
𝐾𝑟𝑒𝑞, 𝑐) problem instance works as follows:

(1) For every element x ∈ X, create a node x in the E2P

instance with the following information:

• 𝑔𝑑𝑎𝑡𝑎(𝑥) = 1

• two possible energy states with the following

transmission capacities (1, 0) and probabilities

(𝑝𝑟𝑜𝑏, 1 – 𝑝𝑟𝑜𝑏) respectively where prob is a

real value and 0 < 𝑝𝑟𝑜𝑏 < 1

(2) For every subset 𝑦 ∈ 𝑌, create a node 𝑦 in the E2P

instance with the following information:

• 𝑔𝑑𝑎𝑡𝑎(𝑦) = 0

• two possible energy states with the following

transmission capacities (3, 0) and probabilities

(𝑝𝑟𝑜𝑏, 1 – 𝑝𝑟𝑜𝑏), respectively

(3) Create an edge (x, y) in the E2P instance if 𝑥 ∈ 𝑦 in

the 𝑋3𝐶(𝑋, 𝑌) instance. Therefore, each node y has

exactly 3 children.

(4) Create a node (denoted β) with 𝑔𝑑𝑎𝑡𝑎(𝛽) = 0 and

one possible energy state with transmission capacity

= 3𝑞 packets and probability = 1 in the E2P instance.

(5) For each node y ∈ Y, create an edge (y, β)

(6) Create an application (denoted 𝑎𝑝𝑝1) in the E2P

instance with the following information:

• 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) contains every node x that

corresponds to an element in X in the X3C(X, Y)

instance.

• 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1) = 𝛽

• 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) = 3𝑞

(7) Create an empty configuration C of the E2P instance.

Each node y ∈ Y has exactly 3 children. In addition, all

X nodes need to deliver their traffic to β. Therefore, the

highest probable path set, that can be found if exists, has a

probability (𝑝𝑟𝑜𝑏)4𝑞 since all X nodes should be assigned

a state with transmission capacity = 1 and at least q nodes

of Y nodes should be assigned a state with transmission

capacity = 3. Therefore, the X3C problem instance has a

solution if the reduced instance of the E2P problem has a

solution with Pr(𝐶 ∪ 𝐶𝑛𝑒𝑤) ≥ (𝑝𝑟𝑜𝑏)4𝑞 .
The next subsection describes the proposed heuristic

algorithm for solving the E2P problem.

B. E2P Algorithm

Here, the proposed heuristic algorithm is presented for

solving the E2P problem. As an overview, the proposed

E2P algorithm works through the following phases:

P1) Transforming the E2P instance to an instance of the

min cost multicommodity flow (denoted MCMCF)

problem [40]

P2) Solving the constructed MCMCF problem instance

P3) Processing the MCMCF problem solution and

constructing 𝐶𝑛𝑒𝑤

The proposed E2P algorithm considers the MCMCF

problem with integer flows. The multicommodity flow

problem with integer flows is shown in [39] to be NP-

complete problem. An instance of the MCMCF problem

[40] consists of a directed flow graph 𝐺𝑓𝑙𝑜𝑤(𝑉, 𝐸) and a

set of commodities K. Each edge (𝑎, 𝑏) ∈ 𝐸 has an

integer capacity 𝑢(𝑎, 𝑏) and a cost 𝑐(𝑎, 𝑏) . Each

commodity 𝐾𝑖 ∈ 𝐾 is identified by the tuple (𝑔𝑖 , 𝑡𝑖 , 𝑑𝑖)

where 𝑔𝑖 and 𝑑𝑖 are the source and destination

respectively of commodity 𝐾𝑖 , and 𝑑𝑖 is the integer

demand that needs to be transmitted from 𝑔𝑖 to 𝑡𝑖 . The

MCMCF problem calls for determining for each edge

(𝑎, 𝑏) ∈ 𝐸 and each commodity 𝐾𝑖 ∈ 𝐾, the amount of

flow (denoted 𝑓𝑖(𝑎, 𝑏)) from commodity 𝐾𝑖 that needs to

be transmitted through (a, b) edge such that:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑐(𝑎, 𝑏) × ∑ 𝑓𝑖(𝑎, 𝑏))𝐾𝑖∈𝐾(𝑎,𝑏)∈𝐸 (1)

∑ 𝑓𝑖(𝑎, 𝑏) ≤ 𝑢(𝑎, 𝑏) 𝐾𝑖∈𝐾 for ∀(𝑎, 𝑏) ∈ 𝐸 (2)

For ∀𝑎 ∈ 𝑉, ∀𝐾𝑖 ∈ 𝐾

∑ 𝑓𝑖(𝑎, 𝑏)𝑏∈𝑉 − ∑ 𝑓𝑖(𝑏, 𝑎) {
𝑑𝑖 𝑎 = 𝑔𝑖

−𝑑𝑖 𝑎 = 𝑡𝑖

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑏∈𝑉 (3)

∀fi(a, b) ∈ 𝑍+ ∪ {0} (4)

Eq. (1) represents the objective function of the MCMCF

problem, which is minimizing the total cost of delivering

all commodities to their corresponding destinations. Eq.

(2) states the capacity constraint where the total

transmitted flow through an edge should not exceed the

edge capacity. Eq. (3) states the flow conservation

constraint. For each commodity, the difference between

the amount of commodity flow leaving a node and the

amount of commodity flow entering this node should be 0

except for this commodity's source and destination nodes.

Eq. (4) enforces that the obtained solutions are non-

negative integers.

Below, the details for each phase of the proposed E2P

algorithm are discussed:

(P1) Transforming 𝐸2𝑃(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑝,
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞 , 𝐶) instance to MCMCF (𝐺𝑓𝑙𝑜𝑤 , 𝐾)

instance

(1) For each node/state pair (𝑎, 𝑠𝑖) ∈ 𝐶 , create in

𝐺𝑓𝑙𝑜𝑤 two nodes (denoted 𝑎𝑖𝑛 and 𝑎𝑜𝑢𝑡). If

𝑐𝑎𝑝𝑜𝑢𝑡(𝑎, 𝑠𝑖) > 0, add an edge (𝑎𝑖𝑛, 𝑎𝑜𝑢𝑡) with cost

= 0 and capacity = 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖).

(2) For each node 𝑏 ∈ 𝐺 and 𝑏 ∉ 𝐶 (free node):

• Create a set 𝐸𝑆(𝑏) that contains all possible energy

states of b ordered ascendingly based on their

transmission capacities. Therefore, if 𝑠𝑖 and 𝑠𝑖+1 ∈

ES, then 𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖) < 𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖+1).

Journal of Communications, vol. 18, no. 9, September 2023

575

• Create two nodes 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤.

• For each energy state 𝑠𝑖 ∈ 𝐸𝑆(𝑏) with a

transmission capacity 𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖) > 0 , create an

edge (𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡) with the following parameters:

cost = ⌈−1000 log (p(b, si))⌉ (5)

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = {
𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖) 𝑖 = 1

𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖) − 𝑐𝑎𝑝_𝑜𝑢𝑡(𝑏, 𝑠𝑖−1) 𝑖 > 1

(6)

The cost function Eq. (5) assigns lower costs for

node/state pairs with higher probabilities. Therefore,

node/state pairs with higher probabilities are given more

preference while extending the input configuration C to a

pathset. For each node 𝑏 ∉ 𝐶, the capacity function Eq.

(6) ensures that the total capacity of all edges between

𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 is equal to the maximum transmission

capacity of node b in its energy states.

(1) For each edge (𝑎, 𝑏) ∈ 𝐺, create an edge (𝑎𝑜𝑢𝑡 , 𝑏𝑖𝑛)

in 𝐺𝑓𝑙𝑜𝑤 with cost = 0 and capacity = ∞.

(2) For each application 𝑎𝑝𝑝𝑖 in the E2P instance:

• Create a node 𝛽𝑖 in 𝐺𝑓𝑙𝑜𝑤.

• For each node 𝑛 ∈ 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖), create an

edge (𝛽𝑖 , 𝑛𝑖𝑛) in 𝐺𝑓𝑙𝑜𝑤 with cost = 0 and capacity

= 𝑔𝑑𝑎𝑡𝑎(𝑛).

• Create a commodity 𝐾𝑖 in the MCMCF instance

with source = 𝛽𝑖, destination = 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) in

and demand = 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖)

(P2) Solving the constructed MCMCF problem instance

The constructed MCMCF instance can be solved using

one of the integer programming methods [41]. The E2P

algorithm uses the Gurobi optimizer [42] to solve the

constructed instance. The Gurobi optimizer uses the

branch and cut method [41] for solving the formulated

MCMCF problem.

(P3) Processing the MCMCF problem solution and

constructing 𝐶𝑛𝑒𝑤

After solving the constructed MCMCF instance, the

E2P algorithm does the following:

(1) If the constructed MCMCF problem has no solution,

the E2P algorithm terminates as the input

configuration C can’t be extended to a pathset.

(2) Otherwise, the E2P algorithm creates an empty

configuration 𝐶𝑛𝑒𝑤. Then, for each node 𝑏 ∉ 𝐶 with

non-zero total flow from 𝑏𝑖𝑛 to 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤:

• Select the highest probable state 𝑠𝑚𝑎𝑥 from the

possible energy states of node b such that

𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑚𝑎𝑥) ≥ ∑ 𝑓𝑖(𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡)𝐾𝑖∈𝐾 where

∑ 𝑓𝑖(𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡)𝐾𝑖∈𝐾 is the total amount of flow

transferred from 𝑏𝑖𝑛 to 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤

• Add the node/state pair (𝑏, 𝑠𝑚𝑎𝑥) to 𝐶𝑛𝑒𝑤.

The constructed 𝐶𝑛𝑒𝑤 is the required extension to

configuration C such that 𝐶 ∪ 𝐶𝑛𝑒𝑤 is a pathset.

Example 4. In example 1, consider an input

configuration 𝐶 = {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠𝑓𝑎𝑖𝑙), (4, 𝑠ℎ𝑖𝑔ℎ),

(5, 𝑠𝑓𝑎𝑖𝑙), (7, 𝑠ℎ𝑖𝑔ℎ)}:

Phase 1 of the E2P algorithm constructs the MCMCF

instance with two commodities 𝐾1 = (𝛽1, 1𝑖𝑛, 10) and

𝐾2 = (𝛽2, 7𝑖𝑛, 4) . 𝐺𝑓𝑙𝑜𝑤 of the MCMCF instance is

presented in Fig. 2, where the capacity/cost pair is

presented on each edge. Phase 2 solves the constructed

MCMCF instance. Phase 3 investigates the free nodes

{3, 6, 8, 9} with non-zero flow in the MCMCF instance:

• Node 6 has a total flow of 4 units transferred from 6𝑖𝑛

and 6𝑜𝑢𝑡 . The highest probable state with enough

capacity to transfer this flow is 𝑠𝑙𝑜𝑤 with capacity = 8.

Therefore, the pair (6, 𝑠𝑙𝑜𝑤) is added to 𝐶𝑛𝑒𝑤.

• Node 9 has a total flow of 9 units. Therefore, the

node/state pair (9, 𝑠ℎ𝑖𝑔ℎ) is added to 𝐶𝑛𝑒𝑤.

• Node 8 has a total flow of 14 units. Therefore, the

node/state pair (8, 𝑠ℎ𝑖𝑔ℎ) is added to 𝐶𝑛𝑒𝑤.

The obtained 𝐶𝑛𝑒𝑤 = {(6, 𝑠𝑙𝑜𝑤), (8, 𝑠ℎ𝑖𝑔ℎ), (9, 𝑠ℎ𝑖𝑔ℎ)}

which satisfies that 𝐶 ∪ 𝐶𝑛𝑒𝑤 is a pathset.

Figure 2. An example for 𝐺𝑓𝑙𝑜𝑤 of a constructed MCMCF problem.

V. NUMERICAL RESULTS

This section presents the numerical results that show

the performance of the proposed framework and its use in

solving interesting network design problems. The

proposed framework is implemented in C++ using STL

(Standard Template Library) classes and Gurobi

Optimizer [42] for solving integer linear programming

problems. An Intel(R) Xeon(R) Gold 6148 CPU @

2.40GHz server with 395 GBytes of memory is used. The

experiments' maximum recorded memory size for running

the E2P algorithm is about 10 megabytes. The length of

the documented framework code is about 1950 lines.

The experiments are conducted on a 𝑊 × 𝐿 grid

deployed networks. Each node’s coordinates is denoted (x,

y) where x = 0, 1, . . . , L − 1 and y = 0, 1, . . . ,W − 1. Each

node has 𝑁𝐸𝑆 possible energy states with the following

transmission capacities {0,
𝑀𝐴𝑋𝐶𝐴𝑃

𝑁𝐸𝑆−1
,

2×𝑀𝐴𝑋𝐶𝐴𝑃

𝑁𝐸𝑆−1
, . . .,

𝑀𝐴𝑋𝐶𝐴𝑃} where MAXCAP is varied during the

experiments. Two applications (denoted 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2)

share the network resources. For 𝑎𝑝𝑝1 , the application

sensor nodes (𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1)) are the right-most

column nodes except the bottom right corner node. The

bottom left corner node is the sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1).

For 𝑎𝑝𝑝2, the application sensor nodes (𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2))

are the top row nodes except the top right corner node. The

sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2) is the bottom right corner node.

Each application sensor node generates 12 data packets

Journal of Communications, vol. 18, no. 9, September 2023

576

every time slot. The framework’s default number of

allowed iterations (denoted 𝑁𝐼𝑇) is 5000.

A. Exact Reliability Computations.

This set of experiments aims to investigate the effect of

varying the network size and 𝑁𝐸𝑆 on the running time of

the proposed framework and the number of generated

configurations (denoted 𝑁𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) while computing

exact reliability solutions. The experiments are conducted

on 𝑊 × 𝐿 grid deployed networks. Each node has a

transmission range of 1.7 units and 𝑁𝐸𝑆 possible energy

states with MAXCAP = 24 and equal probabilities.

Therefore, if NES = 3, the possible transmission

capacities associated with the energy states are 0, 12 and

24 packets/slot. For each application 𝑎𝑝𝑝𝑖 ,

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) is set to half of the traffic generated by

𝑎𝑝𝑝𝑖 sensor nodes (𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)). Table I shows the

obtained results for different network sizes where 𝑁𝐸𝑆 =
 3. Table II shows the obtained results while varying 𝑁𝐸𝑆

for a 3×4 grid deployed network. The results in both

tables show that:

• The number of generated network configurations

(𝑁𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) by the proposed framework

while computing exact solutions is much less than

the number of possible network states required by a

brute force algorithm to obtain these solutions.

• Increasing the network size and 𝑁𝐸𝑆 increases the

running time of the proposed framework for obtaining

exact solutions. The main reason is that more network

configurations need to be processed, and the time

required to run the E2P function for each generated

configuration also increases.

TABLE I: EFFECT OF INCREASING NETWORK SIZE WITH NES = 3

Network
Size

Nconfigurations Number
of Possible
Network
States

Running
Time
(Seconds)

2×2 31 34 0.294325

2×3 87 36 0.807948

3×3 1191 39 12.027376

3×4 11631 312 123.256963

4×4 209691 316 2515.948289

TABLE II: EFFECT OF VARYING 𝑁𝐸𝑆 NETWORK FOR 3×4 GRID

DEPLOYED

𝑁𝐸𝑆 Nconfigurations Number
of Possible
Network
States

Running
Time
(Seconds)

2 73 212 0.355533

3 11631 312 123.256963

4 192595
412 648.017521

C. Effect of Varying Network Size on the Obtained

Reliability Bounds

This set of experiments investigates the effect of varying

the network size and the number of allowed iterations (𝑁𝐼𝑇)

for the proposed framework on the obtained reliability

lower bounds. The experiments are performed on 𝑊 × 𝑊

grid deployed networks where each node has a

transmission range of 1.7 units. Each non-sink node has 3

possible energy states with associated transmission

capacities (0, 12, 24) and probabilities (0.25, 0.25, 0.5),

respectively. Sink nodes have one energy state with

probability = 1 and a transmission capacity of 24 packets

per slot. For each application 𝑎𝑝𝑝𝑖, 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) is set to a

quarter of the total traffic generated by application nodes

(𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)).

Results in Fig. 3 show that:

• Increasing the network size decreases the obtained

reliability bounds as application sensor nodes become

farther from their associated application sinks.

Therefore, more nodes need to be included in the

constructed pathsets with certain states, which

decreases the probability of each obtained pathset.

• The gaps between the obtained bounds for the same

network size decrease as 𝑁𝐼𝑇 increases. In addition,

the behaviour of the obtained curves for different

𝑁𝐼𝑇 is similar. This shows the effectiveness of the

proposed framework in obtaining good reliability

bounds in a small number of iterations. In addition,

this motivates the use of these bounds for solving

interesting network design problems.

Figure 3. Effect of varying network size and 𝑁𝐼𝑇 .

D. Effect of Varying Transmission Parameters on the

Obtained Reliability Bounds

This set of experiments investigates the effect of

varying each node's transmission range and capacity on

the obtained reliability bounds. The experiments are

conducted on 𝑎 6 × 6 grid deployed network. Each node

has a transmission range 𝑟𝑐𝑜𝑚, which varies during the

experiments. Each non-sink node has 3 possible energy

states with associated transmission capacities

(0,
𝑀𝐴𝑋𝐶𝐴𝑃

2
, 𝑀𝐴𝑋𝐶𝐴𝑃) and probabilities (0.25, 0.25, 0.5),

respectively. MAXCAP is varied during the experiments.

Each sink node has one possible energy state with

probability 1 and transmission capacity MAXCAP packets

per slot. 𝐾𝑟𝑒𝑞 is set to 15 for each application.

The results in Fig. 4 show that increasing transmission

range (𝑟𝑐𝑜𝑚) and capacity increases the obtained reliability

bounds. The main reason is that increasing the

 0

 0.2

 0.4

 0.6

 0.8

 1

2x2 3x3 4x4 5x5 6x6 7x7

M
F
R
e
l

(
L
B
)

Network Size

NIT = 1000
NIT = 5000
NIT = 10000
NIT = 30000

Journal of Communications, vol. 18, no. 9, September 2023

577

transmission range and capacity decreases the number of

relay nodes required to deliver the traffic from application

sensor nodes to their application sinks. Such results are

important for network designers to choose node’s

transmission parameters that achieve at least certain

reliability values.

Figure 4. Effect of varying transmission parameters

E. Optimal Deployment for Application Sinks

This experiment set shows how the proposed

framework can be used to solve another network design

problem. The considered problem calls for choosing the

best sink location for each application among candidate

locations to maximize reliability. The experiments are

conducted on 6 × 6 grid deployed networks where each

node has a transmission range of 1.7 units.

1) Known traffic sources

In this set of experiments, each application sensor node

generates 12 data packets every time slot. Each non-sink

node has three possible energy states with associated

transmission capacities (0, 12, 24) and probabilities

(
1−𝑝𝑚𝑎𝑥𝑐𝑎𝑝

2
 ,

1−𝑝𝑚𝑎𝑥𝑐𝑎𝑝

2
 , 𝑝𝑚𝑎𝑥𝑐𝑎𝑝) , respectively. 𝑝𝑚𝑎𝑥𝑐𝑎𝑝

is varied during the experiments. Each sink node has one

possible energy state with probability 1 and transmission

capacity 24. Applications 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 have 5

candidate pairs of sinks’ locations with coordinates

((𝑖, 𝑖), (5 − 𝑖, 𝑖)) where (𝑖, 𝑖) and (5 − 𝑖, 𝑖) are the

candidate locations for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 sinks respectively;

and 𝑖 ∈ [0, 4]. 𝐾𝑟𝑒𝑞 is set to 15 for each application.

Results in Fig. 5 show that the optimal sinks’ locations

for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 are (4, 4) and (1, 4), respectively. Fig.

6 shows for each candidate pair of sink locations the

number of application sensor nodes in each breadth-first

search (BFS) layering from their corresponding

application sink nodes. Placing 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 sinks in

locations (4, 4) and (1, 4) allows application sensor nodes

to have better BFS layering distribution from their

corresponding sinks. Therefore, the number of required

relay nodes for forwarding at least the required 𝐾𝑟𝑒𝑞

packets decreases, increasing the obtained reliability

solutions.

Figure 5. Effect of varying application sinks' locations with known

traffic sources

Figure 6. Application sensor nodes layering distribution from their sink

nodes for known traffic source experiments

2) Random traffic sources

In the second set of experiments, each application

is associated with more sensor nodes. The sensor nodes

associated with 𝑎𝑝𝑝1include the top row and rightmost

column nodes except corner nodes. The sensor nodes

associated with 𝑎𝑝𝑝2 include the bottom row and left-

most column nodes except corner nodes. Only a known

percentage of application sensor nodes (denoted

𝑃𝑠𝑜𝑢𝑟𝑐𝑒) generate traffic for each application, while the

rest do not. The choice of application sensor nodes to

generate traffic is random, where each chosen sensor

node generates 12 data packets. For each application,

𝐾𝑟𝑒𝑞is set to the total amount of traffic generated by the

application sensor nodes. Each non-sink node has three

possible energy states with transmission capacities (0,

24, 48) and probabilities (0.25, 0.25, 0.5), respectively.

Each sink node has one possible energy state with

probability = 1 and transmission capacity = 48. Six

candidate pairs of sink locations for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 are

investigated. Each candidate pair has 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2

sink locations ((𝑖, 𝑖), (5 − 𝑖, 𝑖)) where 𝑖 ∈ [0, 5] .

Each experiment is repeated 20 times.

Fig. 7 shows the obtained results with 95% confidence.

Both ((2, 2), (2, 3)) and ((3, 3), (3, 2)) pairs achieve the

highest reliability compared to the other candidate pairs.

Fig. 8 shows for each candidate pair of sink locations

the number of application sensor nodes in each breadth-

first search (BFS) layering from their corresponding

application sink nodes. At location pairs ((2, 2), (2, 3)) and

((3, 3), (3, 2)), all sensor nodes are in BFS layers 2 and

3 from their corresponding sinks. At other candidate pairs,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.7 2.2 2.7 3.2 3.7 4.2

M
F
R
e
l

(
L
B
)

rcom

MAXCAP = 24
MAXCAP = 30

 0

 0.2

 0.4

 0.6

 0.8

 1

((0,0),

 (5,0))

((1,1),

 (4,1))

((2,2),

 (2,3))

((3,3),

 (3,2))

((4,4),

 (1,4))

M
F
R
e
l

(
L
B
)

APsink(app1) and APsink(app2)
 Locations

pmaxcap = 0.5
pmaxcap = 0.7
pmaxcap = 0.9

1 2 3 4 5

BFS layer from application sink

0

2

4

6

8

10

N
u
m

b
e
r

o
f
a

p
p
lic

a
ti
o
n

 s
e
n
s
o
rs ((0,0),(5,0))

((1,1),(4,1))

((2,2),(3,2))

((3,3),(2,3))

((4,4),(1,4))

Journal of Communications, vol. 18, no. 9, September 2023

578

sensor nodes are distributed across more BFS layers from

their corresponding sinks. Therefore, for location pairs ((2,

2), (2, 3)) and ((3, 3), (3, 2)), the number of relay nodes,

required to guarantee the delivery of all the generated

traffic from all application sensor nodes to their

corresponding sink, is less which increases the obtained

reliability.

Figure 7. Effect of varying application sinks’ locations with random

traffic sources.

Figure 8. Application sensor nodes layering distribution from their

sink nodes for random traffic source experiments.

VI. CONCLUSION

This paper considers multi-sink energy harvesting

wireless sensor networks that serve multiple concurrent

applications. To adapt t o the fluctuation of each node's

available energy over time, each node controls its

transmission capacity based on its available stored energy.

A novel multicommodity flow reliability problem is

formalized to estimate the likelihood that the shared

network is in a state where all applications’ requirements

are met. The proposed problem is proven to be #P-hard.

Therefore, a bounding framework is proposed for

estimating lower bounds on the exact reliability solutions.

The proposed framework produces exact solutions if

allowed sufficient running time. Numerical results show

the effectiveness of the proposed framework and its use in

solving interesting network design problems.

Future research directions include developing effective

algorithms for solving other network reliability problems

for multi-purpose energy-harry wireless sensor networks

and investigating the use of the developed algorithms in

designing effective network management frameworks that

achieve at least certain reliability levels.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

John Penaflor conducted the research under the

supervision of Dr. Mohammed Elmorsy. All authors

contributed to the problem formulation, proofs, and

proposed framework design. John Penaflor made the

coding and testing that was validated by Dr. Mohammed

Elmorsy. All authors contributed to the paper writing and

checking. All authors had approved the final version.

FUNDING

This research is supported by Riipen Level Up Project

Funding, and MacEwan Undergraduate Student Research

Initiative Project Funding.

ACKNOWLEDGMENT

The authors wish to thank MacEwan University and

Riipen for their support.

REFERENCES

[1] F. Mekelleche and H. Haffaf, “Classification and comparison of

range-based localization techniques in wireless sensor networks,”

Journal of Communications, vol. 12, no. 4, pp. 221–227, 2017.

[2] O. Liouane, S. Femmam, T. Bakir, and A. B. Abdelali, “Improved

two hidden layers extreme learning machines for node localization

in range free wireless sensor networks,” Journal of

Communications, vol. 16, no. 12, pp. 528–534, 2021.

[3] J. Zhu, C. Lv, and Z. Tao, “An improved localization scheme based

on dv-hop for large-scale wireless sensor networks,” Journal of

Communications, vol. 11, no. 12, pp. 1057–1065, 2016.

[4] V. Tam, K. Cheng, and K. Lui, “Using micro-genetic algorithms to

improve localization in wireless sensor networks,” Journal of

Communications, vol. 1, no. 4, pp. 1–10, 2006.

[5] M. Farsi, M. A. Elhosseini, M. Badawy, H. A. Ali, and H. Z. Eldin,

“Deployment techniques in wireless sensor networks, coverage and

connectivity: A survey,” IEEE Access, vol. 7, pp. 28940–28954,

2019.

[6] N. Rai and R. Daruwala, “A comprehensive approach for

implementation of randomly deployed wireless sensor networks,”

Journal of Communications, vol. 14, no. 10, pp. 915–925, 2019.

[7] A. J. Williams, M. F. Torquato, I. M. Cameron, A. A. Fahmy, and

J. Sienz, “Survey of energy harvesting technologies for wireless

sensor networks,” IEEE Access, vol. 9, pp. 77493–77510, 2021.

[8] D. Ma, G. Lan, M. Hassan, W. Hu, and S. Das, “Sensing, computing,

and communications for energy harvesting IoTs: A survey,” IEEE

Communications Surveys Tutorials, vol. 22, no. 2, pp. 1222–1250,

2020.

[9] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:

Survey and implications,” IEEE Communications Surveys Tutorials,

vol. 13, no. 3, pp. 443–461, 2011.

[10] A. A. Ka’bi, “Optimization of energy harvesting in mobile wireless

sensor networks,” Journal of Communications, vol. 17, no. 4, pp.

267–272, 2022.

[11] M. Warrier and A. Kumar, “Energy efficient routing in wireless

sensor networks: A survey,” in Proc. 2016 International

Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET), 2016, pp. 1987–1992.

[12] H. Yetgin, K. T. Cheung, M. El-Hajjar, and L. Hanzo, “A survey of

network lifetime maximization techniques in wireless sensor

networks,” IEEE Communications Surveys Tutorials, vol. 19, no. 2,

pp. 828–854, 2017.

[13] F. D. Tolba and P. Lorenz, “Multi path routing-based energy

efficient for extending mobile wireless sensor networks lifetime,”

Journal of Communications, vol. 14, no. 12, pp. 1224–1228, 2019.

 0

 0.2

 0.4

 0.6

 0.8

 1

((0,0),

 (5,0))

((1,1),

 (4,1))

((2,2),

 (2,3))

((3,3),

 (3,2))

((4,4),

 (1,4))

((5,5),

 (0,5))

M
F
R
e
l

(
L
B
)

APsink(app1) and APsink(app2)
 Locations

Psource = 25%
Psource = 50%

1 2 3 4 5

BFS layer from application sink

0

5

10

15

N
u

m
b

e
r

o
f

a
p

p
lic

a
ti
o
n

 s
e

n
s
o
rs

((0,0),(5,0))

((1,1),(4,1))

((2,2),(3,2))

((3,3),(2,3))

((4,4),(1,4))

((5,5),(0,5))

Journal of Communications, vol. 18, no. 9, September 2023

579

[14] F. Liao and W. Zhang, “An improved unequal clustering routing

protocol for wireless sensor networks,” Journal of Communications,

vol. 14, no. 2, pp. 148–152, 2019.

[15] N. K. Jain and A. Verma, “Relay node selection in wireless sensor

network using fuzzy inference system,” Journal of

Communications, vol. 14, no. 6, pp. 423–431, 2019.

[16] A. Rais, K. Bouragba, and M. Ouzzif, “Optimal routing and

clustering technique for wireless sensor networks,” Journal of

Communications, vol. 14, no. 9, pp. 758–764, 2019.

[17] D. A. Marenda, R. Muhammad, and N. R. Syambas, “Ring topology

optimization for wireless sensor network: A new heuristic method,”

Journal of Communications, vol. 13, no. 8, pp. 463–467, 2018.

[18] Y. Nie, S. Liu, Z. Chen, and X. Qi, “A dynamic routing algorithm

for data-aggregation optimization in event-driven wireless sensor

networks,” Journal of Communications, vol. 8, no. 8, pp. 521–528,

2013.

[19] R. Du, C. Ai, L. Guo, J. Chen, J. Liu, J. He, and Y. Li, “A novel

clustering topology control for reliable multi-hop routing in

wireless sensor networks,” Journal of Communications, vol. 5, no.

9, pp. 654–664, 2010.

[20] Y. Nie, S. Liu, Z. Chen, and X. Qi, “An adaptive state aware routing

algorithm for data aggregation in wireless sensor networks,”

Journal of Communications, vol. 8, no. 5, pp. 296–306, 2013.

[21] C. Zhang, “Cluster-based routing algorithms using spatial data

correlation for wireless sensor networks,” Journal of

Communications, vol. 5, no. 3, pp. 232–238, 2010.

[22] Y. Zhang and Q. Huang, “A learning-based adaptive routing tree

for wireless sensor networks,” Journal of Communications, vol. 1,

no. 2, pp. 12–21, 2006.

[23] L. Wang and Y. Xiao, “A survey of energy-efficient scheduling

mechanisms in sensor networks,” Mobile Networks and

Applications, vol. 11, no. 5, p. 723–740, 2006.

[24] P. Santi, “Topology control in wireless ad hoc and sensor networks,”

ACM Computing Surveys, vol. 37, no. 2, p. 164–194, 2005.

[25] M. P. Lakshmi and D. P. Shetty, “Optimal algorithm for minimizing

interference with two power levels in wireless sensor networks,”

Journal of Communications, vol. 14, no. 12, pp. 1198–1204, 2019.

[26] T. D. Nguyen, J. Khan, and D. T. Ngo, “A distributed energy-

harvesting-aware routing algorithm for heterogeneous IoT

networks,” IEEE Transactions on Green Communications and

Networking, vol. 2, no. 4, pp. 1115-1127, 2018.

[27] H. Shafieirad, R. S. Adve, and S. Shahbazpanahi, “Max-SNR

opportunistic routing for large-scale energy harvesting sensor

networks,” IEEE Transactions on Green Communications and

Networking, vol. 2, no. 2, pp. 506–516, 2018.

[28] Y. Li, X. He, and C. Yin, “Energy aware opportunistic routing for

energy harvesting wireless sensor networks,” in Proc. 2020 IEEE

31st Annual International Symposium on Personal, Indoor and

Mobile Radio Communications, 2020, pp. 1–6.

[29] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P.

Polakos, “Wireless sensor network virtualization: A survey,” IEEE

Communications Surveys Tutorials, vol. 18, no. 1, pp. 553–576,

2016.

[30] G. Yıldırım and Y. Tatar, “Simplified agent-based resource sharing

approach for WSN-WSN interaction in IoT/CPS projects,” IEEE

Access, vol. 6, pp. 78077–78091, 2018.

[31] C. Delgado, M. Canales, J. OrtÅLın, J. GÅLallego, A. Redondi, S.

Bousnina, and M. Cesana, “Joint application admission control and

network slicing in virtual sensor networks,” IEEE Internet of Things

Journal, vol. 5, no. 1, pp. 28–43, 2018.

[32] E. Hajian, M. R. Khayyambashi, and N. Movahhedinia, “A

mechanism for load balancing routing and virtualization based on

SDWSN for IoT applications,” IEEE Access, vol. 10, pp. 37457–

37476, 2022.

[33] H. Gao, X. Fang, J. Li, and Y. Li, “Data collection in multi-

application sharing wireless sensor networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 26, no. 2, pp. 403–412,

2015.

[34] S. M. A. Oteafy and H. S. Hassanein, “Resource re-use in wireless

sensor networks: Realizing a synergetic internet of things,” Journal

of Communications, vol. 7, no. 7, pp. 484–493, 2012.

[35] S. Chakraborty, N. Goyal, S. Mahapatra, and S. Soh, “Minimal

path-based reliability model for wireless sensor networks with

multistate nodes,” IEEE Transactions on Reliability, vol. 69, no. 1,

pp. 382–400, 2020.

[36] M. Elmorsy and E. S. Elmallah, “On flow reliability in energy

harvesting wireless sensor networks,” in Proc. IEEE International

Conference on Communications (ICC), 2021, pp. 1–6.

[37] H. AboElFotoh and C. Colbourn, “Computing 2-terminal reliability

for radio-broadcast networks,” IEEE Transactions on Reliability,

vol. 38, no. 5, pp. 538–555, 1989.

[38] M. Elmorsy, E. Elmallah, and H. AboElFotoh, “On path exposure

in probabilistic wireless sensor networks,” in Proc. 38th Annual

IEEE Conference on Local Computer Networks, 2013, pp. 433–440.

[39] M. Garey and D. Johnson, Computers and Intractability: A Guide

to the Theory of NP-completeness, W.H. Freeman, San Francisco,

1979.

[40] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:

Theory, Algorithms, and Applications, Prentice Hall, 1993.

[41] M. Conforti, G. CornuÅLejols, and G. Zambelli, Integer

Programming, Springer International Publishing, 2014.

[42] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual..

[Online]. Available: https://www.gurobi.com

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Communications, vol. 18, no. 9, September 2023

580

https://www.gurobi.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

