
Multicommodity Flow Reliability for Energy 

Harvesting Wireless Sensor Networks 
 

John Penaflor and Mohammed Elmorsy * 

Department of Computer Science, MacEwan University, Edmonton, Canada;  

Email: penaflorj2@mymacewan.ca (J.P.) 

*Correspondence: elmorsym@macewan.ca (M.E.) 

 

 

 
Abstract—This paper considers energy harvesting wireless 

sensor networks (EH-WSN) with multiple sinks supporting 

concurrent applications. Each application is associated with 

a set of sensor nodes that generate and send traffic to the 

associated application sink. Each node can relay any 

application traffic toward the application sink. In addition, 

each node uses an energy management unit to control the 

amount of traffic the node can relay based on its available 

energy. With the nodes’ energy levels fluctuations, it is 

essential to quantify the network's ability to fulfill the 

different applications’ quality of information and service 

requirements. Therefore, a novel multicommodity flow 

reliability problem (called MultiFlowRel) is formalized to 

estimate the likelihood that at least a certain amount of each 

application traffic is delivered to the associated application 

sink. The proposed problem is proven to be #P-hard, and an 

iterative bounding framework is proposed for deriving lower 

bounds on the exact reliability solutions. The proposed 

framework compute’s exact reliability solutions if allowed a 

sufficient number of iterations. Numerical results show the 

effectiveness of using the proposed solution to obtain good 

lower reliability bounds and exact solutions in reasonable 

running times. Furthermore, the results show examples of the 

use of the proposed framework in solving some interesting 

network design problems (e.g. optimal sink locations and 

appropriate transmission parameters).  
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I. INTRODUCTION 

The use of wireless sensor networks has received 

considerable preference in many applications, e.g., health 

monitoring, environmental and industrial applications. A 

wireless sensor network (WSN) consists of sensor nodes 

with limited energy resources that sense some of interest 

phenomena from the surrounding environment and send 

the sensed data to one or more sink nodes in the network. 

Extensive research work on WSNs has been done over the 

past decade. This research is diversified and includes many 

directions, such as: using localization techniques for 

estimating sensor nodes’ locations (e.g. [1–4]), using 
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network deployment techniques for enhancing the wireless 

sensor network quality of information and services (e.g., 

[5, 6]), using energy harvesting techniques (e.g., [7–10]) 

and energy provisioning techniques (e.g., [11, 12]) for 

constructing WSNs with prolonged lifetime. In an energy 

harvesting WSN (denoted EH-WSN), each node harvest 

energy from the surrounding ambient sources (e.g., 

harvesting solar and wind energies) and use the harvested 

energy to recharge its battery. In addition, each node can 

use energy provisioning techniques to optimize its energy 

consumption and balance the energy use among the 

network nodes. Energy provisioning techniques 

introduced in the literature include energy efficient routing 

protocols (e.g., [11], [13–22]), energy efficient scheduling 

protocols (e.g., [23]) and topology control techniques (e.g., 

[24, 25]). 

As a brief discussion about some recent research work 

for EH-WSNs, Nguyen et al. [26] proposed an energy-

aware routing protocol for EH-WSNs. In their work, 

routing decisions are based on each node’s available 

energy and distance from the sink. In addition, each node 

adjusts the active/sleep scheduling of its communication 

module based on its available energy level. The authors of 

[27, 28], proposed energy-aware opportunistic routing 

protocols for EH-WSNs. In an opportunistic routing 

protocol, nodes are unaware of the network topology. 

Instead, each node utilizes the broadcast nature of the 

wireless medium that allows adjacent nodes to receive 

copies of the node’s sent traffic. In opportunistic routing, 

when a node attempts to deliver a packet to the sink, it 

broadcasts its packet to its adjacent nodes. After that, one 

of these adjacent nodes is selected based on some 

computed priority factor to forward the received packet 

toward the sink. Shafieirad et al. [27] proposed that the 

priority factor for each adjacent node is calculated based 

on the node’s available energy and the distance between 

this node and the sink. Li et al. [28] proposed a Long short-

term memory (LSTM) solar prediction model that allows 

each node to predict its harvested energy. The priority 

factor of each adjacent node is estimated based on the 

current node's available energy, the predicted harvested 
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energy, the node distance from the sink and the packet 

delivery ratio between the originating node and this node. 

Another recent research direction considers WSNs 

shared between multiple applications. In such a network, 

WSN nodes serve multiple applications’ requests while 

aiming to meet each application-defined quality of service 

and information metrics. For such networks, some recent 

researches aim to construct resource allocation and 

network management frameworks (e.g., [29]). As a brief 

review of some of the introduced work in this direction, 

Yıldırım and Tatar [30] considered using middleware 

server systems (MBSS) to process incoming application 

requests. The authors proposed a software framework 

called Firat Virtual WSN framework (FVWSN) that runs 

in MBSSs, collects the uploaded client application logic 

and allocates sensor nodes’ resources for serving each 

application request. Delgado et al. [31] proposed an 

application admission and resource allocation framework. 

The proposed framework allocates network resources for 

application requests while achieving the defined 

applications’ sensing coverage requirements. In addition, 

the proposed framework considers sensor node level 

constraints (e.g., processing, energy and storage 

capabilities) and network constraints (e.g., bandwidth of 

communication links and routing protocols). Hajian et al. 

[32] proposed a software-defined networking-based 

routing protocol for achieving load balancing across sensor 

nodes that serves multiple applications. Gao et al. [33] 

defined a data-sharing problem between various 

applications. Each application requests data sampling 

intervals from sensor nodes. The requested sample 

intervals can have some overlapping. The problem calls for 

finding common sampling intervals between the 

application requests. Therefore, the problem aims to 

minimize the generated and sent traffic across the network. 

The authors propose a greedy framework for solving their 

defined problem. 

This paper considers energy harvesting wireless sensor 

networks shared between multiple applications. To 

quantify the ability of such networks in fulfilling the 

different applications’ quality of service and information 

requirements, a novel flow reliability problem (called 

MultiFlowRel) is formalized. In this problem, each 

application has a set of sensor nodes and an associated sink 

node. Therefore, the considered network contains multiple 

sinks. Each application sensor node periodically generates 

traffic and sends it to the corresponding application sink. 

Each node runs independently an energy management unit 

that allows the node to adjust its transmission capacity 

based on its available energy. The node transmission 

capacity represents the maximum amount of traffic the 

node can send in a certain time interval. The problem calls 

for estimating the likelihood that each application sink 

node receives a certain amount of its application sensor 

nodes’ generated traffic. To the best of the authors’ 

knowledge, the proposed work is the first to discuss a flow 

reliability problem for multi-sink energy harvesting 

wireless sensor networks shared between multiple 

applications. As a summary of some related literature work, 

Oteafy and Hassanein [34] proposed a resource-sharing 

framework for wireless sensor networks shared between 

various applications. Chakraborty et al. [35] consider a 

network reliability problem for wireless sensor networks 

with a single sink. Each node is assumed to have unlimited 

transmission capacity and can be either sensing and 

communicating, communicating only or failing. The 

considered problem calls for estimating the likelihood that 

a certain amount of traffic arrives at the sink. The authors 

propose an exact algorithm for solving the considered 

problem. Elmorsy and Elmallah [36] formalized a flow 

reliability problem for energy harvesting wireless sensor 

networks with a single sink node and a single application 

utilizing the network resources. The authors propose an 

iterative framework for deriving lower bounds to the exact 

reliability solutions. 

Below is a summary of the proposed contributions in 

this paper: 

(1) A novel flow reliability problem (called MultiFlowRel) 

is formalized and proven to be #P-hard. 

(2) An iterative framework that utilizes special structures, 

known as pathsets, is proposed for deriving lower 

bounds to the exact reliability solutions. 

(3) A key ingredient in the proposed iterative framework 

is obtaining a set of high probable pathsets. Therefore, 

the optimal extension to pathset (denoted E2P) 

problem is formalized to construct high probable 

pathsets. The E2P problem is proven to be NP-hard. 

(4) A heuristic algorithm is proposed to solve the 

proposed E2P problem. 

(5) The obtained numerical results show the effectiveness 

of the proposed iterative framework and how it can 

solve interesting network design problems. 

The rest of the paper is organized as follows. Section II 

formalizes the MultiFlowRel problem and introduces some 

solution concepts for constructing the proposed iterative 

framework. Section III presents an overview of the 

proposed iterative framework. Section IV formalizes the 

E2P problem and the proposed heuristic for solving this 

problem. Lastly, Section V presents the obtained 

numerical results. 

II.   PROBLEM FORMULATION 

In this section, the MultiFlowRel problem is formalized. 

In addition, some of the concepts used in developing a 

solution are introduced. 

A. System Model 

An energy harvesting wireless sensor network (EH-

WSN) is considered that utilizes a time-slotted model 

where time is divided into equal time slots. In each time 

slot, each node uses a flow-based energy management 

scheme to maximize the node’s lifetime. At the start of 

each time slot, the energy management unit of each node 

independently estimates its energy level and decides the 

maximum number of packets the node can transmit during 

this time slot. A node's chosen maximum allowed number 
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of transmitted packets includes the node’s generated 

packets and the relayed packets received from other nodes. 

A node a can communicate with node b if b lies within a's 

transmission range. 

To model a node’s behaviour, each node n is assumed 

to exist in one of the possible energy states (denoted 𝐸𝑆 =
 {𝑠1, 𝑠2,· · · , 𝑠𝑚}) in each time slot based on its energy level. 

Each energy state 𝑠𝑖 for each node n has a corresponding 

maximum number of transmitted packets denoted 

𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖)  that includes both node n generated and 

relayed packets. For example, a node n exists in state 𝑠1 in 

a time slot if the node’s energy level is within [80%, 100%] 

of its energy stored capacity with a corresponding 

𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠1) =  10 packets that n can, at most, transmit 

during this time slot. The probability that node n exists in 

an energy state 𝑠𝑖  is denoted 𝑝(𝑛, 𝑠𝑖) . Therefore, 

∑ 𝑝(𝑛, 𝑠𝑖) = 1𝑚
𝑖=1 where m is the number of possible 

energy states for node n. Such probabilities can be 

estimated by running experiments for the considered 

network over a WSN simulator where time is divided into 

suitable time slots. Then for each node n and each possible 

state 𝑠𝑖, 𝑝(𝑛, 𝑠𝑖) is estimated as the number of time slots, 

in which node n exists in state 𝑠𝑖 , divided by the total 

simulation time. 

The considered EH-WSN is assumed to be shared 

between a set of applications denoted 𝐴𝑃𝑃  = {𝑎𝑝𝑝1,
𝑎𝑝𝑝2, … , 𝑎𝑝𝑝𝑘}. Each application 𝑎𝑝𝑝𝑖  reserves a set of 

sensor nodes (denoted 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)) and a sink node 

(denoted 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) ). Each sensor node can be at 

most associated with a single application. However, some 

nodes may not be associated with any application. Each 

sensor node n, associated with application 𝑎𝑝𝑝𝑖, generates 

an amount of data packets denoted 𝑔𝑑𝑎𝑡𝑎(𝑛), and sends 

them to the application sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖). Each 

node in the network (including applications’ associated 

nodes and sinks) can relay traffic from any source node 

toward its destination sink node in each time slot. To 

satisfy each application 𝑎𝑝𝑝𝑖  requirements, at least a 

specified number (denoted 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖)) of data packets 

should be delivered from 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) nodes to 𝑎𝑝𝑝𝑖 

sink node. The following formalizes the proposed 

MultiFlowRel problem. 

Definition (the MultiFlowRel problem): Let an EH-

WSN represented by a probabilistic directed graph 𝐺 =
 (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠, 𝐸)  that uses a time slotted model and is 

shared between a set of applications 𝐴𝑃𝑃 =  {𝑎𝑝𝑝1,· · ·
 , 𝑎𝑝𝑝𝑘}. In each time slot, each node 𝑛 ∈  (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠) 

exists in an energy state 𝑠𝑖 ∈ 𝐸𝑆 set of possible energy 

states with probability 𝑝(𝑛, 𝑠𝑖)  where 𝑛  can transmit at 

most 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖) packets. Each application 𝑎𝑝𝑝𝑖  has a 

set of associated nodes denoted 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) ⊂  𝑉 

and an associated sink denoted 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) ∈  𝑆𝑖𝑛𝑘𝑠. 

In each time slot, each node 𝑛 ∈  𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) 

generates 𝑔𝑑𝑎𝑡𝑎(𝑛)  packets to be transmitted to 

𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) . The problem calls for finding the 

probability denoted 𝑀𝐹𝑅𝑒𝑙(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃,  
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) that the network is in a state where 

for each application 𝑎𝑝𝑝𝑖 , at least a defined amount 

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖)  of data packets are delivered from 

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖).  

Example 1: Fig. 1 shows an instance of the 

MultiFlowRel problem where the network is shared 

between 2 applications (denoted 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2) with the 

following assumptions: 

• The first application has sensor nodes 

( 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) ) 8 and 9. Also, its sink node 

(𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1)) is 1 and 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) =  10. Nodes 8 

and 9 generate 5 and 6 data packets in each time slot. 

• The second application has sensor nodes 

(𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2))  3 and 6. Also, its sink node 

( 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2) ) is 7 and 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝2) =  4 . 

Nodes 3 and 6 generate an equal amount of data 

packets 𝑔𝑑𝑎𝑡𝑎(3) =  𝑔𝑑𝑎𝑡𝑎(6) =  4. 

• 𝐸𝑆 = {𝑠ℎ𝑖𝑔ℎ, 𝑠𝑙𝑜𝑤, 𝑠𝑓𝑎𝑖𝑙} 

• Each node 𝑛 ∈  (𝑉 ∪ 𝑆𝑖𝑛𝑘𝑠) has the following 

states’ information: {(𝑝(𝑛, 𝑠ℎ𝑖𝑔ℎ) =
0.25, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠ℎ𝑖𝑔ℎ) = 16), (𝑝(𝑛, 𝑠𝑙𝑜𝑤) =
0.5, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑙𝑜𝑤) = 8), (𝑝(𝑛, 𝑠𝑓𝑎𝑖𝑙) =
0.25, 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑓𝑎𝑖𝑙) = 0)}. 

 
 

Figure  1. An instance of the MultiFlowRel problem. 

Theorem 1. MultiFlowRel is #P-hard 

Proof. AboElFotoh and Colbourn [37] shows that the 

two-terminal reliability problem (2REL) is #P-Complete 

even if it is restricted to partial grid networks with equal 

nodes’ communication ranges and operating probabilities. 

An instance of the 2REL problem consists of a 

probabilistic graph 𝐺 =  (𝑉, 𝐸) that contains two distinct 

vertices s and t. Each vertex 𝑣 ∈  𝑉  has an operating 

probability p. The 2REL problem calls for computing the 

probability (denoted 𝑅𝑒𝑙(𝐺, 𝑠, 𝑡)) that the network 𝐺 is in 

a state with at least one operating path from s to t. To prove 

that the MultiFlowRel problem is #P-hard, a polynomial 

time reduction from any instance (𝐺, 𝑠, 𝑡)  of the 2REL 

problem to an instance 

(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) of the 

MultiFlowRel problem is proposed. The reduction works 

as follows: 
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(1) Create the graph 𝐺 =  (𝑉, 𝐸)  of the MultiFlowRel 

instance with all vertices and edges of the 2REL 

problem instance graph. 

(2) For each vertex 𝑣 ∈  𝑉 of the MultiFlowRel instance, 

create two possible energy states with the following 

capacity-probability pairs: (1, 𝑝)  and (0, 1 − 𝑝) 

where 𝑝 is the node operating probability in the 2REL 

instance. 

(3) For node 𝑠  in the constructed of MultiFlowRel 

problem, set 𝑔𝑑𝑎𝑡𝑎(𝑠) to 1. 

(4) For each other node 𝑛 ≠ 𝑠 , set 𝑔𝑑𝑎𝑡𝑎(𝑛) =  0. 

(5) Create an application (denoted 𝑎𝑝𝑝1 ) in the 

MultiFlowRel instance with the following information: 

• 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) =  {𝑠} 

• 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1) =  {𝑡} 

• 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) =  1 

The proof follows since 𝑅𝑒𝑙(𝐺, 𝑠, 𝑡) =

 𝑀𝐹𝑅𝑒𝑙(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞).  

B. Solution Concepts 

Here, the solution concepts used in the proposed 

iterative framework are presented. These concepts include: 

• Network State. In a network state, each node is 

assigned a state. Note that, for a network of size 𝑁 nodes 

where each node has 𝑁𝐸𝑆  possible energy states, the 

number of possible network states is (𝑁𝐸𝑆)𝑁 states. For 

example, if a network contains 6 nodes where each node 

has 3 possible states, the total number of possible 

network states is 36 states. 

• Network Configuration. In a network configuration 

(denoted as C), some nodes (but not necessary all) are 

assigned states. The probability that a configuration C 

arises is 𝑃𝑟(𝐶) = ∏ 𝑝(𝑛, 𝑠𝑖)(𝑛,𝑠𝑖)∈𝐶  where (𝑛, 𝑠𝑖) ∈  𝐶. 

Two network configurations are statistically disjoint 

(abbreviated as s-disjoint) if a node exists in both 

configurations with different states. 

Example 2. If 𝐶1 = {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠𝑙𝑜𝑤)}  and 𝐶2 =

 {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠ℎ𝑖𝑔ℎ)} , then 𝐶1  and 𝐶2  are s-disjoint 

configurations as node 2 exists in 𝐶1 and 𝐶2 with different 

states. Thus, Pr(𝐶1 ∪ 𝐶2) = Pr(𝐶1) + Pr(𝐶2). 

• Pathset. a MultiFlowRel pathset is an operating 

configuration where for each application 𝑎𝑝𝑝𝑖, at least 

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖)  data packets are delivered from 

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖) nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) sink node. 

Example 3. For the MultiFlowRel instance in Fig. 1, 

each node has three possible energy states 

(𝑠ℎ𝑖𝑔ℎ, 𝑠𝑙𝑜𝑤, 𝑠𝑓𝑎𝑖𝑙) with the following transmission 

capacities (16, 8, 0), respectively.  The configuration 𝐶 =

{(9, 𝑠ℎ𝑖𝑔ℎ), (8, 𝑠𝑙𝑜𝑤), (6, 𝑠ℎ𝑖𝑔ℎ), (5, 𝑠ℎ𝑖𝑔ℎ), (4, 𝑠ℎ𝑖𝑔ℎ), 

(1, 𝑠ℎ𝑖𝑔ℎ), (7, 𝑠ℎ𝑖𝑔ℎ)} is a pathset since it guarantees that 

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) =  10  data packets are delivered from 

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1)  nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1)  sink, and 

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝2) =  4  data packets are delivered from 

𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2) nodes to 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2) sink. 

The main objective of the proposed iterative framework 

is to generate a set of s-disjoint pathsets and use it to derive 

lower bounds of the exact reliability solutions. 

III. OVERVIEW OF THE ITERATIVE FRAMEWORK 

The proposed iterative framework generates a set of s-

disjoint pathsets (denoted P) and uses them to derive 

lower bounds (denoted LBs) to the exact reliability 

solutions. Furthermore, the proposed framework 

compute’s exact reliability solutions if sufficient iterations 

are allowed to generate a maximal set of s-disjoint 

pathsets. To generate a set of s-disjoint pathsets, the 

proposed framework uses the factoring method introduced 

in [38] to generate s-disjoint configurations from an input 

configuration. The framework starts by generating an 

empty configuration, extending it to a high probable 

pathset and marking the obtained pathset as unprocessed. 

Then, in each iteration, the framework selects the highest 

probable unprocessed pathset generated but not used in the 

previous iterations to generate other s-disjoint 

configurations. The framework then marks the selected 

pathset as processed and uses it to generate s-disjoint 

configurations. Lastly, the framework extends the 

generated configurations (if possible) to pathsets and 

marks the generated pathsets as unprocessed. The 

framework terminates after a defined number of iterations 

(denoted 𝑁𝐼𝑇 ), or there is no unprocessed pathset to be 

processed. Lastly, the framework uses the generated set of 

s-disjoint pathsets (P) to drive lower bounds to the 

reliability solutions using the following equation: 

∑ Pr(𝑃𝑖) ≤ 𝑀𝐹𝑅𝑒𝑙

𝑃𝑖∈𝑃

 

where Pr(𝑃𝑖) is the probability of pathset 𝑃𝑖. 

A key component in the proposed framework is how 

to extend an input configuration to a high probable 

pathset which is discussed in the next section. 

IV. OPTIMAL EXTENSION TO PATHSET 

This section formalizes the optimal extension to pathset 

(denoted E2P) problem. In addition, a heuristic algorithm 

is presented to solve this problem. 

A. E2P Problem Definition 

Given an instance (𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑃, 
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞) of the MultiFlowRel problem and a 

configuration C, the problem calls for finding a 

configuration 𝐶𝑛𝑒𝑤 such that: (1) 𝐶 ∪ 𝐶𝑛𝑒𝑤is a pathset, (2) 

and 𝐶 ∪ 𝐶𝑛𝑒𝑤  are node disjoint, and (3) Pr(𝐶 ∪ 𝐶𝑛𝑒𝑤) is 

as high as possible. 

Theorem 2. E2P problem for MultiFlowRel problem is 

NP-hard. 

Proof. To prove that E2P for MultiFlowRel problem is 

NP-hard, a reduction from the Exact Cover by 3 sets 

(denoted X3C) problem to the formulated E2P problem is 

proposed. The X3C problem [39] is an NP-complete 
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problem. An instance of the X3C problem has two inputs: 

a set X of elements and a set of subsets Y. Each subset in Y 

contains exactly 3 elements of X. The size of the set X is 

3q, where q is a positive integer value. The X3C problem 

asks whether Y contains a collection Y’ of q subsets from 

Y such that each element 𝑥 ∈  𝑋  occurs exactly in one 

subset of Y’. 

The reduction from the 𝑋3𝐶(𝑋, 𝑌)  instance to the 

proposed 𝐸2𝑃(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑝, 𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 
𝐾𝑟𝑒𝑞, 𝑐) problem instance works as follows: 

(1) For every element x ∈ X, create a node x in the E2P 

instance with the following information: 

• 𝑔𝑑𝑎𝑡𝑎(𝑥)  =  1 

• two possible energy states with the following 

transmission capacities (1, 0) and probabilities 

(𝑝𝑟𝑜𝑏, 1 –  𝑝𝑟𝑜𝑏) respectively where prob is a 

real value and 0 <  𝑝𝑟𝑜𝑏 <  1 

(2) For every subset 𝑦 ∈  𝑌, create a node 𝑦 in the E2P 

instance with the following information: 

• 𝑔𝑑𝑎𝑡𝑎(𝑦) =  0 

• two possible energy states with the following 

transmission capacities (3, 0) and probabilities 

(𝑝𝑟𝑜𝑏, 1 –  𝑝𝑟𝑜𝑏), respectively 

(3) Create an edge (x, y) in the E2P instance if 𝑥 ∈  𝑦 in 

the 𝑋3𝐶(𝑋, 𝑌) instance. Therefore, each node y has 

exactly 3 children. 

(4) Create a node (denoted β) with 𝑔𝑑𝑎𝑡𝑎(𝛽) =  0 and 

one possible energy state with transmission capacity 

=  3𝑞 packets and probability = 1 in the E2P instance. 

(5) For each node y ∈ Y, create an edge (y, β) 

(6) Create an application (denoted 𝑎𝑝𝑝1 ) in the E2P 

instance with the following information: 

• 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1)  contains every node x that 

corresponds to an element in X in the X3C(X, Y) 

instance. 

• 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1) =  𝛽 

• 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝1) =  3𝑞 

(7) Create an empty configuration C of the E2P instance. 

Each node y ∈ Y has exactly 3 children. In addition, all 

X nodes need to deliver their traffic to β. Therefore, the 

highest probable path set, that can be found if exists, has a 

probability (𝑝𝑟𝑜𝑏)4𝑞 since all X nodes should be assigned 

a state with transmission capacity = 1 and at least q nodes 

of Y nodes should be assigned a state with transmission 

capacity = 3. Therefore, the X3C problem instance has a 

solution if the reduced instance of the E2P problem has a 

solution with Pr(𝐶 ∪ 𝐶𝑛𝑒𝑤) ≥  (𝑝𝑟𝑜𝑏)4𝑞 .  
The next subsection describes the proposed heuristic 

algorithm for solving the E2P problem. 

B. E2P Algorithm 

Here, the proposed heuristic algorithm is presented for 

solving the E2P problem. As an overview, the proposed 

E2P algorithm works through the following phases: 

P1) Transforming the E2P instance to an instance of the 

min cost multicommodity flow (denoted MCMCF) 

problem [40] 

P2) Solving the constructed MCMCF problem instance 

P3) Processing the MCMCF problem solution and 

constructing 𝐶𝑛𝑒𝑤  

The proposed E2P algorithm considers the MCMCF 

problem with integer flows. The multicommodity flow 

problem with integer flows is shown in [39] to be NP-

complete problem. An instance of the MCMCF problem 

[40] consists of a directed flow graph 𝐺𝑓𝑙𝑜𝑤(𝑉, 𝐸) and a 

set of commodities K. Each edge (𝑎, 𝑏) ∈  𝐸  has an 

integer capacity 𝑢(𝑎, 𝑏) and a cost 𝑐(𝑎, 𝑏) . Each 

commodity 𝐾𝑖 ∈  𝐾  is identified by the tuple (𝑔𝑖 , 𝑡𝑖 , 𝑑𝑖) 

where 𝑔𝑖  and 𝑑𝑖  are the source and destination 

respectively of commodity 𝐾𝑖 , and 𝑑𝑖  is the integer 

demand that needs to be transmitted from 𝑔𝑖 to 𝑡𝑖 . The 

MCMCF problem calls for determining for each edge 

(𝑎, 𝑏) ∈  𝐸 and each commodity 𝐾𝑖  ∈  𝐾, the amount of 

flow (denoted 𝑓𝑖(𝑎, 𝑏)) from commodity 𝐾𝑖 that needs to 

be transmitted through (a, b) edge such that: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑐(𝑎, 𝑏) × ∑ 𝑓𝑖(𝑎, 𝑏))𝐾𝑖∈𝐾(𝑎,𝑏)∈𝐸       (1) 

∑ 𝑓𝑖(𝑎, 𝑏) ≤ 𝑢(𝑎, 𝑏)    𝐾𝑖∈𝐾 for ∀(𝑎, 𝑏) ∈ 𝐸       (2) 

For ∀𝑎 ∈ 𝑉, ∀𝐾𝑖 ∈ 𝐾 

∑ 𝑓𝑖(𝑎, 𝑏)𝑏∈𝑉 − ∑ 𝑓𝑖(𝑏, 𝑎) {
𝑑𝑖               𝑎 = 𝑔𝑖

−𝑑𝑖           𝑎 = 𝑡𝑖

0      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑏∈𝑉       (3) 

∀fi(a, b) ∈ 𝑍+ ∪ {0}                      (4) 

Eq. (1) represents the objective function of the MCMCF 

problem, which is minimizing the total cost of delivering 

all commodities to their corresponding destinations. Eq. 

(2) states the capacity constraint where the total 

transmitted flow through an edge should not exceed the 

edge capacity. Eq. (3) states the flow conservation 

constraint. For each commodity, the difference between 

the amount of commodity flow leaving a node and the 

amount of commodity flow entering this node should be 0 

except for this commodity's source and destination nodes. 

Eq. (4) enforces that the obtained solutions are non-

negative integers. 

Below, the details for each phase of the proposed E2P 

algorithm are discussed: 

(P1) Transforming 𝐸2𝑃(𝐺, 𝐴𝑃𝑁𝑜𝑑𝑒𝑠, 𝐴𝑃𝑠𝑖𝑛𝑘, 𝑝, 
𝑔𝑑𝑎𝑡𝑎, 𝑐𝑎𝑝𝑜𝑢𝑡, 𝐾𝑟𝑒𝑞 , 𝐶)  instance to MCMCF (𝐺𝑓𝑙𝑜𝑤 , 𝐾) 

instance 

(1) For each node/state pair (𝑎, 𝑠𝑖)  ∈  𝐶 , create in 

𝐺𝑓𝑙𝑜𝑤 two nodes (denoted 𝑎𝑖𝑛  and 𝑎𝑜𝑢𝑡 ). If 

𝑐𝑎𝑝𝑜𝑢𝑡(𝑎, 𝑠𝑖)  >  0, add an edge (𝑎𝑖𝑛, 𝑎𝑜𝑢𝑡) with cost 

= 0 and capacity = 𝑐𝑎𝑝𝑜𝑢𝑡(𝑛, 𝑠𝑖). 

(2) For each node 𝑏 ∈  𝐺 and 𝑏 ∉ 𝐶 (free node): 

• Create a set 𝐸𝑆(𝑏) that contains all possible energy 

states of b ordered ascendingly based on their 

transmission capacities. Therefore, if 𝑠𝑖  and 𝑠𝑖+1 ∈ 

ES, then 𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖)  <  𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖+1). 
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• Create two nodes 𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤. 

• For each energy state 𝑠𝑖 ∈  𝐸𝑆(𝑏)  with a 

transmission capacity 𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖)  >  0 , create an 

edge (𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡) with the following parameters: 

cost = ⌈−1000   log (p(b, si))⌉          (5) 

 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  {
𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖)                                𝑖 = 1

𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑖) − 𝑐𝑎𝑝_𝑜𝑢𝑡(𝑏, 𝑠𝑖−1)    𝑖 > 1
 

(6) 

The cost function Eq. (5) assigns lower costs for 

node/state pairs with higher probabilities. Therefore, 

node/state pairs with higher probabilities are given more 

preference while extending the input configuration C to a 

pathset. For each node 𝑏 ∉ 𝐶, the capacity function Eq. 

(6) ensures that the total capacity of all edges between 

𝑏𝑖𝑛 and 𝑏𝑜𝑢𝑡  is equal to the maximum transmission 

capacity of node b in its energy states. 

(1) For each edge (𝑎, 𝑏)  ∈  𝐺, create an edge (𝑎𝑜𝑢𝑡 , 𝑏𝑖𝑛) 

in 𝐺𝑓𝑙𝑜𝑤 with cost = 0 and capacity = ∞. 

(2) For each application 𝑎𝑝𝑝𝑖 in the E2P instance: 

• Create a node 𝛽𝑖 in 𝐺𝑓𝑙𝑜𝑤. 

• For each node 𝑛 ∈  𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖), create an 

edge (𝛽𝑖 , 𝑛𝑖𝑛) in 𝐺𝑓𝑙𝑜𝑤 with cost = 0 and capacity 

= 𝑔𝑑𝑎𝑡𝑎(𝑛). 

• Create a commodity 𝐾𝑖 in the MCMCF instance 

with source = 𝛽𝑖, destination = 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝𝑖) in 

and demand =  𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) 

(P2) Solving the constructed MCMCF problem instance 

The constructed MCMCF instance can be solved using 

one of the integer programming methods [41]. The E2P 

algorithm uses the Gurobi optimizer [42] to solve the 

constructed instance. The Gurobi optimizer uses the 

branch and cut method [41] for solving the formulated 

MCMCF problem. 

(P3) Processing the MCMCF problem solution and 

constructing 𝐶𝑛𝑒𝑤 

After solving the constructed MCMCF instance, the 

E2P algorithm does the following: 

(1) If the constructed MCMCF problem has no solution, 

the E2P algorithm terminates as the input 

configuration C can’t be extended to a pathset. 

(2) Otherwise, the E2P algorithm creates an empty 

configuration 𝐶𝑛𝑒𝑤. Then, for each node 𝑏 ∉ 𝐶 with 

non-zero total flow from 𝑏𝑖𝑛 to 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤: 

• Select the highest probable state 𝑠𝑚𝑎𝑥  from the 

possible energy states of node b such that 

𝑐𝑎𝑝𝑜𝑢𝑡(𝑏, 𝑠𝑚𝑎𝑥)  ≥  ∑ 𝑓𝑖(𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡)𝐾𝑖∈𝐾  where 

∑ 𝑓𝑖(𝑏𝑖𝑛, 𝑏𝑜𝑢𝑡)𝐾𝑖∈𝐾  is the total amount of flow 

transferred from 𝑏𝑖𝑛 to 𝑏𝑜𝑢𝑡 in 𝐺𝑓𝑙𝑜𝑤 

• Add the node/state pair (𝑏, 𝑠𝑚𝑎𝑥) to 𝐶𝑛𝑒𝑤. 

The constructed 𝐶𝑛𝑒𝑤  is the required extension to 

configuration C such that 𝐶 ∪ 𝐶𝑛𝑒𝑤 is a pathset. 

Example 4. In example 1, consider an input 

configuration 𝐶 =  {(1, 𝑠ℎ𝑖𝑔ℎ), (2, 𝑠𝑓𝑎𝑖𝑙), (4, 𝑠ℎ𝑖𝑔ℎ),  

(5, 𝑠𝑓𝑎𝑖𝑙), (7, 𝑠ℎ𝑖𝑔ℎ)}: 

Phase 1 of the E2P algorithm constructs the MCMCF 

instance with two commodities 𝐾1 =  (𝛽1, 1𝑖𝑛, 10)  and 

𝐾2 = (𝛽2, 7𝑖𝑛, 4) . 𝐺𝑓𝑙𝑜𝑤 of the MCMCF instance is 

presented in Fig. 2, where the capacity/cost pair is 

presented on each edge. Phase 2 solves the constructed 

MCMCF instance. Phase 3 investigates the free nodes 

{3, 6, 8, 9} with non-zero flow in the MCMCF instance: 

• Node 6 has a total flow of 4 units transferred from 6𝑖𝑛 

and 6𝑜𝑢𝑡 . The highest probable state with enough 

capacity to transfer this flow is 𝑠𝑙𝑜𝑤 with capacity = 8. 

Therefore, the pair (6, 𝑠𝑙𝑜𝑤) is added to 𝐶𝑛𝑒𝑤. 

• Node 9 has a total flow of 9 units. Therefore, the 

node/state pair (9, 𝑠ℎ𝑖𝑔ℎ) is added to 𝐶𝑛𝑒𝑤. 

• Node 8 has a total flow of 14 units. Therefore, the 

node/state pair (8, 𝑠ℎ𝑖𝑔ℎ) is added to 𝐶𝑛𝑒𝑤. 

The obtained 𝐶𝑛𝑒𝑤 =  {(6, 𝑠𝑙𝑜𝑤), (8, 𝑠ℎ𝑖𝑔ℎ), (9, 𝑠ℎ𝑖𝑔ℎ)} 

which satisfies that 𝐶 ∪ 𝐶𝑛𝑒𝑤 is a pathset.  

 
Figure  2. An example for 𝐺𝑓𝑙𝑜𝑤 of a constructed MCMCF problem. 

V.  NUMERICAL RESULTS 

This section presents the numerical results that show 

the performance of the proposed framework and its use in 

solving interesting network design problems. The 

proposed framework is implemented in C++ using STL 

(Standard Template Library) classes and Gurobi 

Optimizer [42] for solving integer linear programming 

problems. An Intel(R) Xeon(R) Gold 6148 CPU @ 

2.40GHz server with 395 GBytes of memory is used. The 

experiments' maximum recorded memory size for running 

the E2P algorithm is about 10 megabytes. The length of 

the documented framework code is about 1950 lines. 

The experiments are conducted on a 𝑊 × 𝐿 grid 

deployed networks. Each node’s coordinates is denoted (x, 

y) where x = 0, 1, . . . , L − 1 and y = 0, 1, . . . ,W − 1. Each 

node has 𝑁𝐸𝑆  possible energy states with the following 

transmission capacities {0,
𝑀𝐴𝑋𝐶𝐴𝑃

𝑁𝐸𝑆−1
,

2×𝑀𝐴𝑋𝐶𝐴𝑃

𝑁𝐸𝑆−1
, . . .,  

𝑀𝐴𝑋𝐶𝐴𝑃} where MAXCAP is varied during the 

experiments. Two applications (denoted 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2) 

share the network resources. For 𝑎𝑝𝑝1 , the application 

sensor nodes ( 𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝1) ) are the right-most 

column nodes except the bottom right corner node. The 

bottom left corner node is the sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝1). 

For 𝑎𝑝𝑝2, the application sensor nodes (𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝2)) 

are the top row nodes except the top right corner node. The 

sink node 𝐴𝑃𝑠𝑖𝑛𝑘(𝑎𝑝𝑝2) is the bottom right corner node. 

Each application sensor node generates 12 data packets 
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every time slot. The framework’s default number of 

allowed iterations (denoted 𝑁𝐼𝑇) is 5000. 

A.  Exact Reliability Computations. 

This set of experiments aims to investigate the effect of 

varying the network size and 𝑁𝐸𝑆 on the running time of 

the proposed framework and the number of generated 

configurations (denoted 𝑁𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) while computing 

exact reliability solutions. The experiments are conducted 

on 𝑊 × 𝐿  grid deployed networks. Each node has a 

transmission range of 1.7 units and 𝑁𝐸𝑆 possible energy 

states with MAXCAP = 24 and equal probabilities. 

Therefore, if NES = 3, the possible transmission 

capacities associated with the energy states are 0, 12 and 

24 packets/slot. For each application 𝑎𝑝𝑝𝑖 , 

𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) is set to half of the traffic generated by 

𝑎𝑝𝑝𝑖 sensor nodes (𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)). Table I shows the 

obtained results for different network sizes where 𝑁𝐸𝑆 =
 3. Table II shows the obtained results while varying 𝑁𝐸𝑆 

for a  3×4 grid deployed network. The results in both 

tables show that: 

• The number of generated network configurations 

( 𝑁𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ) by the proposed framework 

while computing exact solutions is much less than 

the number of possible network states required by a 

brute force algorithm to obtain these solutions. 

• Increasing the network size and 𝑁𝐸𝑆 increases the 

running time of the proposed framework for obtaining 

exact solutions. The main reason is that more network 

configurations need to be processed, and the time 

required to run the E2P function for each generated 

configuration also increases. 

TABLE I: EFFECT OF INCREASING NETWORK SIZE WITH NES = 3 
 

Network 
Size 

Nconfigurations Number 
of Possible 
Network 
States 

Running 
Time 
(Seconds) 

2×2 31 34 0.294325 

2×3 87 36 0.807948 

3×3 1191 39 12.027376 

3×4 11631 312 123.256963 

4×4 209691 316 2515.948289 

TABLE II: EFFECT OF VARYING 𝑁𝐸𝑆  NETWORK FOR 3×4 GRID 

DEPLOYED 

𝑁𝐸𝑆 Nconfigurations Number 
of Possible 
Network 
States 

Running 
Time 
(Seconds) 

2 73 212 0.355533 

3 11631 312 123.256963 

4 192595 
412 648.017521 

C. Effect of Varying Network Size on the Obtained 

Reliability Bounds 

This set of experiments investigates the effect of varying 

the network size and the number of allowed iterations (𝑁𝐼𝑇) 

for the proposed framework on the obtained reliability 

lower bounds. The experiments are performed on 𝑊 × 𝑊 

grid deployed networks where each node has a 

transmission range of 1.7 units. Each non-sink node has 3 

possible energy states with associated transmission 

capacities (0, 12, 24) and probabilities (0.25, 0.25, 0.5), 

respectively. Sink nodes have one energy state with 

probability = 1 and a transmission capacity of 24 packets 

per slot. For each application 𝑎𝑝𝑝𝑖, 𝐾𝑟𝑒𝑞(𝑎𝑝𝑝𝑖) is set to a 

quarter of the total traffic generated by application nodes 

(𝐴𝑃𝑁𝑜𝑑𝑒𝑠(𝑎𝑝𝑝𝑖)). 

Results in Fig. 3 show that: 

• Increasing the network size decreases the obtained 

reliability bounds as application sensor nodes become 

farther from their associated application sinks. 

Therefore, more nodes need to be included in the 

constructed pathsets with certain states, which 

decreases the probability of each obtained pathset. 

• The gaps between the obtained bounds for the same 

network size decrease as 𝑁𝐼𝑇 increases. In addition, 

the behaviour of the obtained curves for different 

𝑁𝐼𝑇 is similar. This shows the effectiveness of the 

proposed framework in obtaining good reliability 

bounds in a small number of iterations. In addition, 

this motivates the use of these bounds for solving 

interesting network design problems. 

 
Figure  3. Effect of varying network size and 𝑁𝐼𝑇 . 

D. Effect of Varying Transmission Parameters on the 

Obtained Reliability Bounds 

This set of experiments investigates the effect of 

varying each node's transmission range and capacity on 

the obtained reliability bounds. The experiments are 

conducted on 𝑎 6 × 6 grid deployed network. Each node 

has a transmission range 𝑟𝑐𝑜𝑚,  which varies during the 

experiments. Each non-sink node has 3 possible energy 

states with associated transmission capacities 

(0,
𝑀𝐴𝑋𝐶𝐴𝑃

2
, 𝑀𝐴𝑋𝐶𝐴𝑃) and probabilities (0.25, 0.25, 0.5), 

respectively. MAXCAP is varied during the experiments. 

Each sink node has one possible energy state with 

probability 1 and transmission capacity MAXCAP packets 

per slot. 𝐾𝑟𝑒𝑞 is set to 15 for each application. 

The results in Fig. 4 show that increasing transmission 

range (𝑟𝑐𝑜𝑚) and capacity increases the obtained reliability 

bounds. The main reason is that increasing the 
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transmission range and capacity decreases the number of 

relay nodes required to deliver the traffic from application 

sensor nodes to their application sinks. Such results are 

important for network designers to choose node’s 

transmission parameters that achieve at least certain 

reliability values. 

 
Figure  4. Effect of varying transmission parameters 

E. Optimal Deployment for Application Sinks 

This experiment set shows how the proposed 

framework can be used to solve another network design 

problem. The considered problem calls for choosing the 

best sink location for each application among candidate 

locations to maximize reliability. The experiments are 

conducted on 6 × 6 grid deployed networks where each 

node has a transmission range of 1.7 units. 

1) Known traffic sources 

In this set of experiments, each application sensor node 

generates 12 data packets every time slot. Each non-sink 

node has three possible energy states with associated 

transmission capacities (0, 12, 24) and probabilities 

(
1−𝑝𝑚𝑎𝑥𝑐𝑎𝑝

2
 ,

1−𝑝𝑚𝑎𝑥𝑐𝑎𝑝

2
 , 𝑝𝑚𝑎𝑥𝑐𝑎𝑝) , respectively. 𝑝𝑚𝑎𝑥𝑐𝑎𝑝 

is varied during the experiments. Each sink node has one 

possible energy state with probability 1 and transmission 

capacity 24. Applications 𝑎𝑝𝑝1  and 𝑎𝑝𝑝2  have 5 

candidate pairs of sinks’ locations with coordinates 

((𝑖, 𝑖), (5 −  𝑖, 𝑖))  where (𝑖, 𝑖)  and (5 − 𝑖, 𝑖)  are the 

candidate locations for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 sinks respectively; 

and 𝑖 ∈  [0, 4]. 𝐾𝑟𝑒𝑞 is set to 15 for each application. 

Results in Fig. 5 show that the optimal sinks’ locations 

for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 are (4, 4) and (1, 4), respectively. Fig. 

6 shows for each candidate pair of sink locations the 

number of application sensor nodes in each breadth-first 

search (BFS) layering from their corresponding 

application sink nodes. Placing 𝑎𝑝𝑝1  and 𝑎𝑝𝑝2  sinks in 

locations (4, 4) and (1, 4) allows application sensor nodes 

to have better BFS layering distribution from their 

corresponding sinks. Therefore, the number of required 

relay nodes for forwarding at least the required 𝐾𝑟𝑒𝑞 

packets decreases, increasing the obtained reliability 

solutions. 

 
Figure  5. Effect of varying application sinks' locations with known 

traffic sources 

 
Figure  6. Application sensor nodes layering distribution from their sink 

nodes for known traffic source experiments 

2) Random traffic sources 

In the second set of experiments, each application 

is associated with more sensor nodes. The sensor nodes 

associated with 𝑎𝑝𝑝1include the top row and rightmost 

column nodes except corner nodes. The sensor nodes 

associated with 𝑎𝑝𝑝2 include the bottom row and left-

most column nodes except corner nodes. Only a known 

percentage of application sensor nodes (denoted 

𝑃𝑠𝑜𝑢𝑟𝑐𝑒) generate traffic for each application, while the 

rest do not. The choice of application sensor nodes to 

generate traffic is random, where each chosen sensor 

node generates 12 data packets. For each application, 

𝐾𝑟𝑒𝑞is set to the total amount of traffic generated by the 

application sensor nodes. Each non-sink node has three 

possible energy states with transmission capacities (0, 

24, 48) and probabilities (0.25, 0.25, 0.5), respectively. 

Each sink node has one possible energy state with 

probability = 1 and transmission capacity = 48. Six 

candidate pairs of sink locations for 𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 are 

investigated. Each candidate pair has 𝑎𝑝𝑝1  and 𝑎𝑝𝑝2 

sink locations ((𝑖, 𝑖), (5 −  𝑖, 𝑖))  where 𝑖 ∈  [0, 5] . 

Each experiment is repeated 20 times. 

Fig. 7 shows the obtained results with 95% confidence. 

Both ((2, 2), (2, 3)) and ((3, 3), (3, 2)) pairs achieve the 

highest reliability compared to the other candidate pairs. 

Fig. 8 shows for each candidate pair of sink locations 

the number of application sensor nodes in each breadth-

first search (BFS) layering from their corresponding 

application sink nodes. At location pairs ((2, 2), (2, 3)) and 

((3, 3), (3, 2)), all sensor nodes are in BFS layers 2 and 

3 from their corresponding sinks. At other candidate pairs, 
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sensor nodes are distributed across more BFS layers from 

their corresponding sinks. Therefore, for location pairs ((2, 

2), (2, 3)) and ((3, 3), (3, 2)), the number of relay nodes, 

required to guarantee the delivery of all the generated 

traffic from all application sensor nodes to their 

corresponding sink, is less which increases the obtained 

reliability. 

 

 
Figure  7. Effect of varying application sinks’ locations with random 

traffic sources. 

 
Figure  8. Application sensor nodes layering distribution from their 

sink nodes for random traffic source experiments. 

VI. CONCLUSION 

This paper considers multi-sink energy harvesting 

wireless sensor networks that serve multiple concurrent 

applications. To adapt t o  the fluctuation of each node's 

available energy over time, each node controls its 

transmission capacity based on its available stored energy. 

A novel multicommodity flow reliability problem is 

formalized to estimate the likelihood that the shared 

network is in a state where all applications’ requirements 

are met. The proposed problem is proven to be #P-hard. 

Therefore, a bounding framework is proposed for 

estimating lower bounds on the exact reliability solutions. 

The proposed framework produces exact solutions if 

allowed sufficient running time. Numerical results show 

the effectiveness of the proposed framework and its use in 

solving interesting network design problems. 

Future research directions include developing effective 

algorithms for solving other network reliability problems 

for multi-purpose energy-harry wireless sensor networks 

and investigating the use of the developed algorithms in 

designing effective network management frameworks that 

achieve at least certain reliability levels. 
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