An Optimized Vertical Handover Decision Model for the Heterogeneous DSRC/LTE Vehicular Networks

Michael Agyare 1, 2, *, Jerry John Kponyo 2, Kwasi Adu-Boahen Opare 2, and Kwame Oteng Gyasi 2

1 Department of Telecommunications Engineering, Ghana Communication Technology University, Accra, 00233, Ghana. 2 Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, 00233, Ghana; Email: jjkponyo.soe@knust.edu.gh (J.J.K.), opare@knust.edu.gh (K.A. B.O.), kotenggyasi@knust.edu.gh (K.O.G.).

*Correspondence: magyare@gctu.edu.gh (M.A.)

Abstract—Among a variety of Vehicle-to-Everything (V2X)-supporting access technologies, Dedicated Short Range Communication (DSRC) and cellular communications, e.g., Long Term Evolution (LTE) network is promising reliable and efficient vehicular communications. DSRC has been designed to allow for direct low-latency communications among different vehicles i.e., Vehicle-to-Vehicle (V2V) and between vehicles and Roadside Units (RSU). On the other hand, DSRC suffers from link quality degradation with the presence of buildings and vehicles, especially in urban areas, where channel collisions become serious when vehicle density is high. LTE networks can provide wide area coverage and are favorable to bandwidth-greedy applications, which require high data rates and reliability. Considering the relatively high end-to-end delay for message transmission due to the long Transmission Time Interval (TTI) current LTE networks have drawbacks regarding latency to support high-frequency safety-related information exchange among vehicles in local areas. Combining LTE and DSRC approaches as a heterogeneous solution is essential to fast introduce V2X services for future automated driving. By this intelligent Vertical Handover (VHO) algorithms are needed to ensure seamless connectivity of vehicles to the best network at a particular point in time. For this paper, we propose a 3-input fuzzy-logic-based VHO scheme for Heterogeneous DSRC/LTE Vehicular Communication Networks. The 3 input parameters for the fuzzy logic design were the Received Signal Strength (RSS), Signal to Interference & Noise Ratio (SINR), and Vehicular velocity. A vehicular density scenario was considered for the simulation of the proposed algorithm. Due to the inclusion of vehicular velocity as a parameter, the proposed algorithm enabled the vehicles to establish a longer connection based on their velocity with less decision delay to the best network available.

Keywords—vertical handover, heterogeneous vehicular communication, DSRC, cellular networks

I. INTRODUCTION

Every year, millions of people die in road traffic accidents around the world. About 1.25 million people die each year as the result of road traffic accidents (3400 deaths per day) [1] according to the World Health Organization (WHO) review on road traffic injuries (May 9, 2016). Furthermore, forecasts predict worse conditions by 2020 and estimate that road traffic accident will increase to become the seventh leading cause of death [2]. Preventing these accidents by clearly articulating this prediction has been a challenge. Urgent action and focused efforts are required to prevent and reduce vehicle accidents and improve road safety.

Intelligent Transportation Systems (ITS) have recently attracted academia and industry to save lives, money, time, and the environment. Japan and Sweden have publicly announced the goal of a zero-traffic fatality society by 2020 and beyond, hoping for such technologies (ITS) [3]. The Intelligent Transportation Association (ITSA)’s “Vision Zero” manifesto summarizes its mission to minimize fatal accidents and delays [4]. With the recent development of the automobile and wireless communication technology, the development of ITS solves many vehicle traffic problems, such as information dissemination and traffic congestion. Trains that are also part of the ITS ecosystem were considered for internet wireless connectivity by [5]. One component of ITS for mobile vehicle connectivity and wireless communications is the Vehicle Ad-hoc Network (VANET). VANET, which has evolved into the Internet of Vehicles (IoV), is one of the new technologies with high demand in connectivity [6]. VANET refers to an ad-hoc network made up of different nodes where a node can be a vehicle or a roadside unit. Since vehicles are mobile devices that are always in transit, there is a need to switch from one network to another network [7]. This process of switching from one network to another network is known as handover and has become a very interesting topic of research for the VANET research community.

In modern days, wireless networks have played an important role, as many communication nodes continue to...
grow daily [8]. Increasing network limits to fulfill the developing needs of consumers has prompted the advancement of cell correspondence networks from 1G to 5G and beyond [9]. Terminals in heterogeneous wireless networks perform horizontal handovers in a homogeneous network and vertical handovers between different types of networks [10]. Heterogeneous networks are designed to route some of the data traffic of mobile networks through other co-located wireless access networks. This technique increases the capacity of the mobile network. In such networks, a vertical handover process plays an important role in providing seamless and uninterrupted connectivity as well as the required level of quality of service along with wide coverage for all mobile nodes [11]. Traditional vertical handover algorithms that are based on a single criterion (e.g., received signal strength) are not performing well in terms of excess handover rates, ping-pong effects, handover delays, handover cost, etc. [10–15].

The research will provide an optimized handover model with effective parameters for handover triggers for the heterogeneous DSRC/LTE vehicular network. The research also seeks to provide a study on the performance of the handover decision in heavy vehicular density scenarios and the impact on the network.

The rest of this paper is structured as follows. Heterogeneity in VANET is discussed in Section II. Vertical Handover in Heterogeneous Networks is discussed in Section III. Applying Fuzzy Logic in Heterogeneous Networks is briefly described in Section IV. Section V discusses Handover Using Velocity. Section VI discusses the Formulation of the proposed fuzzy handover model. Section VII and VIII discusses the Vehicular Density Scenario and Simulation and Results respectively.

II. HETEROGENEITY IN VANET

When migrating between heterogeneous networks, flawless handover is the initial step. It is more critical to initiate vertical handover for convenience reasons than for connection purposes (e.g., according to user choice for a specific service). Vertical handover management has two significant challenges: seamlessness and automation in network switching. The growing relevance of interconnectivity across VANETs has been acknowledged by major automobile manufacturers, governmental bodies, and the academic community [12]. Many government initiatives have been carried out in the United States, Japan, and the European Union. The federal communications commission has awarded spectrum to Inter-Vehicle Communications (IVC) and comparable applications [13]. The United States Federal Communication Commission (FCC) assigned 75 MHz of the dedicated short-range communication (DSRC) spectrum at 5.9 GHz between 5.850 and 5.925 GHz for ITS in 1999 [14, 15]. In 2008, the European Telecommunications Standards Institute (ETSI) granted 70 MHz of spectrum in the 5.8 GHz range [16] for DSRC applications. The ISO Communication Access for Land Mobiles (CALM) began DSRC standardization in 2001, and the IEEE 802.11p was concluded in 2010 [17].

In recent years, few studies have investigated heterogeneous vehicle communication. An overview of a single network or ITS is the focus of these existing investigations [14–18]. Wu et al. [19] addressed the challenge of using dedicated short-range communications (DSRC) for vehicle communication and proposed solutions. The authors of [20] provided a comprehensive overview of automotive ad hoc networks. Problems and solutions to connected vehicles were discussed by the authors in [21]. Each system offers its unique advantages, so heterogeneity between different networks is important [22]. 3GPP LTE and IEEE 802.11p/WAVE technologies were compared by Vinel et al. to determine which technologies can support collaborative media security applications [15]. Basic techniques and principles of Internet access in VANET Internet integration scenarios have been studied by Mane & Junnarkar in [23]. To prioritize the dissemination of urgent messages, they worked to improve the performance of mobile gateways and data collection. Furthermore, V2I communication over heterogeneous multilayers with multiple Radio Access Technology (RAT) network environments is reviewed in [24]. The various VANET technologies in the survey were presented by Shahid et al. in [25]; while for vehicle safety at intersections, UMTS and LTE were compared in [26]. In addition, Mir et al. compared a hybrid communication system between LTE and WAVE protocols in [27]. In contrast, for heterogeneous vehicle communications, a combination of both LTE and 802.11p as a hybrid approach has been proposed [28]. Collaborative efforts have been suggested in [29–31] different LTE-VANETs.

DSRC for V2V communication and LTE for V2I communication is one of the best solutions to support vehicular services in the heterogeneous vehicular network as concluded in a study [32] by Zheng et al.

A. Combining DSRC and LTE as a Heterogeneous Solution for Vehicular Communication

With the advancement of information and communication technology (ICT), connected vehicles have become one of the key enablers of cooperative intelligent transportation systems (C-ITS). Communications between vehicle and vehicle (V2V), vehicle and pedestrian (V2P), and vehicle and infrastructure (V2I), which is termed as a vehicle to everything (V2X), greatly improve road safety and efficiency. For accelerating the implementation, the first set of C-ITS standards have been published in 2014 by the European Telecommunication Standards Institute (ETSI), where a common communication architecture, i.e., ITS station [33] was introduced. The ITS station reference architecture consists of horizontal and vertical layers, which are interconnected via logical interfaces between two adjacent layers. The horizontal layers include the access layer, the networking, and transport layer, the facilities layer, and the application layer, which follow the layered architecture of the open system interconnection (OSI) architecture with modifications. The newly introduced facilities layer provides services such as messages generation, positioning, and timing to support C-ITS applications. The vertical layers include the management layer and the security layer, which take care
of cross-layer management and security, respectively. The C-ITS is designed to support other radio access technologies (RAT) such as WiFi, and wide-range communications such as long-term evolution (LTE) but the current standard focuses on the dedicated short-range communication (DSRC)/802.11p. Methods to integrate different access technologies such as heterogeneous communication architecture remain a challenge. Among a variety of V2X-supporting access technologies, DSRC, and cellular communications, e.g., LTE is promising reliable and efficient vehicular communications. DSRC has been designed to allow for direct low-latency communications among different vehicles (i.e., V2V) and between vehicles and roadside units (RSU) (i.e., V2I) [34]. On the other hand, DSRC suffers from link quality degradation with the presence of buildings and vehicles, especially in urban areas, where channel collisions become serious when vehicle density is high [35]. While DSRC is yet to be implemented, cellular V2X (C-V2X) is catching up thanks to the advancement of radio access technologies as well as the well-maintained infrastructure. V2X Standard has been published by the 3rd generation partnership project (3GPP) in Release 15 [36], while evolution to LTE advanced and future 5G networks is under standardization. LTE networks, as the de-facto cellular networks, can provide wide area coverage and is favorable to bandwidth-greedy applications, which require high data rate and reliability. Considering the relatively high end-to-end delay for message transmission due to the long transmission time interval (TTI) current LTE networks have drawbacks regarding latency to support high-frequency safety-related information exchange among vehicles in local areas.

Combining LTE and DSRC approaches as a heterogeneous solution is essential to fast introduce V2X services for future automated driving. A realistic simulation scenario based on a city for hybrid LTE/802.11p vehicular communications was proposed in [37], allowing the investigation of system performance in different use cases. Several studies, e.g., [38, 39], introduced hybrid architectures, where either DSRC interface or cellular networks is used for vehicular communications with an Always Best Connected approach. Authors in [40] proposed a hybrid approach to support video streaming applications by offloading data transmission based on RAT selection. However, the experiments were conducted using a testbed embedded in only two vehicles with basically no competition on bandwidth. Thus, more realistic scenarios with vehicles’ competition for transmission under complicated road and traffic conditions should be investigated. The abovementioned approaches [32, 34, 35] usually take an either-or approach by switching between LTE and DSRC interfaces mainly based on the performance of DSRC assuming that LTE has unlimited resources, which is not realistic. Future V2X services have various service requirements. Safety-related messages need to be transmitted frequently with very low latency and high reliability, while emerging advanced services such as video streaming but could be only active for certain situations. Since neither LTE nor DSRC can support V2X, RAT selection, and vertical Handover Algorithms are needed to ensure seamless communication.

III. VERTICAL HANDOVER IN HETEROGENEOUS NETWORKS

Most of the traditional approaches use RSS to make handover decisions. These approaches compare the RSS of the current network with the RSS of the other available networks to make handover decisions. These approaches yield a severe ping-pong effect when the device moves around the overlay region of various heterogeneous networks [36, 37]. This ping-pong effect leads to unessential handover and brings low throughput, high handover delay, and a high dropping rate. In VHO, many network parameters affect deciding the handover. These include security, cost, QoS performance (throughput, data rate, delay, jitter, latency, etc.), power consumption, and available bandwidth [41]. A flexible fair scheme is proposed in [42], which assigns resources to the Users Equipments (UEs) on the basis of modulation and coding scheme (MCS) and number of component carriers (CCs) allocated. It provides fairness by assigning number of CCs on the basis of its MCS. The QoS criteria of various wireless technologies, which can be considered for handover, are listed in Table I.

TABLE I. FUZZY INPUT PARAMETERS

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSS</td>
<td>>=50dBm</td>
<td>-65dBm to -90dBm</td>
<td><=-119dBm</td>
</tr>
<tr>
<td>SINR</td>
<td>>=-25dB</td>
<td>-20dB to -10dB</td>
<td><=-10dB</td>
</tr>
<tr>
<td>Vehicular</td>
<td><35Km/h</td>
<td>35Km/h to 75Km/h</td>
<td>>75Km/h</td>
</tr>
<tr>
<td>Velocity</td>
<td><75Km/h</td>
<td>75Km/h to 125Km/h</td>
<td>>125Km/h</td>
</tr>
</tbody>
</table>

A cost function-based VHO algorithm is proposed in [43]. The cost function considers different parameters such as cost, power consumption, and available bandwidth. A vertical handover decision function (VHDF) is proposed in [44]. This function is evaluated for all the available networks. The network with the highest VHDF is selected as the most desirable network for handover. To obtain the highest possible QoS, the network with the maximum available bandwidth is chosen as the target network. Many of the VHO algorithms use rank to select the best network among different available networks. These algorithms depend on various QoS parameters as well as different criteria like terminal capabilities, user profile, and network state. Multiple Attribute Decision-Making (MADM) algorithms are very popular to solve these types of problems [45]. The very popular MADM algorithms in the literature are simple additive weighting (SAW) [46], a technique for order preference by similarity to ideal solution (TOPSIS) [47], VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [48]. Due to their decision accuracy and lower computational complexity, MADM methods are widely preferred for VHO decisions. But these methods will not be the best choice when the number of QoS parameters is increased. The increase in
the QoS parameters increases computational complexity and decision delays.

In this paper, we propose a fuzzy logic-based handover algorithm for the heterogeneous LTE/DSRC solution. This is based on the ITS station reference architecture [49] as seen in Fig. 1. The fuzzy logic algorithm is introduced at the facilities layer to take care of network performance monitoring and network selection. This uses three handover trigger parameters to make a handover decision. This Received Signal Strength (RSS), Signal to Noise to-interference ratio (SINR), and Vehicular velocity. We analyze the performance of the proposed system in a vehicular density scenario that require seamless connection and a high data rate. We perform a simulation using Veins and Simulation of Urban Mobility (SUMO) to evaluate the overall network performance in terms of Probability of Handover Failure, Handover Decision Delay (s), and Average Data Rate by each Vehicle (Mbps) with up to 100 vehicles. The simulation results in section VIII show that our proposed system provides lower value in terms of Probability of Handover Failure, Handover Decision Delay (s), and a better Average Data Rate by each Vehicle (Mbps) as compared to SAW [46], TOPSIS [47], VIKOR [48], Fuzzy SAW [41].

IV. APPLYING FUZZY LOGIC IN HETEROGENEOUS NETWORKS

Most of the VHO decision-making depends on RSS, which fluctuates based on the velocity, distance, shadowing factor, etc. This makes the handover decision unreliable. The imprecise input parameters may cause inaccurate VHO decisions, which may cause under- or over-utilization of network resources. Fuzzy logic can effectively handle imprecise data related to radio, QoS parameters, and user preferences [41].

Fuzzy logic can also be used in VHO decisions. Fuzzy-based algorithms are intelligent, fast, and reliable, which always keeps decision delay lower even when the number of RATs and input parameters are increased. This minimizes unessential handovers and decision delays and maximizes the percentage of user satisfaction. Fuzzy-logic-based algorithms are highly accurate and offer higher network efficiency, but they are also highly complex [45–48]. The increase in the number of input parameters and the membership functions increases the complexity. Hence, to address the trade-off between reliability and complexity, the fuzzy input parameters, rules and the number of fuzzy controllers should be appropriately chosen as per the objectives.

In recent years, various fuzzy-logic-based handover decision algorithms are proposed. A fuzzy logic in conjunction with one of the MADM called TOPSIS is proposed in [50] to minimize the handover latency, blocking probability, and unessential handovers between WiMAX and 4G standards. The proposed approach uses four fuzzy controllers like RSS, QoS, velocity, and battery life to make decisions. The output from each fuzzy controller is fed into TOPSIS to determine the most appropriate target network for handover. To reduce handover latency and unessential handovers in the LTE network, a fuzzy-logic-based handover triggering approach is proposed in [51], which triggers handover promptly. A QoS-aware fuzzy-logic-based network selection scheme is proposed in [52] to guarantee the network QoS. This scheme suffers from unacceptable execution time, which increases with the number of decision parameters. The increased execution time increases the handover latency. In [53], the trade-off between complexity and consistency in target network selection is addressed with the help of fuzzy logic. Here, the authors discuss three different approaches fuzzy-only approach, fuzzy integrated with AHP and principal component analysis (PCA), and fuzzy integrated with fuzzy analytic hierarchy process (FAHP) and PCA. Based on the parameters such as velocity, network traffic load, and cost, fuzzy logic controllers estimate the user satisfaction degree (USD) and the necessity of handover.

A. RSS and SINR for Handover Decision-Making

The RSS from the target network influences signal-to-noise ratio (SNR), signal-to-interference plus noise ratio (SINR), bit error rate (BER), and capacity [54]. The reduction in signal strength from a serving network leads to service interruption and service drop. Thus, RSS is an important metric in considering the target network for handover.

Some other works have studied the effect of considering the SINR on the handover procedure in HetNets to improve the performance of the network [50–53]. For example, in [55], the authors analyzed the multi-slot performance of a moving user considering the spatial correlation and the SINR in a HetNet. Expressions of multi-slot coverage probability and the handover rate are figured out. The authors concluded that the coverage probability and the handover rate perform better when the handover procedure considers the SINR level instead of the nearest distance strategy. In [56], the position and timing parameters of the handover were predicted.
According to the present SINR value. With this prediction, a long-term window scheduling algorithm is utilized and compared to a window scheduling of 5 ms. With this strategy, a higher average data rate per user is achieved. However, the authors do not report an analysis of handover failures and ping-pong handovers. In [57], a performance evaluation of vertical handover in HetNets based on SINR was presented and compared to a vertical handover based on the received signal strength (RSS). The results indicate that the SINR-based vertical handover produces a higher system throughput and lower end-to-end delay in comparison to when an RSS-based vertical handover is considered. Also, in [58], an algorithm to adjust the time-to-trigger and hysteresis margin parameters (based on the energy reduction gain, SINR, and ping-pong handover ratio) of the handover procedure was proposed. The results show an improvement in the system energy efficiency and ping-pong handover ratio. The authors analyzed the uplink SINR in the downlink/uplink decoupling environment and evaluated the performance of the system, which resulted in an increased uplink SINR and decreased power consumption.

SINR is an important parameter to improve on the issues with handover decision-making. Therefore, it is considered the second input parameter for this work.

V. HANDOVER USING VELOCITY

In wireless communication networks, the estimation of the mobile users’ velocity is an essential part of upgrading network execution. Subsequently, in recent years portable velocity estimation has been broadly considered in the literature [54–57]. The handover count-based strategy [59] was firmly related to the velocity estimation approach, where the UE’s mobility is evaluated utilizing the handover quantity achieved by the UE in a predefined time window. Existing Long-Term Evolution (LTE) and LTE-Advanced innovations utilize the handover-count strategy to classify the mobility condition of UE into three large classes: low, medium, and high mobility. Hypothetically, the sojourn time-based velocity estimation in [60] resulted in more exact than handover count-based velocity estimation. The author appraised the UE velocity in light of sojourn time samples and small cell base station (SBS) density. However, this work used an unrealistic mobility system. Furthermore, indeterminate estimation in the limit of small cells was experienced. In [61], the radial velocity was gained through the most extreme Doppler spread estimation of the received signal in mobile communications, although it required an extensive perception interim and signal noise ratio (SNR) higher than 30 dB.

Tracking velocity can fundamentally enhance handover algorithm execution by simultaneously decreasing both the handover quantity and the handover delay, as demonstrated in [58, 61]. The authors of [62] perceived the effect of the handover execution on communication quality, and they thus proposed a basic, effective, aware handover management scheme endeavoring to maintain longer service continuation with serving base stations (BSs) and decrease the handover rate and its related signaling. Using mathematical expressions, they demonstrated that the proposed handover method accomplished an impressive gain in terms of throughput. However, they supposed during the handover execution that no information was transmitted. Taking into account that their numerical results for delay achieved high esteem, allowing communication and measuring packet loss through handover is attractive and will help produce the QoS achieved by their system. The authors of [63] demonstrated how low quality in handover execution could result in severe interruption and call drops in communication, which remains a pressing issue yet to be solved. The authors thus examined a handover system given distance data for LTE high-velocity rail networks. The strategy for choosing a handover reference point depended on the situation given specific channel conditions. The outcomes demonstrated that a small region appropriate to triggering in the overlap area can be obtained, and handover execution can be expanded by diminishing the HOF probability and wiping out ping-pong (PP) handover.

The above studies in the literature have shown velocity as a parameter for improving the issues with handover decision-making to be effective. Therefore, it is also considered the third input parameter for this work.

A. Considering RSS and SINR

The index HN will be used to designate a given Communication Technology (Comm. Tech.)

Let T_0^{HN} denote the considered network-serving node of Comm. Tech. HN in the reference cell.

Let then $(T_0^{HN}, x = 1, \ldots, M^{HN})$ be the set of the M^{HN} interfering network serving nodes deployed for Comm. Tech. HN. For HN, let P^{HN} be the power emitted by T_0^{HN}. The power received (RSS) can be expressed in Eq. (1):

$$P^{HN}(w) = P^{HN} \times Y^{HN} \times X_w$$

(1)

where the random variables X_w are independent and identically distributed and follow an exponential distribution of parameter λ as fading is considered [64]. Pathloss for vehicle w, $Y^{HN}(w)$ depends on the distance $l(w)$ from T_0^{HN} and can be given as seen in Eq. (2):

$$Y^{HN}(w) = E^{HN}/l(w)^\beta$$

(2)

where β is the path loss exponent and E^{HN} a constant characterizing the radio propagation in T_0^{HN}.

From Eq. (1) the RSS of a vehicle w associated with communication technology HN can be written as seen in Eq. (3)

$$RSS = P^{HN} \times Y^{HN} \times X_w$$

(3)

RSS among network serving nodes in communication technology HN can be determined using Eq. (4)

$$\delta^{HN}_{i+1} = |RSS^{HN}(w)_{i} - RSS^{HN}(w)_{i+1}| < \delta^{HN}_{i+1}$$

(4)

where $RSS^{HN}(w)_{i}$ is a received RSS from the serving network node and $RSS^{HN}(w)_{i+1}$ is a received RSS from the neighboring network serving nodes, and δ^{HN}_{i+1} is the
threshold determined by the AI model (Fuzzy Logic System). Neighbor cells that satisfy Eq. (4) will be designated by the AI model as candidate cells with good RSS.

SINR of a vehicle \(w \) associated with communication technology \(H_N \) can be written as seen in Eq. (5)

\[
\text{SINR}^{HN}(w) = \frac{g^{HN} \times P_w}{\sigma^2 + \text{SNR}^{HN}(w)}
\]

where \(\sigma^2 \) is the background noise. Also, \(T_{w}^{HN} \) is the path loss between \(T_{0}^{HN} \) and vehicle \(w \) [65]. The best SINR among network serving nodes in communication technology \(H_N \) can be determined using Eq. (6);

\[
\delta_{i}^{HN} = |\text{SINR}^{HN}(w)_{0} - \text{SINR}^{HN}(w)_{c}| < \delta_{i+1}^{HN}
\]

where \(\text{SINR}^{HN}(w)_{0} \) is a received SINR from the serving network node and \(\text{SINR}^{HN}(w)_{c} \) is a received SINR from the neighbor network serving nodes [65], and \(\delta_{i+1}^{HN} \) is the threshold determined by the AI model. Neighbor cells that satisfy Eq. (6) will be designated by the AI model as candidate cells with good SINR.

B. Deriving Expression for Vehicular Velocity Considering RSS and SINR

\(\text{SINR}^{HN}(w) \) can also be written as seen in Eq. (7);

\[
\text{SINR}^{HN}(w) = \frac{G_w \times P_w}{\sigma^2 + P_{w}}
\]

where \(G_w \) is the channel gain between vehicle \(w \) and its associated \(T_{0}^{HN} \), \(P_w \) is the power emitted by \(T_{0}^{HN} \), \(\sigma^2 \) is the background noise power received by the vehicle, and \(P_{w} \) is the interference from other neighboring network serving nodes \(T_{w}^{HN} \).

The path loss model that is used here is a macro-cell propagation model for urban and suburban areas. For the antenna height of 15 meters, the path loss is [2]

\[
G(dB) = 58.8 + 21.5 \log_{10}(f) + 37.6 \log_{10}(D) + \log F
\]

where \(f \) is the carrier frequency (5.9GHz for DSRC and LTE (C-V2X)), \(D \) is the distance in meters between the vehicle and the \(T_{0}^{HN} \), and \(\log F \) is the log-normal distributed shadowing with standard deviation \(\sigma = 10dB \).

Based on Eq. (6), the threshold for estimating a good SINR by the AI Model can be written as;

\[
\delta = \text{SINR}^{HN}(w)_{n} - \text{SINR}^{HN}(w)_{c}
\]

Substituting Eq. (7) to Eq. (9), then we have Eq. (10)

\[
\delta = \frac{G_w \times P_{w}}{\sigma^2 + P_{w}} - \frac{G_w \times P_{w}}{\sigma^2 + P_{w}}
\]

where notation \(c \) is indicating the current serving cell, notation \(n \) is indicating the neighbor cell, and \(w \) is representing \(w^{th} \) vehicle.

Substituting Eq. (8) in the ratio (antilog) form, we have Eq. (11)

\[
\delta = \frac{10^{\left(\frac{37.6 \log_{10}(G_{n}) + \log F}{2} \right) \times P_{w}}}{\sigma^2 \times P_{w}} - \frac{10^{\left(\frac{37.6 \log_{10}(G_{c}) + \log F}{2} \right) \times P_{w}}}{\sigma^2 \times P_{w}}
\]

where \(G_n = 58.8 + 21 \log_{10}(f_n) + \log F \) and \(G_c = 58.8 + 21 \log_{10}(f_c) + \log F \)

The AI model uses, \(\delta \) as a parameter to force a vehicle to stay longer in the appropriate cell concerning its velocity, we calculate the velocity in \(D_{n_{w}} \) and \(D_{c_{w}} \), in Eq. (11).

The system model in Fig. 2 below is used to define the relation between \(\delta \) and vehicular velocity.

\[
D_{n_{w}} = \sqrt{(x_2 - (x_c + (v \times t_{\delta}) \cos \alpha))^2 + (y_2 - (y_c + (v \times t_{\delta}) \sin \alpha))^2}
\]

(12)

and

\[
D_{c_{w}} = \sqrt{(x_2 - (x_c + (v \times t_{\delta}) \cos \alpha))^2 + (y_2 - (y_c + (v \times t_{\delta}) \sin \alpha))^2}
\]

(13)

\(\psi \) is vehicular velocity and \(t_{\delta} \) is the time needed to travel from \(V_c \) point to \(V \) point. The relation between \(\delta \) and vehicular velocity can be directly understood when Eq. (12) and Eq. (13) are substituted in Eq. (11).

\(\delta \) implies that for every value of velocity \(\psi \), the same value of \(t_{\delta} \) will result in a different value of \(\delta \).

The coordinate of \(V_c \) point is needed to start applying \(t_{\delta} \) and it can be found when the vehicle receives the same SINR from the serving and the neighbor cell when

\[
\delta = 0
\]

(14)

\[0 = \text{SINR}^{HN}(w)_{n} - \text{SINR}^{HN}(w)_{c}\]

(15)

\[
\text{SINR}^{HN}(w)_{n} = \text{SINR}^{HN}(w)_{c}
\]

(16)

\[
\frac{G_w \times P_{w}}{\sigma^2 \times P_{w}} = \frac{G_w \times P_{w}}{\sigma^2 \times P_{w}}
\]

(17)

Substituting Eq. (8), we have Eq. (18)

\[
\frac{10^{\left(\frac{37.6 \log_{10}(D_{n_{w}}) + \log F}{2} \times P_{w}}}{\sigma^2 \times P_{w}} - \frac{10^{\left(\frac{37.6 \log_{10}(D_{c_{w}}) + \log F}{2} \times P_{w}}}{\sigma^2 \times P_{w}}
\]

(18)

where

\[
\delta = 0
\]

(14)

\[0 = \text{SINR}^{HN}(w)_{n} - \text{SINR}^{HN}(w)_{c}\]

(15)

\[
\text{SINR}^{HN}(w)_{n} = \text{SINR}^{HN}(w)_{c}
\]

(16)

\[
\frac{G_w \times P_{w}}{\sigma^2 \times P_{w}} = \frac{G_w \times P_{w}}{\sigma^2 \times P_{w}}
\]

(17)

Substituting Eq. (8), we have Eq. (18)

\[
\frac{10^{\left(\frac{37.6 \log_{10}(D_{n_{w}}) + \log F}{2} \times P_{w}}}{\sigma^2 \times P_{w}} - \frac{10^{\left(\frac{37.6 \log_{10}(D_{c_{w}}) + \log F}{2} \times P_{w}}}{\sigma^2 \times P_{w}}
\]

(18)

where
The related degree of membership plot from the target network are good and the vehicle is moving the vehicular velocity. If the RSS and the SINR values determined by the AI model.

\[
\begin{align*}
D_{r_w} &= \sqrt{(x_2 - (x_0 + (v \cdot t) \cos \alpha))^2 + (y_2 - (y_0 + (v \cdot t) \sin \alpha))^2} \\
D_{c_w} &= \sqrt{(x_1 - (x_0 + (v \cdot t) \cos \alpha))^2 + (y_1 - (y_0 + (v \cdot t) \sin \alpha))^2} \\
37.6 \log_{10}(R) &= \left((x_2 - (x_0 + (v \cdot t) \cos \alpha))^2 + (y_2 - (y_0 + (v \cdot t) \sin \alpha))^2 \right)^{1/2} + \gamma_2 \end{align*}
\]

where \(t \) is the time for the vehicle to travel from point \(V_0 \) to point \(V_c \). Substituting Eq. (19) and Eq. (20) to Eq. (18) and rearranging them, finally, it can be seen that \(V_c \) point is the point when Eq. (21) is satisfied.

From the above expression the vehicular velocity can be calculated by the time \((t) \) it takes a vehicle to move from point \(V_0 \) to point \(V_c \).

The velocity of a vehicle is associated with communication technology \(HN \) can be written as seen in Eq. (22).

\[
V^{HN}(w) = \frac{\Delta v}{\Delta t}
\]

where \(\Delta v \) is the change in position of the vehicle and \(\Delta t \) is the change in time of a vehicle to move from point \(V_0 \) to point \(V_c \).

We can say let:

\[
\delta_{t_{i+1}}^{HN} = |V^{HN}(w)_0 - V^{HN}(w)_x| < \delta_{t_{i+1}}^{HN}
\]

where \(V^{HN}(w)_0 \) is the vehicular velocity from the serving network node and \(V^{HN}(w)_x \) is the vehicular velocity approaching the target node, and \(\delta_{t_{i+1}}^{HN} \) is the threshold determined by the AI model.

The AI model will decide on handover depending on the RSS and SINR of the serving/target network node against the vehicular velocity. If the RSS and the SINR values from the target network are good and the vehicle is moving with a low velocity, it means the AI model can initiate handover to ensure a longer connection with the target network for a better network services experience.

VI. FORMULATION OF THE PROPOSED FUZZY HANDOVER MODEL

The efficient selection of appropriate inputs, membership functions, and rules make fuzzy logic a suitable candidate for target network selection. For an effective handover with minimal delay, the RSS, SINR, and Velocity (Vehicular Velocity) used in literature are considered in this work as combined handover triggers. These three parameters are considered input parameters to the fuzzy logic system for decision making as shown in Fig. 3. Mamdani-based fuzzy system is used in this work [66]. Because of simple formulas and lower computational complexity, both trapezoidal and triangular membership functions are widely used in real-time applications. The subjective degree of convenience to achieve fuzzy linguistic scale coverage is more for trapezoidal than for triangular membership functions. The fuzzy input range is divided equally (approximately 30%) for three linguistic variables, and the membership functions are developed accordingly. Depending on this, 21 rules are developed. If we use five linguistic variables for every input, there will be 125 fuzzy rules, which will increase the overall computational complexity. The defuzzifier works based on the center-of-gravity method [67]. The crisp output from the defuzzifier is the handoff factor (HF), which is used to rank the networks during the target network selection stage. Five membership functions for HF are formed. The three-input fuzzy system used for VHO decision-making is illustrated in Fig. 3. After the handover, the service received from the target network should have good quality.

The fuzzy sets for RSS of the ith network are represented by the linguistic variables weak, medium, and strong. These are described by the membership functions \(R^1_i(t) \), \(R^2_i(t) \) and \(R^3_i(t) \) in Eqs. (24–26) respectively. The range for RSS is considered to be -119 to -50 dBm as shown in Table I. The related degree of membership plot is displayed in Fig. 4.

![Figure 3. Fuzzy Logic System with 3-Inputs and 1-Output.](image-url)
Figure 4. Membership function plot for RSS.

\[R_1^i(\eta) = \begin{cases}
1, & \text{if } -119 \leq \eta \leq -102 \\
\frac{-88.9 - \eta}{13.1}, & \text{if } -102 \leq \eta \leq -88.9 \\
0, & \text{if } \eta \geq -88.9
\end{cases} \quad (24) \]

\[R_2^i(\eta) = \begin{cases}
0, & \text{if } \eta > -102 \\
\frac{+102}{13.1}, & \text{if } -102 \leq \eta \leq -88.9 \\
1, & \text{if } -88.9 \leq \eta \leq -68.2 \\
\frac{-54.6 - \eta}{13.6}, & \text{if } -68.2 \leq \eta \leq -54.6 \\
0, & \text{if } \eta \geq -54.6
\end{cases} \quad (25) \]

\[R_3^i(\eta) = \begin{cases}
0, & \text{if } \eta \leq -68.2 \\
\frac{+68.2}{13.6}, & \text{if } -68.2 \leq \eta \leq -54.6 \\
1, & \text{if } -54.6 \leq \eta \leq -40
\end{cases} \quad (26) \]

Figure 5. Membership function plot for SINR.

\[S_1^i(\zeta) = \begin{cases}
1, & \text{if } 0 \leq \zeta \leq 4.85 \\
\frac{10.25 - \zeta}{5.4}, & \text{if } 4.85 \leq \zeta \leq 10.25 \\
0, & \text{if } \zeta \geq 10.25
\end{cases} \quad (27) \]

\[S_2^i(\zeta) = \begin{cases}
\frac{\zeta - 7.75}{3}, & \text{if } 7.75 \leq \zeta \leq 10.75 \\
0, & \text{if } \zeta < 7.75 \\
1, & \text{if } 10.75 \leq \zeta \leq 19.25 \\
\frac{22.26 - \zeta}{3.01}, & \text{if } 19.25 \leq \zeta \leq 22.26 \\
0, & \text{if } \zeta \geq 22.26
\end{cases} \quad (28) \]

\[S_3^i(\zeta) = \begin{cases}
0, & \text{if } \zeta \leq 20 \\
\frac{\zeta - 20}{5.75}, & \text{if } 20 \leq \zeta \leq 25.75 \\
1, & \text{if } 25.75 \leq \zeta \leq 31.25
\end{cases} \quad (29) \]

SNIR is a measure of Signal Quantity, Interference, and Noise Quantity and it is a very important measurement in terms of RF sometimes it is also called SNR in absence of interference. It indicates how much the desired signal is stronger compared to Noise and interference. Maintaining a satisfactory user-experiencing SNIR for a higher data rate is a major challenging task during a handover process. The fuzzy sets for SINR of the ith network are represented by the linguistic variables poor, good, and excellent. These are described by the membership functions \(S_1^i(\zeta) \), \(S_2^i(\zeta) \) and \(S_3^i(\zeta) \), in Eqs. (27), (28), and (29) respectively. The range for data rate is considered to be 1–30 dB as shown in Table I. The related degree of membership plot is displayed in Fig. 5.
Knowing the velocity of the vehicle determines how fast or slow a vehicle is moving into an adjacent cell or leaving the current cell. Thus, vehicular velocity is considered one of the inputs for FIE. The fuzzy sets for a vehicular velocity of represented by the linguistic variables slow, medium, high, and very high. These are described by the membership functions $V_1(\kappa), V_2(\kappa), V_3(\kappa),$ and $V_4(\kappa),$ in Eqs. (30–32) respectively. The range for vehicular velocity is considered to be 0–100 km/h as shown in Table I. The related degree of membership plot is displayed in Fig. 6.

A fuzzy set called HF is used to decide the target network. The fuzzy sets for HF of the ith network are represented by the linguistic variables very low, low, medium, high, and very high. These are described by the membership functions $HF_1(\theta), HF_2(\theta), HF_3(\theta),$ and $HF_4(\theta),$ in Eqs. (33–37) respectively. The related degree of membership plot is displayed in Fig. 7.

![Figure 6. Membership function plot for vehicular velocity.](image)

$$V_1(\kappa) = \begin{cases} 1, & \text{if } 0 \leq \kappa \leq 20 \\ \frac{40-\kappa}{20}, & \text{if } 20 \leq \kappa \leq 40 \\ 0, & \text{if } \kappa \geq 40 \end{cases}$$ (30)

$$V_2(\kappa) = \begin{cases} 0, & \text{if } \kappa < 20 \\ \frac{40-\kappa}{20}, & \text{if } 20 \leq \kappa \leq 40 \\ \frac{80-\kappa}{19.1}, & \text{if } 40 \leq \kappa \leq 60.9 \\ 1, & \text{if } \kappa \geq 60 \\ 0, & \text{if } \kappa \leq 60.9 \\ \frac{80-\kappa}{19.1}, & \text{if } 60.9 \leq \kappa \leq 80 \\ 1, & \text{if } 80 \leq \kappa \leq 100 \end{cases}$$ (31)

$$V_3(\kappa) = \begin{cases} 1, & \text{if } 0 \leq \kappa \leq 20 \\ \frac{40-\kappa}{20}, & \text{if } 20 \leq \kappa \leq 40 \\ 0, & \text{if } \kappa \geq 40 \end{cases}$$ (30)

$$V_4(\kappa) = \begin{cases} 0, & \text{if } \kappa < 20 \\ \frac{40-\kappa}{20}, & \text{if } 20 \leq \kappa \leq 40 \\ \frac{80-\kappa}{19.1}, & \text{if } 40 \leq \kappa \leq 60.9 \\ 1, & \text{if } \kappa \geq 60 \\ 0, & \text{if } \kappa \leq 60.9 \\ \frac{80-\kappa}{19.1}, & \text{if } 60.9 \leq \kappa \leq 80 \\ 1, & \text{if } 80 \leq \kappa \leq 100 \end{cases}$$ (31)

$$HF_1(\theta) = \begin{cases} 1, & \text{if } \theta \leq 0 \\ \frac{0.225-\theta}{0.225}, & \text{if } 0 \leq \theta \leq 0.225 \\ 0, & \text{if } \theta \geq 0.225 \end{cases}$$ (33)

$$HF_2(\theta) = \begin{cases} 0, & \text{if } \theta \leq 0 \\ \frac{\theta-0.225}{0.225}, & \text{if } 0 \leq \theta \leq 0.225 \\ 1, & \text{if } 0.225 \leq \theta \leq 0.275 \\ \frac{0.275-\theta}{0.25}, & \text{if } 0.275 \leq \theta \leq 0.475 \\ 1, & \text{if } 0.475 \leq \theta \leq 0.525 \\ \frac{0.525-\theta}{0.2}, & \text{if } 0.525 \leq \theta \leq 0.725 \\ 0, & \text{if } \theta \geq 0.725 \end{cases}$$ (35)

$$HF_3(\theta) = \begin{cases} 0, & \text{if } \theta \leq 0.275 \\ \frac{\theta-0.275}{0.2}, & \text{if } 0.275 \leq \theta \leq 0.475 \\ 1, & \text{if } 0.475 \leq \theta \leq 0.525 \\ \frac{0.525-\theta}{0.2}, & \text{if } 0.525 \leq \theta \leq 0.725 \\ 0, & \text{if } \theta \geq 0.725 \end{cases}$$ (36)

$$HF_4(\theta) = \begin{cases} 0, & \text{if } \theta \leq 0 \\ \frac{\theta-0.475}{0.25}, & \text{if } 0 \leq \theta \leq 0.225 \\ 1, & \text{if } 0.225 \leq \theta \leq 0.275 \\ \frac{0.275-\theta}{0.25}, & \text{if } 0.275 \leq \theta \leq 0.475 \\ 0, & \text{if } \theta \geq 0.475 \end{cases}$$ (34)

where $HF \in [0, 1].$ In fuzzy logic, linguistic variables are used to map the input sets to the output sets. The rules for the FIE are developed based on the input and output fuzzy sets. The fuzzy rules used by the FIE are listed in Table II. RSS is the fundamental parameter in VHO decisions. In general, RSS-based algorithms are low-complex and the least accurate. The fluctuations in RSS will also cause inaccurate decisions [60, 62, 63]. To achieve smooth handover and seamless connection SINR and Vehicular Velocity are also considered as the input parameters in the VHO decision-making process. The conventional approaches do not consider the complexities arising when dealing with uncertainties and sudden input variations. Because of its strength in adapting to randomly changing inputs and dealing with uncertainties, fuzzy logic is used.
HF is calculated with the help of the center-of-gravity method [68] using

$$HF = \frac{\sum_{i=1}^{T} HF(\theta_i)\theta_i}{\sum_{i=1}^{T} HF(\theta_i)}$$ \hspace{1cm} (38)$$

where T is the number of samples required to calculate HF. The variations of HF value for any two of the three inputs are shown in Figs. 8–10. The surface plot in Figs. 8–10 are the decision output of the fuzzy system based on the fuzzy rules in Table II. In Fig. 8, HF versus RSS-Vehicular Velocity combinations is plotted. The increase in RSS and decrease in Vehicular Velocity increase the HF. In Fig. 9, HF versus SINR-Vehicular Velocity combinations is plotted. From the surface plot, it is understood that an increase in SINR and a decrease in Vehicular Velocity, results in higher HF. In Fig. 10, HF versus SINR-RSS combinations is plotted. It is observed that high SINR and RSS values result in higher HF.
TABLE II. FUZZY RULES USED BY THE FIE

<table>
<thead>
<tr>
<th>NO.</th>
<th>RSS</th>
<th>SINR</th>
<th>Vehicular Velocity</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Strong</td>
<td>Excellent</td>
<td>Slow</td>
<td>Very High</td>
</tr>
<tr>
<td>2.</td>
<td>Strong</td>
<td>Excellent</td>
<td>Fast</td>
<td>Very High</td>
</tr>
<tr>
<td>3.</td>
<td>Strong</td>
<td>Excellent</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>4.</td>
<td>Strong</td>
<td>Good</td>
<td>Slow</td>
<td>Very High</td>
</tr>
<tr>
<td>5.</td>
<td>Strong</td>
<td>Good</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>6.</td>
<td>Strong</td>
<td>Good</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>7.</td>
<td>Strong</td>
<td>Poor</td>
<td>Slow</td>
<td>Low</td>
</tr>
<tr>
<td>8.</td>
<td>Strong</td>
<td>Poor</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>9.</td>
<td>Strong</td>
<td>Poor</td>
<td>Fast</td>
<td>Very Low</td>
</tr>
<tr>
<td>10.</td>
<td>Medium</td>
<td>Excellent</td>
<td>Slow</td>
<td>High</td>
</tr>
<tr>
<td>11.</td>
<td>Medium</td>
<td>Excellent</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>12.</td>
<td>Medium</td>
<td>Excellent</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>13.</td>
<td>Medium</td>
<td>Good</td>
<td>Slow</td>
<td>High</td>
</tr>
<tr>
<td>14.</td>
<td>Medium</td>
<td>Good</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>15.</td>
<td>Medium</td>
<td>Good</td>
<td>Fast</td>
<td>Low</td>
</tr>
<tr>
<td>16.</td>
<td>Medium</td>
<td>Poor</td>
<td>Slow</td>
<td>Very Low</td>
</tr>
<tr>
<td>17.</td>
<td>Medium</td>
<td>Poor</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>18.</td>
<td>Medium</td>
<td>Poor</td>
<td>Fast</td>
<td>Very Low</td>
</tr>
<tr>
<td>19.</td>
<td>Weak</td>
<td>Excellent</td>
<td>Slow</td>
<td>High</td>
</tr>
<tr>
<td>20.</td>
<td>Weak</td>
<td>Excellent</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>21.</td>
<td>Weak</td>
<td>Excellent</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>22.</td>
<td>Weak</td>
<td>Good</td>
<td>Slow</td>
<td>Medium</td>
</tr>
<tr>
<td>23.</td>
<td>Weak</td>
<td>Good</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>24.</td>
<td>Weak</td>
<td>Good</td>
<td>Fast</td>
<td>Low</td>
</tr>
<tr>
<td>25.</td>
<td>Weak</td>
<td>Poor</td>
<td>Slow</td>
<td>Very Low</td>
</tr>
<tr>
<td>26.</td>
<td>Weak</td>
<td>Poor</td>
<td>Medium</td>
<td>Very Low</td>
</tr>
<tr>
<td>27.</td>
<td>Weak</td>
<td>Poor</td>
<td>Fast</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

Figure 9. Surface plot HF versus SINR-Vehicular Velocity combinations.

Figure 10. Surface plot HF versus SINR-RSS combinations.

Figure 11. Vehicular density scenario.

VII. VEHICULAR DENSITY SCENARIO

For the simulation and testing of the proposed algorithm, a vehicular density scenario was considered. Fig. 11
depicts the scenario. Communication network resources and bandwidth tend to reduce with the increase in available nodes. In this scenario, we test the proposed algorithm’s performance against that of SAW [46], TOPSIS [47], VIKOR [48], and Fuzzy-SAW [41] by increasing the number of vehicles in a particular area. Vehicles were increased in the order of 20, 40, 60, 80, and 100 in each case. A total of 100 vehicles were considered for the vehicular density scenario with a vehicular velocity of 30km/h. This indicates the flow of vehicular traffic in a particular area over a particular time. A CAM message size of 300B and 400B were periodically transmitted to the vehicles in the network. The probability of handover failure and the average data rate experienced by each vehicle were used for the performance evaluation. Also, the Handover Decision Delay against a varied number of input parameters was compared. Simulation results are shown in Fig. 12, Fig. 13, and Fig. 14.

Since fast and reliable VHO is one of the objectives of this work, handover decision delay is considered one of the performance metrics. The handover decision delay may cause severe QoS degradation. As discussed in [41], the decision delay is plotted for various numbers of inputs in Fig. 12. The networks considered for this simulation are DSRC and LTE. The different inputs for VHO decision-making can be RSS, SINR, Vehicular velocity, data rate, bandwidth, jitter, and latency. It is noted that the increase in the number of inputs increases the decision delay irrespective of the VHO schemes. The traditional MADM methods need to compute a new AHP matrix [46] for every input. It also requires additional calculations to compute a ranking score for every network. This increases the decision delay. Fuzzy SAW [41] schemes reduce the number of handovers and the number of operations in the target network selection process. This fundamentally reduces the handover decision delay. In the proposed fuzzy-based decision scheme, all the inputs are grouped and given to one controller. Due to this, the decision time is greatly reduced. The proposed scheme offers lower delay than the other schemes for all cases of inputs. For three inputs (RSS, SINR, and Vehicular Velocity), the proposed scheme offers 20%, 30.7%, 48%, and 8.8% percentage reductions in decision delay over SAW [46], TOPSIS [47], VIKOR [48] and Fuzzy-SAW [41] schemes. In Fig. 13, the probability of handover failure versus the number of vehicles is plotted for various VHO schemes. The number of handovers increases with the number of vehicles. Since the decision delay is larger for the

VIII. SIMULATION RESULTS AND DISCUSSION

The VHO algorithms are simulated for LTE and DSRC. The performance of the proposed scheme is compared with the traditional MADM approaches like SAW [46], TOPSIS [47], VIKOR [48], and fuzzy-based approaches like Fuzzy-SAW [41] in terms of QoS indicators like Handover Decision Delay, Average Data Rate by each Vehicle, the probability of handover failure and Mean end-to-end delay. We used MATLAB 2021b, Omnet++, and SUMO to create the simulation scenarios and fuzzy toolbox to build the FIE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Time</td>
<td>300s</td>
</tr>
<tr>
<td>Road Model</td>
<td>250x50m2</td>
</tr>
<tr>
<td>Number of lanes</td>
<td>2</td>
</tr>
<tr>
<td>Vehicular Density</td>
<td>30km/h</td>
</tr>
<tr>
<td>Total No. of Vehicles</td>
<td>100</td>
</tr>
<tr>
<td>Standard</td>
<td>DSRC</td>
</tr>
<tr>
<td>Carrier Frequency</td>
<td>5.89GHz</td>
</tr>
<tr>
<td>RSS (dBm)</td>
<td>-55dBm to -100dBm</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20MHz</td>
</tr>
<tr>
<td>SINR (dB)</td>
<td>7dB to -40dB</td>
</tr>
<tr>
<td>CAM Message Size</td>
<td>Uniform(300B,400B)</td>
</tr>
<tr>
<td>CAM Transmission Frequency</td>
<td>40Hz</td>
</tr>
<tr>
<td>Voice Packet Size</td>
<td>100B</td>
</tr>
</tbody>
</table>

Figure 12. Graph of the number of input parameters against handover decision delay.

TABLE III. SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic</td>
<td>Graph of the number of input parameters against handover decision delay.</td>
</tr>
</tbody>
</table>
traditional MADM approaches, the probability of handover failure is larger for them. The increase in the decision delay may cause connection breakdown and handover failures. The other reason for handover failure is the shortage of radio resources in the current and target networks. Due to the unavailability of radio resources, a handover connection may not be established leading to handover failures. In the proposed scheme, a vehicular velocity check is included in the handover decision-making process. This allows the vehicles to establish a longer connection based on their velocity. The decision delay is also less for the proposed scheme. This feature makes the proposed scheme offer a better probability of handover failure performance over the other traditional MADM schemes even with the increased number of vehicles. For 80 vehicles, the proposed schemes offer 36.6%, 29.7%, 18.8%, and 7.1% reduction in the probability of handover failure over the traditional SAW [46], TOPSIS [47], VIKOR [48], and Fuzzy-SAW [41] schemes. Since the number of handovers and decision delays are smaller for Fuzzy-SAW it offers lower handover failure than the classical MADM schemes.

The average data rate experienced by each vehicle (Mbps) versus the number of vehicles is compared for various schemes in Fig. 14. The increase in the number of vehicles decreases the average data rate experienced by each vehicle irrespective of the handover schemes. The shortage of radio resources and increased handover delays reduce the average data rate experienced by each vehicle. Because of the fast, intelligent nature and the inclusion of vehicular velocity as a parameter, the proposed scheme offers more data rates than all other MADM schemes. This also enables vehicles to establish a longer connection based on their velocity with less decision delay. For 100 vehicles, the proposed scheme offers 96.4%, 57.1%, 37.5%, and 14.6% improvement in data rate over the traditional SAW [46], TOPSIS [47], VIKOR [48] and Fuzzy-SAW [41] schemes.

IX. CONCLUSION

In this paper, we developed a 3-input fuzzy-logic-based VHO scheme for Heterogeneous DSRC/LTE Vehicular Communication Networks. The 3 input parameters for the
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Michael Agyare conducted the research, analyzed the data, and wrote the paper; Jerry John Kponyo supervised the research and edited the paper; Kwasi Adu-Boahen Opare supervised the research and edited the paper; Kwame Oteng Gyasi supervised the research and edited the paper; all authors have approved the final version.

REFERENCES

[36] 3rd Generation partnership project; Technical specification group services and system aspects: Study on enhancement of 3GPP support for 5G V2X services (Release 15), March 2017.

Copyright © 2023 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC BY-NC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.