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 Abstract—Unmanned Aerial Vehicles (UAVs) have a lot of 

potential for developing new applications in a variety of fields, 

such as traffic monitoring, security, and military applications. 

In the vast nature of the Internet of Things (IoT) network, 

UAVs could work as Aerial Gateway (AG) for 

communications among low-powered and distributed ground 

IoT Devices (IDs). This research concentrates on the path 

planning and deployment system that may facilitate decision-

making and guaranteed resource-efficient UAV mission 

assignment in serving ground IDs. Due to limited resources, 

it is essential to take into account several factors when 

designing such a system, including the AG flight time, the 

coverage radius, and the ground-to-air system's achievable 

data rate. As a result, the Energy Efficient Coverage Path 

Planning (EECPP) algorithm has been proposed. The 

EECPP is composed of two algorithms: the Stop Point 

Prediction Algorithm using K-Means, and Path Planning 

Algorithm using Particle Swarm Optimization. The outcome 

demonstrates that, in terms of total flight distance, EECPP 

outperforms Close Enough Traveling Salesman Problem 

(CETSP) by 19.99%. EECPP reduced energy usage by an 

average of 56.15% as opposed to Energy-Efficient Path 

Planning (E2PP). Due to its mobility nature with the addition 

of effective path planning, the AG is able to hover at each stop 

point, making it ideal for usage in crowded regions with high 

demand, emergency circumstances, and distant locations 

with no access to fixed base stations. 

 

Keywords—path planning, resource-efficient, unmanned air 

vehicles 

 

I. INTRODUCTION  

In recent years, unmanned aerial vehicles (UAVs) have 

gained popularity in a variety of public applications, 

including aerial surveillance, traffic control, photography, 

package delivery, and communication platforms [1]. UAV 

in wireless communications especially in the internet of 

things (IoT) network has attracted a lot of attention from 

both corporations and academia recently. IoT is a massive 

collection of smart embedded devices that are connected 

to the Internet and provide unique services to satisfy the 

consumer's needs, with one trillion gadgets estimated to be 

in use worldwide by 2025 [2]. There are four 

representative scenarios in UAV-assisted communication 

system, including UAVs as aerial gateways (AG), UAVs 
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as mobile relays, UAVs as motorial energy sources, and 

UAVs as aerial caches [3]. 

The use of UAVs as AGs in substitution for existing 

terrestrial base stations can improve network coverage, 

particularly in IoT communication systems. Due to the 

fixed location of the terrestrial base stations and its weak 

line-of-sight (LoS), signal blockage and shadowing have 

become a challenge. By considering the height, AG can 

successfully establish LoS communication linkages with 

terrestrial users [4]. AG may alter the area of coverage as 

needed while maintaining LoS, owing to its mobility 

characteristic, which makes it easy to change its altitude 

[5]. Due to their adaptable altitude, AG may be quickly 

deployed to serve IoT devices without being hindered by 

geographic constraints, hence minimizing signal blockage 

and shadowing [6]. The use of UAVs in serving wireless 

communication is currently able to provide many 

opportunities to mitigate communication issues with a 

cost-effective approach. A study conducted in [7], showed 

a reduction of 56% in the total transmit power of IoT 

devices for reliable uplink communications compared to 

fixed base station. 

Additionally, in some areas, building out an entire 

cellular infrastructure can be exceedingly expensive. 

Therefore, AG deployment becomes advantageous in 

solving this problem as it eliminates the requirement for 

costly towers and infrastructure [8]. Unexpected demand 

in certain coverage areas can leads to insufficient network 

resources which then deteriorates the service quality in that 

particular area. With the implementation of AG in the 

system, the service demand not only depends on the 

ground base station but also can be distributed to the aerial 

base station, hence improving the quality of service. AG 

can be deployed to complement existing cellular systems 

by providing additional capacity to hotspot locations as 

well as to provide network coverage in emergency and 

public safety situations [8]. 

In IoT communication system, specific requirements 

such as long range, low data rate, low power consumption, 

and cost effectiveness exist. In low power wide area 

networks (LPWAN), the maximum data rate for Sigfox, 

LoRaWAN, and NB-IoT is 100 bps, 50 kbps, and 200 kbps 

respectively [9]. However, due to their low transmit power 
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and short battery life, IoT devices (IDs) are unable to 

transmit data remotely to ground base stations. By 

programming AG to move toward IoT devices, it creates a 

create reliable connections with low transmit power from 

IoT devices [7]. If the distance between the take-off points 

and the target point is not taken into account, it may result 

in loss of energy as traveling to the points will be time 

consuming [10]. The flight duration of the AG can be 

reduced with an appropriate resource-efficient path 

planning method, allowing the AG and IoT device to 

perform at their maximum potential. 

In general, AG contributes in improving network 

coverage and reducing operating cost and overall process 

time. Unfortunately, due to an ineffective resource 

management system, wastage of energy, power, and time 

consumption stills occur in path planning and data 

transmission process involving AG. To deal with this 

problem, this research was conducted to improve the 

decision-making, including UAV path planning and IoT 

data collection. For energy-efficiency improvement, the 

flight time of AG needs to be minimized [11, 12] with 

sophisticated path planning and management system. The 

system is expected able to help users utilize resources more 

efficiently in ensuring competitiveness and quality of 

service of IoT communication system. The contributions 

of the research are listed below: 

• This research proposes an automated cluster 

determination algorithm that ensures maximum 

radius based on achievable data rates, ensuring 

optimal communication between ground IDs and AG. 

• By utilizing the algorithm-generated shortest path, 

this research achieves a significant reduction in travel 

time and total distance, resulting in a significant 

reduction in energy consumption. 

• The implementation of EECPP in this research 

successfully reduces the total energy consumption 

required for data transmission from IDs to AG. As a 

result, this research offers an efficient and feasible 

solution for obtaining remote data. 

II. RELATED WORK 

In UAV path planning, the performance metrics and 

evaluation method are essential in determining the 

effectiveness of the algorithm or method. From path 

planning method presented in [13], Ji et al. evaluated the 

performance of their algorithm based on energy 

consumption, which influenced by the distance and the 

angle of heading change of the UAV. The algorithm, called 

the Energy Consumption Estimation Model Based on 

Distance and The Angle of Heading Change (ECEMBDA), 

is based on Greedy or Djikstra algorithm. The results 

showed that the ECEMBDA planned path is more energy-

efficient and smoother than the conventional method, 

saving roughly 12.21 percent of the UAV’s energy usage 

Zhan et al. [14] assessed the performance of  energy 

consumption and completion time, where both of two are 

affected by the task data size as they are directly 

proportional to it. The objective was to minimize the total 

energy consumption of the UAV via jointly optimizing the 

design variables, including the UAV trajectory, velocity, 

acceleration, resource allocation, offloading scheduling, 

and completion time. The results demonstrated significant 

performance improvements over the baseline schemes, as 

well as revealing the tradeoff between UAV completion 

time and energy usage for the mobile-edge computing 

system. The joint optimization of design variables has the 

potential to achieve significant energy savings, reducing 

operational costs and improving the overall performance 

of the wireless system. 

Shivagan et al. conducted a study [15] on task 

scheduling involving multiples UAVs and evaluates the 

number of UAVs deployed and the whole system’s energy 

consumption by introducing the algorithm to schedule 

their deployment. To optimize the flight path and minimize 

UAVs energy consumption, the research considers 

reducing the number of turns made by the UAV using 

Genetic Algorithm. The results revealed that the proposed 

algorithm uses 2 to 5 times less energy than the greedy 

algorithm. 

Study by Poudel et al. [16], aimed to reduce the energy 

consumption of sensors and minimize the network latency. 

They present a hybrid path planning technique for efficient 

data collection in emergency scenarios by ensuring the 

shortest collision-free path for UAVs. The probabilistic 

roadmap (PRM) algorithm is utilized to create the shortest 

trajectory map. The improved artificial bee colony (ABC) 

algorithm is used to enhance different path constraints in a 

three-dimensional environment. Simulation findings 

showed that the proposed technique outperformed the 

PRM and standard ABC schemes significantly in terms of 

flight time, energy consumption, convergence time, and 

flight path. This research highlights the importance of 

considering path planning techniques in UAV mission 

planning for efficient data collection, particularly in 

emergency scenarios. The use of hybrid techniques that 

combine different algorithms can help to optimize UAV 

trajectories, minimize energy consumption, and improve 

the overall performance of the system. 

III. SYSTEM SPECIFICATION AND CONSIDERATION 

Among several types of UAVs, quadrotor UAV has 

been chosen as it has simple construction, good motor 

performance, vertical take-off, and land ability, and it is 

also easy to build and maintain [10]. To deploy the AG to 

cover all IoT devices in an effective and resource-efficient 

manner, K-means clustering was used. Once the centroid 

of each cluster was identified, a path planning algorithm 

was needed to link each cluster for AG deployment. The 

path planning problem was based on Traveling Salesman 

Problem (TSP). It is computationally complex to select the 

optimal path from a large number of nodes, but easier to 

solve after converting it to TSP [17]. The TSP was then 

solved using the Particle Swarm Optimization (PSO) 

algorithm. 

A. System Model 

The system model, as illustrated in Fig. 1 can be 

divided into two layers, namely ground level and air level. 

The height between the ground and air level was set at 100 

m in free space where there are no obstacles. By 
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considering an IoT device consisting of IDn as n = (0, 1, 

2, …, N) deployed within a geographical area. The total 

number of IDs in the map is represented by NID.  The 

location of IDs and AG are given by (XIDn, XIDn) and (XAG, 

YAG, hAG), respectively. The location of IoT devices was 

assumed known by the AG. The IDs were grouped into 

clusters, Ck as k = (0, 1, 2, …, K) and k is the number of 

clusters. At ground level, the centroid location was 

determined for each cluster, and perpendicular to it with a 

height of 100 m, which is the stop point, Jk as k = (0, 1,  

2,…, K) where AG needs to be visited. The problem 

formulation is to minimize the energy consumption of IDs 

and AG while ensuring all data from IDs are collected. To 

obtain minimum energy consumption, the optimal 

propulsion power of AG is determined, and the travel time 

of the AG is minimized by reducing the travel distance. 

The process of obtaining the path with efficient energy 

usage is being done offline, thus the cost of finding the 

optimal path will not deplete the UAV’s battery.   

B. Objective Function 

The objective function is to minimize the energy 

consumption of IDs and AG using the Eq. (1) by reducing 

the distance and time travel of the AG. 

  min 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = ∑ 𝐸𝐼𝐷 + 𝐸𝐴𝐺  () 

Such that: 

∑ 𝐸𝐼𝐷 = 𝑁𝐼𝐷 × 𝑃𝐼𝐷 (2) 

𝐸𝐴𝐺 = 𝑃𝐴𝐺𝑚𝑖𝑛𝑇𝑡𝑜𝑡𝑎𝑙 (3) 

 

Figure 1. Aerial gateway to serve ground IoT devices network topology. 

where, NID is the number of IDs in the system and PID = 

8mJ denotes the energy consumed by each ID to transmit 

100 bytes of data below a radius of 500 m [18]. PAGmin = 

105.801 Watt is the propulsion power of the AG, which is 

required to maintain the AG in the air and allow it to move 

around [19].  

C. Problem Formulation 

𝑇𝑡𝑜𝑡𝑎𝑙 is the total time consumed to finish covering all 

of the IDs, 𝑇𝑡𝑜𝑡𝑎𝑙 can be calculated using Eq. (4).  

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑤𝑎𝑖𝑡 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 (4) 

where 𝑇𝑤𝑎𝑖𝑡 is total waiting time for all cluster and 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 

is total time needed to travel from stop point 0 to J.  𝑇𝑡𝑟𝑎𝑣𝑒𝑙  

can be acquired using Eq. (5) 

𝑇𝑡𝑟𝑎𝑣𝑒𝑙 = 𝑉𝐴𝐺𝐷𝑡𝑟𝑎𝑣𝑒𝑙 (5) 

𝐷𝑡𝑟𝑎𝑣𝑒𝑙 is the distance traveled between multiple J stop 

points. Step in obtaining 𝐷𝑡𝑟𝑎𝑣𝑒𝑙 is explained in Eq. (19). 

VAG =8m/s is the optimal speed of the AG which 

determined in Eq. (13). Total waiting time for all cluster 

can be modelled using Eq. (6) 

𝑇𝑤𝑎𝑖𝑡 = ∑ 𝑡0𝑤𝑎𝑖𝑡 + 𝑡1𝑤𝑎𝑖𝑡 + ⋯ + 𝑡𝐽𝑤𝑎𝑖𝑡 𝐽
𝑖=0  (6) 

where 𝑡𝑗𝑤𝑎𝑖𝑡 is the total waiting time for each cluster and 

it can be determined using Eq. (7) 

𝑡𝑗𝑤𝑎𝑖𝑡 = ∑ 𝑡𝐼𝐷0𝑤𝑎𝑖𝑡 + 𝑡𝐼𝐷1𝑤𝑎𝑖𝑡 + ⋯ + 𝑡𝐼𝐷𝑛𝑤𝑎𝑖𝑡 𝑛
𝑖=0   (7) 

Eq. (7), the 𝑡𝐼𝐷𝑛𝑤𝑎𝑖𝑡 is the waiting time of AG in order 

to obtain data from each ID where it can be obtained using 

Eq. (8) 

Waiting Time for each ID (tIDnwait) =
packetsize

RIDn
    (8) 

Such that the packet size = 100 bytes. Furthermore 𝑅𝐼𝐷𝑛 

denotes the achievable data rate for the data transmission 

from each ID to AG based on [14] and is shown in Eq. (9). 

 𝑅𝐼𝐷𝑛 = 𝐵𝑊𝑙𝑜𝑔2 [1 +
𝛾

[ℎ2+(𝑋𝐼𝐷𝑛−𝑋𝐴𝐺)2+(𝑌𝐼𝐷𝑛−𝑌𝐴𝐺)2]
𝛼
2

] (9) 

where bandwidth, BW=125 kHz, 𝛾 is the SNR value per 

unit meter = 66.71 dB and α=2 is path loss exponent in free 

space. BW value of 125kHz is chosen as lower bandwidth 

offers long range transmission and higher sensitivity as 

compared to higher bandwidth [20, 21]. The data rate 

obtained, RID, is expected to be at minimum value of 

300bps. Signal-to-Noise Ratio (SNR) can be obtained 

using: 

Signal to Noise Ratio (SNR) = 𝑃𝑟 + 𝐺𝐶 − 𝐴𝑊𝐺𝑁  (10) 

The SNR limit of the system is set to -20 dBm as LoRa 

can modulate signal until -20 dBm below noise floor [22].  

AWGN = -128 dBm denotes the Additive white Gaussian 

Noise of the system, and Pr is the power received by the 

AG. Pr can be calculated by: 

𝑃𝑜𝑤𝑒𝑟 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (𝑃𝑟) = 𝑃𝑡 − 𝐿𝑏𝑓             (11) 

While channel gain, Gc can be acquired using: 

Channel Gain (𝐺𝐶) = 10𝑙𝑜𝑔10 (
𝜆

4𝜋2

2
) − 20𝑙𝑜𝑔10(𝑑)  (12) 

where d is the distance between each ID to AG, while 𝜆 =
0.3276 is the wavelength of the channel frequency.  Lbf in 

Pr formula in Eq. (11) stands for Free Space Path Loss. The 

parameter’s assumption values used above are tabulated in 

Table I.  
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TABLE I.  LIST OF PARAMETERS VALUE 

Parameter Value 

Frequency, f 919 MHz 

Wavelength, λ 0.3276 

Bandwidth, BW 125 kHz 

Data Rate, Rid 300 bps to 50 

kbps 

Packet Size,  100 bytes 

SNR Limit -20 dBm 

Transmit Power, Pt 14 dBm 

SNR Value Per Unit Meter, γ  66.71 dB 

Path Loss Exponent in Free Space, α 2 

Maximum Cluster Radius, R 283 meters 

AG Height 100 meters 

Optimal Speed of AG, VAG 8 m/s 

Minimum AG power consumption, PAGmin 105.801 Watt 

Tip speed of the rotor blade, Utip 120m/s 

Fuselage drag ratio, d0 0.6 

Rotor solidity, s 0.05 

Air density, ρ 1.225 kg/m3 

Rotor disc area, A 0.503m3 

Profile drag coefficient, δ 0.012 

Blade angular velocity 300 rad/s 

Rotor Radius, r 0.4m 

Incremental correction factor to induced 

power, k 

0.1 

Weight of the UAV, W 13.53 Newton 

 

D. AG Power Consumption Model 

In general, there are two major components that 

influences the UAV energy consumption. The first is 

energy used in communication, which includes circuitry, 

signal processing, and signal receiving and transmission. 

The other is propulsion energy, which is required to 

maintain the UAV in the air and allow it to move around. 

The energy used in communication can be neglected as 

typically much lower than the propulsion energy in 

practice [19]. PAGmin is formulated in Eq. (13) using 

formula from [19, 23, 24]: 

𝑃𝐴𝐺𝑚𝑖𝑛 =  𝑃𝑂 (1 +
3𝑉𝐴𝐺

2

𝑈𝑡𝑖𝑝
2 ) + 𝑃𝑖 (√1 +

𝑉𝐴𝐺
4

4𝑣0
4 −

𝑉𝐴𝐺
2

2𝑣0
2 )

1

2

+

1

2
𝑑0𝜌𝑠𝐴𝑉𝐴𝐺

3   (13) 

where P0 and Pi are two constants used in calculating the 

blade profile power and induced power in hovering status, 

and can be calculated using Eq. (14) and Eq. (15) 

respectively. Utip denotes the tip speed of the rotor blade, 

v0 is known as the mean rotor induced velocity in hover as 

in eq. (16), d0 is the fuselage drag ratio, and s is the rotor 

solidity which is the ratio of the total blade area to the disc 

area.  ρ is the air density, and A denote rotor disc area. 

𝑃0 =
𝛿

8
𝜌𝑠𝐴Ω3𝑟3 (14) 

where δ is the profile drag coefficient, Ω denotes the 

blade angular velocity, and r is the rotor radius. 

𝑃1 = (1 + 𝑘)
𝑊

3
2

√2𝜌𝐴
 (15) 

where k is the incremental correction factor to induced 

power = 0.1. 

𝑣0 = √
𝑊

2𝜌𝐴
 (16) 

where W is the weight of the AG and payload. The optimal 

speed of the AG, VAG is determined by substituting the 

equation in (13) with the range of minimum to maximum 

speed of AG, which is from 0m/s to 20m/s. From the graph 

obtained in Fig. 2 below, the optimal speed, VAG that able 

to minimizes the power consumption of AG is 

approximately 8m/s.  

 

Figure 2. Power consumed against speed of UAV. 

IV. ENERGY EFFICIENT COVERAGE PATH PLANNING 

ALGORITHM 

The Energy Efficient Coverage Path Planning 

Algorithm (EECPP) is divided into two sections, namely 

Stop Point Prediction Algorithm using K-Means and Path 

Planning Algorithm using PSO. 

A. Stop Point Prediction Uisng K-Means Algorithm 

 
Algorithm 1 Stop Point Prediction Using K-Means 

1: Input:  

2: NID = {ID1, ID2…IDN} //set of IDs to be clustered 

3: K1 //minimum predicted number of clusters 

4: K2 //maximum predicted number of clusters 

5: R //maximum cluster radius 

6: Output: 

7: K //actual number of clusters 

8: C = {C1, C2, ….CK} //set of clusters 

9: J = {J1, J2, …JK} //set of stop point / centroid 

10: For K in range of K1 to K2 do 

11:  Assign initial set of clusters 

12:  For each cluster do 

13:   Determine cluster centroid 

14:   Calculate distance from each ID to centroid 

15:   Group based on minimum distance 

16:   If no IDs move group then 

17:    If minimum distance from ID to 

centroid > maximum cluster radius 

then 

18:     K=K+1 

19:     Go to (10) 

20:    End If 

21:    Else Go to (13) 

22:   End If 

23:  End For 

24: End For 

 

The Stop Point Prediction using K-Means is explained 

in Algorithm 1. The first stage is to initialize the number 

Journal of Communications, vol. 18, no. 7, July 2023

465



of IDs to be clustered (NID), the range of predicted number 

of clusters (K1 to K2), and the maximum cluster radius (R). 

In order to o obtain the actual number of cluster (K), the 

iteration will be done until the IDs on the map are included 

in the cluster without exceeding the maximum radius from 

the centroid. 

For each K value in range of K1 to K2, random set of 

clusters (C) is initialized and the centroid coordinates (J) 

are then determined. In the next step, the actual distance 

between the AG location or the centroid to all IDs are 

calculated using Euclidean distance metric function. In 

order to ensure that the SNR value of the communication 

is always in achievable range of −20 dB to 10 dB [22], the 

maximum distance from each ID to AG need to be at 300 

meters.  The height of the AG is set to 100 meters as it is 

the most common height used by researchers [23, 25], and 

it complies with the Civil Aviation Authority Malaysia that 

small unmanned aircrafts should not fly over 122 meters 

[26]. The maximum radius of each cluster needs to be at 

283 meters or less, so that every time the AG visited any 

cluster, it can cover all the IDs in that cluster without 

exceeding the maximum radius and minimum SNR. 

The height of the AG (h) is fixed at 100 m from the 

ground and n refers to the ID number. Next, the IDs are 

then arranged based on the shortest distance. Lastly, the 

distance between the AG location or the centroid to all IDs 

are compared to the maximum cluster radius. If the 

distances from current K number exceed the maximum 

radius, the iteration will proceed to the next K number until 

the radius is satisfied. The centroid of the clusters 

consisting of J numbers is referred to as the stop points for 

the AG.  

B. Path Planning Algorithm Using Particle Swarm 

Optimization (PSO) 

The AG is assumed to visit a set of J stop points, which 

are clustered by K-means and connected by the shortest 

path while managing the resource in an efficient manner. 

In this situation, the resource-efficient path planning can 

be obtained by solving the TSP using PSO algorithm.  

Algorithm 2 presents the details on PSO algorithm, 

which begins by initializing the number of particles, their 

velocity and maximum epoch value. The epoch value, 

which determines the duration of the algorithm will be run, 

is set to 10000. The current fitness value for each particle 

is then evaluated in iterations based on the velocity 

optimized to solve the TSP problem. The velocity reflects 

the distance, position, and speed of the particle at each 

iteration [27] and can be expressed using Eq. (17). 

𝑉𝑚+1
𝑖 = 𝑤𝑉𝑚

𝑖 + 𝑐1𝑟1𝑚
(𝑝𝑏𝑒𝑠𝑡𝑚

𝑖 − 𝑋𝑚
𝑖 ) + 𝑐2𝑟2𝑚

(𝑔𝑏𝑒𝑠𝑡𝑚
𝑖 − 𝑋𝑚

𝑖 ) (17) 

where, 𝑉𝑚
𝑖  and 𝑋𝑚

𝑖  represent velocity and position of ith 

particle in mth iteration, respectively; personal best, or 

𝑝𝑏𝑒𝑠𝑡𝑚
𝑖  denotes the previous best position found by the 

particle itself (particle memory); global best, 𝑔𝑏𝑒𝑠𝑡𝑚
𝑖  

represents the previous best solution found by the entire 

population (swarm memory); W = 0.4 represents the 

inertial weight of the particles at the previously attained 

position; c1=1.5 and c2 =2 represent acceleration constants; 

and r1m and r2m represent random numbers in the range of 

[0,1] [28].  

The new position of each particle 𝑋𝑚+1
𝑖  is then updated 

based on the latest velocity value to obtain the latest gBest, 

until it reaches its stopping criteria using Eq. (18): 

𝑋𝑚+1
𝑖 = 𝑋𝑚

𝑖 + 𝑉𝑚+1
𝑖  (18) 

The stopping criteria in this research in maximum 

number of epochs. The gBest obtained is the summary of 

distance traveled between multiple j stop points and it can 

be expressed by: 

𝐷𝑡𝑟𝑎𝑣𝑒𝑙 =  ∑ 𝑑0 + 𝑑1
𝑗
𝑖=0 + ⋯ + 𝑑𝑗              (19) 

After achieving the Dtravel value, it is integrated into Eq. 

(5) to obtain the total time travel.  

Algorithm 2 Path Planning Algorithm Using Particle Swarm 

Optimization 

1: Input:  

2: K //actual number of clusters 

3: J = {J1, J2, …Jk} //set of stop point / centroid 

4: P //particle count 

5: V_Max //maximum velocity change allowed 

6: Max_epoch //maximum number of iterations 

7: Output: 

8: Shortest path 

9: For each particle (P) do 

10:  Initialize position and velocity randomly 

11: End For 

12: For each particle (P) do 

13:  Evaluate the fitness function //the total distance to 

connect all stop point 

14:  If current fitness value better than pBest then 

15:   Assign current fitness as new pBest 

16:  Else keep previous pBest 

17:  End If 

18: End For 

19: For each pBest do 

20:  If current pBest better than gBest then 

21:   Assign pBest value to gBest 

22:  Else keep gBest 

23:  End If 

24: End For 

25: For each particle (P) do 

26:  Update Particle velocity 

27: End For 

28: Until stopping criteria satisfied 

Generation Algorithm is the make_blob function which 

is based on Gaussian distribution. In this function, there 

are several parameters that can be adjusted to obtain the 

desired output. The user can set the number of ID samples, 

take-off and landing location of the AG. The number of ID 

generated was later denoted by NID = (ID1, ID2, … IDN). 

The dispersion of the IDs, denoted by β, can also be 

adjusted and is influenced by the number of centers 

initially expected by the user, 𝐸𝑐𝑒𝑛𝑡𝑒𝑟𝑠 and the number of 

IDs, NID, using equation in Eq. (20): 

cluster dispersion, 𝛽 =  (
𝐸𝑐𝑒𝑛𝑡𝑒𝑟𝑠

𝑁𝐼𝐷
) × 100 (20) 

The function of the dispersion percent is to determine 

whether the map would be dense or sparse, mimicking 

real-life scenarios such as rivers, lakes, cities, and forests 

as desired by the user. 
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V. RESULT 

A. Node Generation and Algorithm Implementation 

By implementing the Location Generation Algorithm of 

the IDs, various map with different situations were 

obtained. Take-off and landing points were set at 

coordinate [10, 10] with 100 IDs. The simulation maps 

were set to 1000m2 with the dispersion percentage, β of 25, 

50,75, and 100, as shown in Fig. 3 (a−d) respectively. 

B. Energy Efficient Coverage Path Planning Anaysis 

From the ID locations obtained on each map V(A), the 

IDs were then clustered based on the Stop Point Prediction 

Algorithm using K-Means. This algorithm covered 

processes on the ground level. The range of cluster was 

initially set between 2 to 100 clusters. And using the 

prediction of elbow method [29], the actual value of the 

optimum cluster was determined, resulting in nine clusters.  

The maximum distance of each ID was set to be 300 m 

from the AG stop points. The results in Table II indicate 

the number of optimum clusters with their centroid 

location. 

By tuning the particle value and maximum epoch 10000 

in the path planning algorithm, for the map of 25% 

dispersion percentage, the shortest paths obtained were 8, 

3, 7, 6, 4, 1, 5, 2 with a total distance of 2962.867 m. The 

total distance represents the distance for the AG to travel 

from the take-off point to all stop points and return to its 

initial point. The map for shortest path is illustrated in Fig. 

4. 

 
TABLE II.  CENTROID’S LOCATION FOR MAP WTH DISPERSION 

PERCENTAGE OF 25 % 

Cluster 

Number  

Cluster 

Color 

X Coordinate Y Coordinate 

8  10.0 10.0 

3  138.702  640.718 

7  215.329  878.509 

6  364.742  664.144  

4  755.840  739.979  

0  619.692 493.929 

1  774.991 263.414  

5  519.858  279.853 

2  256.412 222.098 
 

 

 
(a)                                                                       (b) 

 
(c)                                                                     (d) 

Figure 3. 100 Random generated ID with dispersion percentages of 25%, 50%, 75% and 100%. 
 

 

Figure 4. Map for shortest path. 

The total distance traveled, time taken, energy 

consumed, and energy efficiency of AG to cover 100 IDs 

on the map with dispersion percent, β of 25, 50, 75 and 100 

are being analyzed and the values are tabulated in Table III. 

It can be deduced that the distance traveled by the AG 

increases as the dispersion percent increase. 

TABLE III.  TOTAL DISTANCE TRAVELED, TIME TAKEN, ENERGY 

CONSUMED, AND ENERGY EFFICIENCY 

Β 

(%) 

𝑫𝒕𝒓𝒂𝒗𝒆𝒍 

(Meter) 

𝑻𝒕𝒐𝒕𝒂𝒍 

(Second) 

𝑬𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅 

(Joule) 

Energy Efficiency 

(bit/Joule) 

25 2962.867 465.582 57363.390 1.395 

50 3230.34 586.966 62101.629 1.288 

75 4188.616 689.37 72936.035 1.097 

100 5131.008 812.814 85996.521 0.93 
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C. Analysis on Distance Traveled 

The efficiency of the EECPP was analyzed by 

comparing its results with other methods. In this study, the 

total distance obtained was compared with Close Enough 

Traveling Salesman Problem (CETSP) method [30] which 

implements branch-and-bound algorithm to cover the 

desired stop points. The CETSP method involves 

generating, multiple map scenarios using different 

percentage of dispersion, and dividing the points into grids 

or quadrants, with the UAV only visiting the center of the 

grid containing the points. For the IDs generation, 20 IDs 

were used with a β ranging from 10% to 100% in 

increments of 10%. Table IV shows the distances obtained 

using the EECPP method compared to those obtained from 

the CETSP method.  

TABLE IV.  DISTANCE TRAVELED USING EECPP COMPARED TO 

CETSP 

Dispersion percent, β (%) CETSP (meter) EECPP (meter) 

10 1472.3 1462.39 

20 2281.9 1927.72 

30 2858.6 1996.63 

40 2765.5 2070.91 

50 2881.7 2311.18 

60 3073.9 2467.28 

70 3229.3 2532.53 

80 3253.8 2498.03 

90 3163.8 2693.58 

100 3378.7 3111.08 

 

Figure 5. Linear fitting graph for predicting the distance value of based 

on the changes in dispersion percentage (β). 

TABLE V.  GOODNESS OF FITTING FOR CETSP AND EECPP 

 CETSP EECPP 

Multiple R 0.903866 0.961346 

R Square 0.816974 0.924186 

Adjusted R Square 0.790827 0.913355 

Standard Error 153.0542 110.405298 

Linear fitting techniques were applied to the results to 

predict the distance values based on the dispersion 

percentage (β). The efficiency of the algorithm was 

determined by examining the change of D relative to β; a 

smaller change of D relative to β indicates higher 

efficiency of the algorithm. The linear fitting graph for 

dispersion percentage against the distances for CETSP and 

EECPP is illustrated in Fig. 5 and its goodness of fitting is 

presented in Table V. 

The analysis of the linear fitting graph revealed that 

EECPP reduced the average distance by 19.99% compared 

to CETSP. In a regression model, R-Squared is a statistical 

measure of fit that shows how much variance in a 

dependent variable is represented by the independent 

variables. In this context, it shows how much the distance 

traveled by CETSP and EECPP is represented by the 

dispersion percentage. From the value in Table V, The R 

square of EECPP is higher than the R square of CETSP, 

thus, it indicates that the distance traveled by EECPP is 

better represented by the dispersion percentage.  

D. Analysis on Energy Consumption 

TABLE VI.  ENERGY CONSUMED BY EECPP COMPARED TO E2PP 

Number of Nodes E2PP (Joule) EECPP (Joule) 

30 46800 18812.01 

40 50400 20895.62 

50 54000 26972.91 

60 63000 27834.01 

70 73800 32320.2 

 

To assess the efficiency of EECPP in minimizing the 

energy consumption, the results were compared with the 

Energy-Efficient Path Planning (E2PP) method [13]. E2PP 

estimates the energy consumption of a UAV to fly from 

one node to another without grouping the nodes, which 

requires more energy to finish the entire process. E2PP 

method results in huge energy consumption as compared 

to EECPP. Table VI presents the energy consumed by the 

EECPP algorithm compared to E2PP algorithm. 

 

Figure 6. Linear fitting graph for predicting the energy consumption 

based on the changes in number of ID (NID). 

TABLE VII.  GOODNESS OF FITTING FOR E2PP AND EECPP 

 E2PP EECPP 

Multiple R 0.968334 0.980299 

R Square 0.937671 0.960987 

Adjusted R Square 0.916895 0.947982 

Standard Error 3134.964116 1249.075 

Fig. 6 illustrates the linear fitting graph for energy 

consumed against the number on nodes while its goodness 

of fitting is presented in Table VII.  
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Fig. 6 indicates that the change in energy consumed 

over the number of IDs of EECPP was smaller, implying 

that EECPP method promoted more efficient energy 

consumption at greater number of IDs than E2PP 

algorithm. The average percentage of energy reduced by 

EECPP was 56.15%, according to the analysis of the linear 

fitting graph. From the values in Table VII, The R square 

of EECPP is higher than the R square of E2PP, thus, it 

indicates that energy consumed by EECPP is represented 

better by the number of nodes on map. 

VI. DISCUSSION AND CONCLUSION 

In conclusion, the EECPP method which implemented 

K-Means clustering and PSO in solving TSP provided 

resource-efficient path planning for UAVs as aerial 

gateway to serve ground IoT devices. By clustering the IDs 

into multiple groups based on achievable communication, 

it reduced the number of stop points that the AG must visit. 

EECPP is able to outperform CETSP by 19.99% more 

efficient in terms of total distance. For energy consumption, 

at higher number of IDs on the map, EECPP performed 

better by providing more efficient energy consumption 

compared to the E2PP algorithm. In addition, the EECPP 

method reduced up to 56.15% of energy consumption in 

contrast to the E2PP algorithm. The mobile nature of AG 

enabled it to hover at each stop points based on the 

efficiently constructed path, thus making it suitable for 

implementation in remote areas, where fixed base station 

is not available, crowded area with high demand, and also 

in emergency situation. For future work, the algorithm can 

be improved to include interference management from 

other wireless devices to ensure its effectiveness in real-

world scenarios. 
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