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Abstract—This paper studies a visible light communication 

(VLC) system using a digital signage and an image sensor. 

The authors have focused on the demodulation part of the 

communication system, which modulates data signals 

without disturbing the visual information on the digital 

signage, and have proposed a novel concept that uses 

machine learning to demodulate the data signals from 

images received by the image sensor. However, it has not 

been fully clarified which parameters of the training images 

contribute to the performance of the machine learning-

based demodulation. This paper extends the convolutional 

neural network (CNN)-based demodulation method and 

clarifies how much the number of parallelized data signals 

and the number of patterns of data signals in the training 

images contribute to the demodulation performance. The 

results show that the performance improves with the 

number of parallelized data signals in the training images, 

and that half of the signal patterns are sufficient for 

learning. 

 

Keywords—visible light communication, digital signage, 

image sensor, demodulation, machine learning 

 

I. INTRODUCTION 

Digital signage is a medium that displays advertising 

images and various useful information using electronic 

display devices and has already been installed in many 

places [1]. There is image sensor-based VLC technology 

that realizes communication by modulating data signals 

on displayed images on the digital signage so that the 

data signals cannot be perceived by the human eye, and 

then capturing the displayed images with an image sensor 

such as a mobile phone camera [2, 3]. It modulates the 

data signal by changing the luminance or color 

components. In demodulation, the transmitted data signal 

is obtained from the captured images by signal processing. 

This method can be used to established only with existing 

digital signage and terminals with a built-in image sensor, 

without installing new communication equipment. With 

the image sensor-based VLC system, viewers can receive 

not only the displayed contents from the digital signage 

itself, but also the value-added information such as timely 

and location-specific benefits and augmented reality.  

One of the difficulties is that when data signals are 

superimposed with high signal intensity to improve the 

communication quality, the visual quality of the signage 

image deteriorates, i.e., the superimposition of data 

signals is easily perceived by the human eye. Conversely, 

if the signal intensity is reduced to improve the visual 

quality, the data signals cannot be received correctly. One 

of the methods to solve this problem is to transmit data 

signals by placing multiple markers that change 

luminance or color at low speed, taking advantage of the 

human visual characteristic of being insensitive to 

gradual changes in images [4]. This method can be 

implemented without modifying the digital signage and 

image sensor, but only allows communication at about 10 

bps. Another method that cannot be perceived by the 

human eye has been proposed by modulating the 

backlight of the digital signage at high speed, but this 

method requires modification of the digital signage [5]. In 

the researches focusing on data superimposition at the 

transmitter side, modulation using wavelet transform [6] 

and discrete cosine transform [7], which are modulation 

methods in frequency components, have been 

investigated. In addition, [8-11] have investigated 

modulation methods with less visual quality degradation 

by superimposing data signals with color components that 

are difficult for the human eye to perceive.  

The above-mentioned studies mainly focus on the 

processing at the transmitter side. Focusing on the 

processing at the receiver side, all of them detect the 

digital signage from the captured image and demodulate 

the transmitted data signal. It can be regarded as the 

process of determining which data signal is displayed on 

the digital signage in the captured image, and in such 

image processing, machine learning is rapidly developing. 

The previous study [12] proposed a demodulation method 

using CNN-based machine learning, which is trained with 

images simulating noise, blur, and misalignment that may 

occur in the received images, and showed that the 
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proposed method can achieve better demodulation 

performance than the conventional threshold-based 

method. However, it has not been fully clarified which 

parameters of the training images contribute to the 

demodulation performance. 

This paper extends the CNN-based demodulation 

model and clarifies which parameters of the training 

images contribute to the performance of the machine 

learning-based demodulation. Specifically, this paper 

clarifies how much the number of parallelized data 

signals and the number of patterns of data signals in the 

training images contribute to the demodulation 

performance, and provides a measure of the dataset to 

achieve the desired performance. 

This paper is organized as follows: Section II describes 

the system model of the considered VLC. Section III 

describes the details of the proposed CNN-based 

demodulation method. Section IV shows the numerical 

results of the performance evaluation. Section V 

summarizes the conclusion. 

II. SYSTEM MODEL 

This paper assumes a VLC system like [8-11] shown in 

Fig. 1. The transmitter generates a mapping data signal 

based on the input data signal, adds it to the luminance or 

color component of the background image, and displays 

the resulting image on the digital signage as the 

transmitted image. The receiver obtains the data signal by 

capturing the digital signage with an image sensor. After 

detecting the signal, the receiver removes the background 

image by making the difference of two consecutive 

received images in the time direction and demodulates 

the data signal from the difference image.  

 

 
Figure 1. Digital signage and image sensor-based VLC system.  

 

 
Figure 2. System model. 

The purpose of this paper is to clarify the factors that 

contribute to performance by using a simplified model 

that simulates the system, rather than using actual 

transmitted and received images. Fig. 2 shows the 

simplified system model that focuses on the signal 

demodulation in the above system. Specifically, the data 

signal is modulated into the transmitted image, and the 

image received through the communication channel is 

demodulated by the proposed method to obtain the data 

signal. In the communication channel, it is assumed that 

there is misalignment in signal detection, blur due to light 

diffusion and lens, and noise due to illumination and 

background image, respectively, and these are modeled as 

translation or projection transformation, smoothing, and 

Gaussian noise on the transmitted image. The details are 

described in the following sections. 

A. Modulation 

The data signal 𝒅 to be transmitted is parallelized and 

defined as 𝑀 ×𝑁 binary symbols as follows.  

 

𝒅 = [

𝑑1,1 ⋯ 𝑑1,𝑁
⋮ ⋱ ⋮

𝑑𝑀,1 ⋯ 𝑑𝑀,𝑁

] 

𝑑𝑚,𝑛 = {0,1}(𝑚 = 1,2⋯𝑀 , 𝑛 = 1,2⋯𝑁) 
 

Fig. 3 shows the conceptual diagram of the generation 

of the transmitted image 𝐷  corresponding to the data 

signal 𝒅. 𝐷 is 𝐼 pixels in width and 𝐽 pixels in height and 

has 𝑀 ×𝑁  rectangular areas. Each rectangular area is 

called a cell. The cell corresponding to the 𝑚-th row and 

𝑛-th column is denoted as 𝐶𝑚,𝑛 , and each cell contains 

pixels of width 𝐼/𝑀  and height 𝐽/𝑁 . Based on the 

corresponding data signal, the cell 𝐶𝑚,𝑛  is given as 

follows, where the value 𝛼 is the signal intensity. 

 

𝐶𝑚,𝑛 =

{
 
 

 
 [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] (𝑑𝑚,𝑛 = 0)

[
𝛼 ⋯ 𝛼
⋮ ⋱ ⋮
𝛼 ⋯ 𝛼

] (𝑑𝑚,𝑛 = 1)

 

 

Figure 3. Correspondence between data signal and transmitted image. 

B. Communication Channel 

First, to reproduce the misalignment, a translation 

image is generated by translating the transmitted image 𝐷 

to the surrounding 8 neighborhoods by 𝛽-translation in 

addition to the centered (unmoved) image, or a projection 
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image is generated by projection transformation in which 

the four vertices of 𝐷  are shifted by 𝛽 -translation to 

unmoved, inside, or outside, respectively. The resulting 

translation/projection image is treated as a misaligned 

image 𝐷𝑡  of width (𝐼 + 2𝛽) × height (𝐽 + 2𝛽). Next, to 

reproduce the blur, a filtered image 𝐷𝑡𝑓 is generated by 

smoothing the misaligned image 𝐷𝑡 with a Gaussian filter 

of standard deviation 𝜎𝑓. Finally, to reproduce the noise, 

a Gaussian noise with mean 0 and standard deviation 𝜎𝑛 

is added to each pixel of the filtered image 𝐷𝑡𝑓, and then 

absolute value processing is performed to generate the 

received image 𝐷𝑡𝑓𝑛. 

C. Demodulation 

The received image 𝐷𝑡𝑓𝑛  is input to a trained 

demodulator to obtain the demodulated data signal �̂�. The 

demodulator is constructed by learning various received 

images that reproduce the degradation caused by the 

communication channel. The proposed demodulation 

method is described in the next section. 

III. DEMODULATION METHOD USING MACHINE LEARNING 

A. Machine Learning Model 

This paper proposes two machine learning models to 

clarify how much the number of parallelized data signals 

in the training images contributes to the demodulation 

performance. 

The machine learning models are shown in Table I. In 

the mode (I), the data signal to be demodulated is 

4 ×  4 (= 16)  binary symbols. This model takes a 

received image of 36 ×  36  pixels containing 4 ×  4 

cells as input and 16 demodulated data symbols as output. 

In the other model (II), the data signal to be demodulated 

is 3 ×  3 (= 9)  binary symbols. This model takes a 

received image of 28 ×  28  pixels containing 3 ×  3 

cells as input and 9 demodulated data symbols as output. 

Both machine learning models have the same layer 

structure, differing only in the size of the input image and 

the number of demodulated data signals to be output.  

TABLE I. MACHINE LEARNING MODEL 

The proposed method uses the CNN-based deep 

learning of Keras, which is a high-level API of 

TensorFlow. The input layer is the layer that inputs the 

received images. The convolutional layer is a layer that 

performs convolutional operations on its input to extract 

features, and the activation function is ReLU. The 

pooling layer is a layer that summarizes the output of the 

convolutional layer and emphasizes the features. The 

dropout layer improves the robustness of the model by 

randomly dropping its input at an arbitrary rate. The 

flatten layer converts its input into a one-dimensional 

vector for input to the full coupling layer. The dense layer 

is the output layer that converts its input into probabilities 

using the activation function based on the features 

obtained so far, and performs maximum likelihood 

estimation. The proposed models are based on the well-

known VGG16 [13]. In VGG16, it was shown that the 

reduction of parameters and the improvement of accuracy 

can be achieved by constructing the convolutional layer 

with three layers of 3 × 3 instead of one layer of 7 × 7, 

which shows the advantage of a deep neural network with 

a small kernel in the convolutional layer. However, in the 

proposed models, since the ratio of noise to the input 

signal is large, the kernel of the convolutional layer is set 

to 5 × 5 and the convolution is limited to three layers due 

to the small size of the input image. In addition, since 

Max Pooling tends to lose the information of cells with a 

pixel value of 0, Average Pooling is used. Unlike the 

general classification, the output layer outputs the 

likelihood of each binary symbol of the data signal in the 

range of 0 to 1 using the sigmoid function. The likelihood 

of each cell is thresholded with a threshold value of 0.5, 

and the resulting value is used as the demodulated data 

signal. 

B. Dataset 

The dataset is shown in Table II. If the transmitted 

image 𝐷  is represented by 4 × 4  cells, 216  =  65536 

different data signals can be represented, and if it is 

represented by 3 × 3  cells, 29  =  512  different data 

signals can be represented. Therefore, in this dataset, 

different received images 𝐷𝑡𝑓𝑛  are generated for all 

65536 or 512 patterns of data signals by the procedure 

described in Chapter 2. The size of 𝐷 is 𝐼 × 𝐽 = 32 × 32 

pixels for 4 × 4  cells and 𝐼 × 𝐽 = 24 × 24  pixels for 

3 × 3 cells. The signal intensity is set to 𝛼 = 10 in both 

cases. 𝐷𝑡𝑓 is obtained by applying a Gaussian filter with 

filter size 7 × 7 and standard deviation 𝜎𝑓 to a total of 90 

patterns of 𝐷𝑡 : 9 translation patterns in which 𝐷  is 

translated to the center and its 8 neighborhoods, and 81 

projection patterns in which the four vertices are 

translated to unmoved, inside, and outside, respectively 

(𝛽 = 2). 𝐷𝑡𝑓𝑛  is obtained by adding a Gaussian noise 

with mean 0 and standard deviation 𝜎𝑛  to 𝐷𝑡𝑓.  The 

standard deviations (𝜎𝑓, 𝜎𝑛)  of the Gaussian filter and 

Gaussian noise are chosen in six ways: (0,0),  (1,1), 
(3,3),  (3,5),  (5,3),  and (5,5).  Thus, 65536 or 512 

received images are generated for each of the 90 

misalignment patterns and 6 combinations of smoothing 

and noise intensity, i.e., 540 patterns, and 10 sets of the 

 Layer 
Output size 

(I) 4×4 cells (II) 3×3 cells 

Input Received image 36×36×1 28×28×1 

Layer1 Conv. (5×5×3) 32×32×3 24×24×3 

Layer2 
Average Pooling  

(2×2) 
16×16×3 12×12×3 

Layer3 Conv. (5×5×128) 12×12×128 8×8×128 

Layer4 Conv. (5×5×256) 8×8×256 4×4×256 

Layer5 
Average Pooling  

(2×2) 
4×4×256 2×2×256 

Layer6 Dropout (0.5) 4×4×256 2×2×256 

Layer7 Flatten 4096 1024 

Layer8 Dense (ReLU) 128 128 

Layer9 Dropout (0.25) 128 128 

Output Dense (Sigmoid) 16 9 
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above images are generated for each (𝜎𝑓, 𝜎𝑛) except for 

(𝜎𝑓, 𝜎𝑛) = (0, 0)  due to the randomness of Gaussian 

noise. 9 of the sets are used as training images and 1 set 

as unknown validation images. Table III shows examples 

of the dataset for one of the 65536 data signal patterns. 

TABLE
 
II.

 
DATASET

 

𝜎𝑓 , 𝜎𝑛
 

Misalignment
 

Set
 

Training
 

images of (I)
 Validation

 

images of (I)
 

Training
 

images of (II)
 Validation

 

images of (II)
 

0,0
 

None
 

Training:1
 

Validation:1
 

65536
 

65536
 

512
 

512
 

1,1
 

Training:9
 

Validation:1
 

589824
 

65536
 

3,3
 

5,3
 

3,5
 

4608
 

512
 

5,5
 

0,0
 

8
 

translations
 

Training:1
 

Validation:1
 

524288
 

524288
 

4096
 

4096
 

1,1
 

Training:9
 

Validation:1
 

4718592
 

524288
 

3,3
 

5,3
 

3,5
 

36864
 

4096
 

5,5
 

0,0
 

81
 

projections
 

Training:1
 

Validation:1
 

5308416
 

5308416
 

41472
 

41472
 

1,1
 

Training:9
 

Validation:1
 

47775744
 

5308416
 

3,3
 

5,3
 

3,5
 

373248
 

41472
 

5,5
 

TABLE

 

III.

 

EXAMPLES OF DATASET

 

𝜎𝑓, 𝜎𝑛

 Misalignment
 

None
 

Translation
 

Projection
 

0,0
 

   

3,3
 

   

5,5
 

   

 

C. Training Method 

The machine learning models shown in Table I are 

trained on the dataset shown in Table II and the data 

signals that are the correct answers. Due to the large size 

of the dataset, the contribution of the training order to the  

demodulation performance is also investigated in the 

following two ways. 

1) Learning of images containing all smoothing, noise, 

and misalignment patterns for every 64 data signal 

patterns. 

2) Learning of images containing all data signal 

patterns with all smoothing and noise patterns for 

every misalignment pattern. 

The loss function is mean-square error, and mini-

batch learning is performed. The mini-batch size is set to 

4096 images, which can be stably expanded in memory, 

and the number of training sessions is set to 15.  

IV. PERFORMANCE EVALUATION 

A. Evaluation Method 

The first point to be clarified is how much the number 

of parallelized data signals contributes to the 

demodulation performance. This is verified by comparing 

the threshold decision method with the proposed methods: 

the model (I) with 4 × 4 cells and the model (II) with 

3 × 3 cells. The demodulation performance is evaluated 

by using the bit error rate as an evaluation metric, which 

is calculated using the validation images described in 

Section III.B. The validation images are processed in the 

same way as the training images; however, they are 

unknown and different from the training images because 

the Gaussian noise is random. In the threshold decision 

method, the demodulated data signals are obtained by 

thresholding each averaged cell value of 4 ×  4 cells of 

the unknown validation images with half of the signal 

intensity 𝛼 without considering the misalignment. In the 

proposed method, the demodulated data signals are 

obtained by inputting the unknown validation images to 

the trained neural network. Without information on the 

data signal intensity, smoothing, noise, and misalignment, 

the trained neural network determines the output only by 

the weights obtained during training. To show the effect 

of training contents on the demodulation performance, 

the following three evaluations were performed for two 

models and two training orders (A) and (B) shown in 

Section III.C.  
1) Evaluation with the validation images including 

smoothing and noise only. 
2) Evaluation with the validation images including 

translation in addition to smoothing and noise, 
excluding the images of (1). 

3) Evaluation with the validation images including 
projection transformation in addition to smoothing 
and noise, excluding the images of (1) and (2). 

The other point to be clarified is how much the number 

of data signal patterns contributes to the demodulation 

performance.  This is verified by comparing the model (I) 

with different numbers of data signal patterns contained 

in the dataset. Here, in order to focus on the effect of the 

data signal patterns, the proposed method was trained and 

verified using the dataset without misalignment. 

B. Results 

Fig. 4 shows the bit error rate of the threshold decision 

method, the model (I) with 4 ×  4 cells, and the model (II) 

with 3 ×  3 cells, for the validation images (1), (2), and 

(3). The performance of the two machine learning models 

is shown for two training orders (A) and (B). For each 
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case, the left bar (blue, monochromatic) shows the bit 

error rate for the validation images with smoothing and 

noise only, the middle bar (orange, diagonal) shows the 

bit error rate for the validation images with translation in 

addition to smoothing and noise, and the right bar (black, 

checkerboard) shows the bit error rate for the validation 

images with projection transformation in addition to 

smoothing and noise. As shown in Fig. 4, both models (I) 

and (II) achieve better performance than the threshold 

decision method. The performance of both models (I) and 

(II) depends on the training order. For the model (I) with 

4 × 4 cells, the training order (A) is better than (B). For 

the model (II) with 3 × 3 cells, the training order (B) is 

better than (A). In the case of model (I), for each of the 

65536 patterns of data signals, there are 90 patterns of 

misalignments and 9 sets of 6 combinations of smoothing 

and noise, so there are many more patterns of data signals 

than patterns of these channel disturbances. In contrast, in 

the case of model (II), there are 512 patterns of data 

signals, so there are more patterns of channel 

disturbances than patterns of data signals. From these 

results, it is expected that the performance will be 

improved by training the dataset in the order of larger 

patterns of data signals or channel disturbances, since the 

learned images in each training session will contain more 

different information, but a better ordering is a topic for 

future work.  

 
Figure 4. Bit error rate for each type of validation images. 

Comparing the better result of the model (I) with that 

of the model (II), the bit error rate of the models (II) is 

about 10 times worse. In general, it is known that 

machine learning performance improves as the amount of 

training data increases, and in this case, the reason is that 

the number of training images is 128 times smaller due to 

the number of data signal patterns. In addition, the 

number of learned channel disturbances is reduced in 

proportion to the smaller number of data signal patterns, 

so the performance will degrade. Therefore, for the same 

number of learned channel disturbance patterns, the 

model with the larger number of parallelized data signals 

will have better performance. However, since the training 

time is proportional to the number of training images, the 

time required to construct the model (II) is about 120 

times less than that of the model (I), which is a significant 

reduction.  

Fig. 5 shows the relationship between the number of 

learned data signal patterns and the bit error rate for the 

model (I). Here, the verification was performed after each 

training of 1024 data signal patterns randomly sampled 

with replacement. In the model (I), bit errors occurred 

only for  (𝜎𝑓, 𝜎𝑛) = (3,5) and  (5,5),where the standard 

deviation of the noise is large. It can be seen that after 

learning about half of the total number of data signal 

patterns, the performance converges even as the number 

of patterns to learn increases. Therefore, it is not 

necessary to learn all the data signal patterns, but only 

about half of them. As a future study, it will be possible 

to achieve higher performance with even fewer training 

patterns by selecting patterns based on image correlation 

and other factors, and a further reduction in learning time 

is expected.  

 

 
Figure 5. Bit error rate for the number of learned data signal patterns. 

V. CONCLUSION 

This paper proposed a method for demodulating data 

signals by CNN-based machine learning for digital 

signage and image sensor-based VLC. The effects of the 

training images on the demodulation performance were 

evaluated. The simulation results showed that the case 

with the larger number of parallelized data signals in the 

training images has better performance. It was also shown 

that it is not necessary to train all the data signal patterns, 

but only about half of them are sufficient. Further studies 

to improve the performance and reduce the learning time 

based on the results of this study are left for future work. 
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