
Managing Concurrent Queues for Efficient In-

Vehicle Gateways 
 

Miltos D. Grammatikakis*, Stelios Ninidakis, George Kornaros, Dimitris Bakoyiannis, Nikos Mouzakitis, 

and Alexis Staridas 

Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Greece; Email: 

sninidakis@cs.hmu.gr (S.N.), kornaros@cs.hmu.gr(G.K.), d.bakoyiannis@cs.hmu.gr (D.B.), nmouzakitis@cs.hmu.gr 

(N.M.), astaridas@cs.hmu.gr (A.S.) 

*Correspondence: mdgramma@cs.hmu.gr (M.D.G.) 

 

 
Abstract—In modern vehicles, electrical control units 

communicate over multiple in-vehicle networks via domain- 

or zone-oriented gateway architectures. This work examines 

efficient frame transfer across incoming and outgoing 

Controller Area Network (CAN) interfaces at a gateway. In 

our embedded platform prototype, each CAN interface of a 

CAN-to-CAN gateway is controlled independently by a 

corresponding Portable Operating System Interface (POSIX) 

thread. Inter-thread communication and synchronization are 

implemented using shared data structures, either lock-free 

concurrent queues or traditional lock-based circular queues 

that embody single-producer single-consumer (SPSC) 

principles. Our experimental framework provides a realistic 

open automotive platform that integrates multiple CAN 

interfaces. An Odroid XU3 device acts as a gateway, 

providing two Universal Asynchronous Receiver-

Transmitter (UART) to CAN interfaces that lead to 

Raspberry Pi 3B nodes (connected to CAN via Serial 

Peripheral Interface (SPI)). To increase communication 

reliability and performance by minimizing frame loss and 

improving the egress CAN frame rate, low-level parameters 

at the gateway are optimized, especially the inter-character 

delay of the UART-to-CAN interfaces. Our experiments 

show that the frame waiting time in the queue is shorter for 

the concurrent queue, while relaying messages is equally fast, 

reaching a maximum output rate of ~380 frames/s for large 

enqueue rates near saturation. Power consumption is almost 

four times higher for the concurrent queue implementation.   

 

Keywords—automotive gateway, CAN bus, concurrent queue, 

frame rate, in-vehicle network, producer-consumer, 

reliability 

 

I. INTRODUCTION 

Newly emerging automotive architectures must support 

powerful ECUs and high-speed interfaces to handle 

complex tasks with an increasing communication 

bandwidth, but limited power consumption. Due to the 

increasing demand for supporting new functionalities, 

automakers connect multiple CAN buses via a central 

gateway. Automotive gateways aim to transfer data 

reliably and efficiently from one communication bus to 

another, possibly filtering (intercepting or altering 

messages) for security.  

 
 Manuscript received August 15, 2022; revised September 20, 2022; 

accepted October 30, 2022. 

While in the old days, CAN-based communication was 

through an independent Electronic Control Unit (ECU), 

often called a Body Control Module (BCM), currently, in 

most vehicles, a Domain Centralized Electrical/Electronic 

(E/E) Architecture (central gateway) is used. This gateway 

allows for in-vehicle communication across many domain 

controllers, such as powertrain, transmission, chassis, 

interior, infotainment, telematics, and diagnostics. 

 

 

Figure 1. Inter-thread communication in the gateway. 

Recently proposed high-end automotive solutions 

supported by Bosch require a centralized E/E architecture 

[1]. A central gateway (many-core processor) is connected 

via On-Board Diagnostics (OBD) with many zone 

controllers via 1000BASE-T1 Ethernet, enabling 

extensive telematics services and smart Cloud-based 

solutions [2-4]. Zone controllers act as smaller in-vehicle 

gateways to distribute data based on the physical location 

of ECUs that control vehicle sensors and actuators. This 

high-end approach, although not fully implemented, 

reduces wiring costs, and enables safer direct 

communication from high-bandwidth sensors and 

actuators to central components. In addition, the proposed 

architecture could use the central gateway to perform 

vehicle functions in the cloud ecosystem, including vehicle 

maintenance, firmware and software updates, security 

control, and third-party infotainment applications. 

Journal of Communications, vol. 18, no. 5, May 2023

333doi:10.12720/jcm.18.5.333-339

mailto:sninidakis@cs.hmu.gr%20(S.N.),%20kornaros@cs.hmu.gr(G.K.),%20d.bakoyiannis@cs.hmu.gr%20(D.B.),%20nmouzakitis@cs.hmu.gr%20(N.M.),%20astaridas@cs.hmu.gr
mailto:sninidakis@cs.hmu.gr%20(S.N.),%20kornaros@cs.hmu.gr(G.K.),%20d.bakoyiannis@cs.hmu.gr%20(D.B.),%20nmouzakitis@cs.hmu.gr%20(N.M.),%20astaridas@cs.hmu.gr
mailto:mdgramma@cs.hmu.gr


In both current and future automotive solutions 

discussed above, the efficiency of in-vehicle gateways is 

important. Our study focuses on an in-vehicle gateway 

architecture that supports efficient CAN message 

exchanges across multiple interfaces. CAN is the most 

popular in-vehicle network [5]. It is a robust serial 

communication bus designed by Bosch in 1980 for 

applications that perform in harsh environments. Since 

1993, CAN is ISO 11898 standard. At the physical layer, 

it enables a two-wire analog data connection (CAN 

high/low signals), reducing cable wiring and weight, and 

increasing reliability. ECUs interact with the physical 

layer via a transceiver (e.g., Microchip MCP2551 or high-

performance Philips TJA1050). CAN physical layer 

operates at data rates from 125 Kbps to 1Mbps and covers 

a maximum distance of 40m (120m with high-

performance transceivers). The data link layer, 

implemented by the CAN controller, e.g., Microchip 

MCP2515, is responsible for sending/receiving packets 

(known as frames). CAN implements a Carrier Sense 

Multiple Access with Collision Avoidance policy 

(CSMA/CA) using ID priority. This means that although 

all connected nodes have the right to access the bus, only 

the one with the highest priority (lowest ID) is authorized 

to broadcast. The remaining nodes switch to the receiving 

state to listen to the broadcast message. 

As shown in Fig. 1, the proposed software architecture 

uses a thread to control independently each CAN interface, 

i.e., each recv thread receives and filters frames arriving 

from an incoming interface, before enqueuing valid frames 

into a Queue, while each send thread dequeues frames 

from the Queue and sends them via an outgoing interface.  

Lock-free data structures can reduce synchronization 

overheads of shared memory accesses compared to 

classical implementations synchronized using mutual 

exclusion constructs (locks, semaphores, or barriers). 

Hence, inter-thread communication is implemented using 

parallel shared memory data structures, namely, lock-free 

concurrent queues using Cameron implementation [6] 

(called CQ), or traditional lock-based circular queues. In 

the latter case, two different implementations are 

considered that embody single-producer single-consumer 

principles: a) Dijkstra’s SPSC implementation [7, 8] 

(called List), and b) Lamport [9]. 

We claim that these data structures are important for 

designing robust, high-performance, energy-efficient 

automotive gateways. However, there is limited prior 

research that relates to automotive systems or in-vehicle 

gateways. More specifically, the performance of blocking 

and non-blocking SPSC queue implementations has been 

examined only with standalone test benches involving 

multiple threads, but rarely on scientific or industrial 

problems, e.g., [10, 11]. 

In addition, with the development of intelligent 

connected vehicles, recent research on efficient in-vehicle 

CAN-to-CAN gateways focuses mainly on automotive 

security. Thus, for example, intrusion detection/protection 

systems, including authentication and encryption methods, 

and firewall protection (with packet filtering, DoS 

protection, and access control) are examined mostly using 

spreadsheets, and sometimes using automotive subsystems 

or emulation systems using embedded platforms [12-15].  

However, only rarely CAN-to-CAN gateway 

performance or energy is examined. In [16], a CAN-to-

CAN bridge is proposed that provides selective frame 

retransmission. In [17], data transfer policies across CAN 

network subsystems are examined by running a 

benchmark from the Society of Automotive Engineers. In 

[18], dimensioning of a CAN-to-CAN gateway is 

considered via analytical queueing models and simulation, 

i.e., assuming two interconnected CAN systems with 

different transfer rates, the effect of reducing buffer 

capacities to frame loss is modeled. Finally, in [19], the 

authors theoretically calculate worst-case latency analysis 

for frame arrival in a CAN-CAN gateway that uses real-

time scheduling. 

(a) 

 

 

 

 

 

 

(b) 

Figure 2. a) Pictures of two initial platform incarnations used for emulation and debugging (top left/center), and the final open platform (top right), 

and b) schematic details of the final distributed embedded platform for experimenting with gateway architectures. ECU components are based on 

Raspberry Pi with Canberry SPI-to-CAN interfaces. The gateway is an Odroid XU3 with UART-to-CAN interfaces (via OBD development kits). 

 

Journal of Communications, vol. 18, no. 5, May 2023

334



  The paper has the following structure. Section II 

focuses on explaining the gateway implementation using a 

realistic open embedded platform prototype. Section III 

concentrates on the experimental framework, including the 

use case, platform configuration, detection metrics, and 

results. Finally, Section IV provides conclusions and 

discusses future work. 

II. EXPRERIMENTAL FRAMEWORK 

A. Automotive Platform - Hardware 

To evaluate the gateway architecture with different 

queue data structures, an open, distributed embedded 

platform prototype that integrates multiple CAN networks 

is implemented. The platform went through several phases 

of integration and testing while examining different CAN 

node architectures, before reaching its final configuration.  

The top left and center graphs of Fig. 2(a) show 

preliminary platform designs that consist of multiple 

interconnected Arduino AVR boards (with DFRobot CAN 

shield), and Linux single board computer (Odroid XU3) 

connected to CAN via Viewtool’s Gingko UART-to-CAN 

sniffer/adapter interface. These initial platform 

incarnations were used for concept validation and 

debugging in early validation tests; however, these 

systems are not able to support a gateway architecture with 

multiple CAN interfaces. 

The top right of Fig. 2 (a-b), show our final distributed 

embedded platform emulating a simplified automotive 

ecosystem on which gateway performance will be 

examined. Although our proof-of-concept platform 

instance consists of two CAN networks and three CAN 

nodes (including the gateway), it can be extended to 

include 4 CAN networks (using IndustrialBerry’s 

Canberry Dual v2.1 shield) and tens of CAN nodes. In our 

final platform, two Raspberry Pi 3B nodes (RPI1 sender, 

and RPI2 receiver), running 2019-04-08-Raspbian (Linux 

kernel 4.9 with preempt_rt patch), are used as end nodes. 

An Odroid XU3 single-board computer serves as the 

gateway. The ARMv7 board has a 2GB DDR3 and uses 

the Samsung Exynos 5422 chipset with Big-Little CPU 

architecture (Cortex A15 quadcore, and low-power Cortex 

A7 quadcore). It runs Ubuntu 18.04 LTS (Linux kernel 

4.14 with preempt_rt patch). The preempt patch targets 

embedded systems with latency requirements in the 

microsecond to the millisecond time range. The board 

connects to the Raspberry end nodes (sender and receiver) 

using two incoming/outgoing UART-to-CAN interfaces 

provided by two Scantool OBD development kits. Each kit 

enables a one-way CAN interface (incoming or outgoing). 

It consists of three removable modules (Power, CAN 

Transceiver, and STN-based CAN Controller) and 

multiple breakout headers, configuration jumpers, and test 

points providing access to DB15, RX/TX, and CAN 

High/Low signals. The power module offers fast 

sleep/wake-up mechanisms (max 20ns), important for 

instant suspension of interface action. 

B. Automotive Platform Ecosystem - Software 

As discussed before, our platform interconnects 

multiple Raspberry Pi 3 nodes to an Odroid XU3 that 

serves as a gateway. For the Raspberry PI 3B nodes, our 

embedded software toolchain uses Linux CAN-utils tools 

(commands cansend, canplay, candump, cangw, cansniff, 

etc., see [20]) to send, receive or control packets via the 

Canberry shield. Several options are also available, e.g., 

the “candump -t a” flag provides the time of arrival. 

As shown in Fig. 3, the gateway protocol stack (~3K 

lines of C code) first initiates two functions to configure 

the gateway’s incoming and outgoing UART-to-CAN 

message interfaces (Rx/Tx signals) using STN2120's 

microcontroller ELM327 AT and ST (teletypewriter 

(TTY)) commands. These interfaces connect to the end 

nodes (RPI1 sender on CAN1 and RPI2 receiver on 

CAN2). Besides the terminal commands tcgetattr and 

tcsetattr to set options,  write is used to a) set the CAN 

protocol to either RAW CAN (or ISO 15765 OBD) 

protocol via “STP 31” (resp., “STP 33”), b) to permanently 

set the serial baud rate to 2Mbp/s via “STSBR 2M” and 

“STWBR”; this enables a CAN rate of 500K frames/s 

(identical to that of the Raspberry nodes), and c) set 

receiver/sender mode, flow control, and block filters (e.g., 

“ATMA” prepares the CAN interface for receiving frames, 

“ATSHA is used to change CAN ID, and “ATAL 00” is 

used to disable long frames).  

 

 
Figure 3. The gateway software stack architecture. The recv and send 

threads compete for the shared buffer; the architecture is scalable (i.e., 

extendible) to many (incoming/outgoing) interfaces. 

After configuration, the gateway software architecture 

enables two POSIX threads to manage incoming (and 

outgoing) CAN interfaces. This code extends an open-

source serial TTY terminal [21] with multithreaded code 

that manages the corresponding serial incoming/outgoing 

interfaces to receive or send CAN frames. More 

specifically, the recv thread receives CAN frames from 

CAN1, then filters and stores valid ones in the CQ (or 

circular buffer, in the case of List).  Similarly, the send 

thread periodically dequeues frames from the CQ (resp. the 

List) and transmits them to CAN2. 

The threads communicate and synchronize using either 

a concurrent queue or a classic single-producer single-

consumer (bounded buffer) synchronization pattern. In the 

latter case, the threads utilize two POSIX semaphores 

(initialized in the main function) to control access to the 

shared circular queue (bounded buffer) that stores pending 

Journal of Communications, vol. 18, no. 5, May 2023

335



frames. In both cases, the operation follows a concurrent 

producer-consumer pattern, i.e., the recv thread fills, while 

the send thread concurrently empties the CQ (or List). The 

queue size is selected during configuration to store many 

CAN frames (header and data).  Proper operation is 

confirmed by blinking Light-Emitting Diodes (LEDs) and 

notifications on the console. 

 
send thread - index1: 553 
 new_msg: 554 
 A15: 0.808476W  Power on Cortex-A15 quadcore 
 A7:   0.027540W  Power on Cortex-A7 quadcore 
 T0: 54 C  Temperature on Cortex-A15 tiles: 0 to 3 
 T1: 53 C 
 T2: 59 C 
 T3: 58 C 

Figure 4. Visualizing processing at the gateway enables viewing the 

number of frames (received or sent), power consumption, and thermal 

data on each Cortex-A15 tile. 

As shown in Fig. 4, gateway notifications identify 

arriving/departing frames, power consumption for Cortex-

A15 and Cortex-A7, and thermal zones for all Cortex-A15 

tiles; the latter are obtained from integrated INA231 and 

thermal sensors by accessing registers via Inter-Integrated 

Circuit bus (I2C). 

C. Traffic Patterns 

The experiments use actual engine traffic. More 

specifically, the open Korean Hyundai YF Sonata engine 

trace dataset [22] has been scaled to cover a broad range of 

injection rates and injected into CAN1 by RPI1 via 

command canplay (or via Viewtool’s Gingko UART-

CAN). The exact timing log of more than 988,987 frames 

makes this emulation very realistic.  

The traffic includes time-periodic frame requests, e.g., 

related to dashboard display metrics (e.g., speed, RPM, 

temperature, etc.), as well as responses from the engine 

control unit, and other electrical control units. 

D. Performance Metrics 

Using our experimental framework, the efficiency of 

frame exchanges at the gateway is examined, when 

dynamically changing input parameters, such as injection 

rate (ingress frame rate). Different performance metrics 

are evaluated, such as frame loss, output rate, queue 

waiting time, and power consumption metrics related to 

Cortex-A15 tiles. For a fair comparison, in our tests, all 

other CAN parameters remain identical, such as cable 

length, bus load, frame density, and CAN bit rate. 

III. EXPERIMENTAL RESULTS 

Platform performance is evaluated using different 

experiments, considering standalone queue performance, 

reducing frame loss rate using system parameters (i.e., 

UART-to-CAN inter-character delay), and evaluating 

egress frame rate, waiting time, and energy consumption. 

Next, each case study is described separately. 

A. Queue Performance on the Odroid XU3  

In a preliminary study, stand-alone queue performance 

is evaluated on the Odroid XU3 gateway when two threads 

(sender and receiver) compete to simultaneously enqueue 

and dequeue integer data. In this case, CAN interfaces are 

not in place, the sender and receiver threads are pinned to 

different Cortex-A15 cores, and the buffer size is set to 8K 

elements. In addition, failed operations are not counted but 

immediately retried. Our queue integrates 3 

implementations: Lamport, Cameron (called CQ), and List. 

Another one, BatchQueue [23] generated segmentation 

faults for large injection rates. 

Fig. 5 compares the Average Waiting Time for all three 

queues for different Injection Rates (all rates are below 

saturation). Observe that the Lamport queue is better for 

small rates, CQ is better for medium rates, and List (classic 

Single Producer – Single Consumer synchronization) is 

the most efficient for large injection rates.  

 

 

Figure 5. Standalone queue performance at Odroid XU3 vs injection 

rate. 

In general, it is not apparent how the average waiting 

time behaves in a complex gateway, and how it is affected 

by network limitations and interface delays. Thus, next in 

Section III.B, the performance of the two most viable 

competitors (List and CQ) is examined, when the gateway 

operates, and CAN frames are exchanged. 

B. Optimizing the Inter-Character Delay of UART 

Sender 

Each UART controller is independently configurable 

with many low-level parameters, such as baud rate, data 

bit length, bit ordering, number of stop bits, and parity. 

This subsection focuses on reducing frame loss by 

optimizing the inter-character delay of the UART-to-CAN 

outgoing gateway interface (leading to the RPI2 end-node). 

Notice that frame loss leads to at least a one-bit error in the 

transmitted CAN frame. Frame loss is measured at the end 

node by sending pre-specified, full-length diagnostic 

frames (8-byte data including length) that the end node 

knows how to handle.  

To handle reliability issues, a constant inter-character 

timeout is introduced to effectively limit the time to 

propagate serial data from the internal buffer to the 

physical CAN interface.  

Since for a speed of 500k frames/s, the serial port is set 

to 2 Mbps (with 8N1: 8 Data bits, 1 start and 1 stop bit, and 

no parity), the total number of bits to send a character is 10 

bits and the time required to transfer one character is (10 

Journal of Communications, vol. 18, no. 5, May 2023

336



bits / 2 Mbits/s)  1M (us/s) = 5us. Therefore, inter-

character timeout must be larger than 5us. 

Fig. 6 examines frame loss at the outgoing link of the 

Odroid XU3 gateway for a wide range of UART inter-

character delays. Both CQ and List are examined, for two 

relatively large injection rates: 61.5 frames/s and 192 

frames/s; the former corresponds to a 16ms delay between 

consecutive frames, while the latter corresponds to a 

smaller ~5ms delay. 

 

 

Figure 6. Frame loss rate at the gateway vs UART inter-character delay. 

 

Notice that for the larger injection rate of 192 frames/s 

(upper two curves for CQ and List), a very high frame loss 

is detected at RPI2 for small inter-character delays, 

especially below 5us; however, for large UART inter-

character delays above 256us, frame loss decreases 

abruptly to almost 0 (less than 0.1%). In addition, for the 

smaller frame injection rate of 61.5 frames/s (lower two 

curves), frame loss is always near zero (less than 0.1%) for 

both queues. 

Hence, to limit frame loss, the optimal UART inter-

character delay is above 5us, as predicted. However, as the 

UART inter-character delay increases further, real-time 

functionality in the CAN network is violated, since this 

extra delay causes the frame waiting time in the queue to 

vastly increase. For instance, since the total number of 

frame bits, including up to 24 bits for bit stuffing, is at most 

134, a UART inter-character delay of 256 us causes each 

frame to be transmitted from the queue in ~34ms, a 

prohibitively large value for real-time in-vehicle 

communications. 

 

 

Figure 7. Average waiting time vs injection rate for CQ and List. The 

inter-character delay is set to 8us. 

C. Queue Performance on the Odroid XU3 Gateway 

We now focus on examining queue characteristics, by 

considering queue performance indicators, such as length, 

and waiting time. While queue length behaves very 

similarly for list and queue, it is interesting to examine the 

queue waiting time. 

Hence, in this experiment, the average waiting time of 

CAN frames in the queue is analyzed for medium to large 

injection rates, from 30 to 973 frames/s. The waiting time 

is calculated by measuring the elapsed time interval from 

enqueuing to dequeuing a frame when CAN-to-CAN 

communication is in place at the gateway. In all 

experiments, UART inter-character delay is set to 8us. 

As shown in Fig. 7, the average waiting time for both 

CQ and List have similar behavior in low and medium 

frame injection rates. However, the CQ implementation is 

only slightly better (~2.2%) for rates higher than 730 

frames/second. This extra slack time can be useful in 

performing slightly more sophisticated frame filtering. 

 

 

Figure 8. Output rate vs injection rate. For both CQ and List, two 

different inter-character delays are examined: 4us or 8us.   

 
Figure 9. Frame loss vs injection rate. For both CQ and List, two 

different inter-character delays are examined: 4 us or 8 us. 

Fig. 8 shows the output vs. the injection rates (for large 

injection rates), for two different UART inter-character 

delay values: 4 us and 8 us. Notice the following. 

• Before saturation, both List and CQ perform well, 

reaching a maximum rate of ~380 frames/s for 4 us 

(resp. 340 frames/s for 8 us). 

• Within the saturation region (too large injection 

rates, above 500 frames/s), List slightly 

outperforms CQ (by ~2.7%). 

Journal of Communications, vol. 18, no. 5, May 2023

337



Finally, Fig. 9 illustrates the frame loss vs the injection 

rate (for large injection rates), for two different UART 

inter-character delays: 4 us and 8 us. Notice that 

• frame loss is very small for both CQ and List (less 

than 0.1%) when the UART delay is 8 us, but 

• quite large especially for CQ (2.0% to 26.5%) when 

the UART delay is set to 4 us. 

D. Power Consumption on the Odroid XU3 Gateway 

For power estimation, the Odroid XU3 gateway 

integrates four TI INA231 current-shunt and power 

sensors equipped with Analog Digital Converter (ADC) 

circuits to obtain power data from A15 cores, A7 cores, 

memory, and GPU. The INA231 sensors have high 

accuracy with a maximum error of 0.5% ppm/°C for 

temperatures ranging from -40°C to +125°C which is 

realistic for this work. The I2C driver is configured so that 

on-chip sensor configuration and data registers can be 

sampled from within our CAN Gateway application via 

sysfs file system entries. The I2C driver supports an update 

rate of 200ms (or higher depending on configuration), 

however, by averaging instant values, an average power 

consumption for each cluster (big or little) is obtained once 

per second. It is also possible visualize all on-chip sensors 

(including thermal) by adapting the architecture-

independent Qt-based Energy Monitor [24]; another 

compatible power tool that enables detailed per-process 

power profiling is ALEA [25].  

Figs. 10 (a) and (b) show CPU, memory, and GPU 

power consumption for List (left) and CQ (right graph). 

Notice that only A15 power consumption is significant 

since threads recv and send execute on two Cortex-A15 

and access shared registers and cache. In addition, observe 

that the CQ is much more power intensive (~3.1 Watt/s) 

than List (~0.8 Watt/s), due to more complex 

synchronization mechanisms; in contrast, List only uses 

two semaphores (locks) to synchronize accesses. Data 

locality also plays an important role in power efficiency; 

however, these issues must be further investigated. 

 
(a)   (b) 

Figure 10. Typical power profiles from the Energy Monitor for a) List 

(left) and b) CQ (right), assuming a UART inter-character delay of 8 us. 

A large drop in power consumption can be 

accomplished using application watchdog monitors that 

leverage the OBD dev kit power module’s ability to 

throttle, sleep, or shut down traffic with just 20ns 

activation/deactivation time. 

IV. CONCLUSIONS AND FUTURE WORK 

The proposed design of gateway architectures 

efficiently transports frames among in-vehicle subsystems 

using traditional lock-based producer-consumer or lock-

free concurrent queues. This work indicates that both 

queue implementations support high performance with 

dequeue rates reaching ~380 CAN frames/s. Furthermore, 

although lock-free concurrent queues have a slightly 

smaller waiting time, they have much higher energy 

requirements. 

The developed open embedded gateway platform 

prototype is based on inexpensive, mostly general-purpose 

hardware (Raspberry Pi 3B, Odroid XU3, and OBD 

Development Kit). The platform can help in teaching about 

in-vehicle subsystems. The platform can be expanded with 

programmable ECU devices (e.g., Scantool ECUsim2000), 

and many other physical or virtual interfaces [26, 27]. With 

hands-on experience, in analyzing, visualizing, or 

controlling in-vehicle messages on clusters of ECU nodes 

and gateways, Computer Engineering and Electrical 

Engineering students can understand better the structure of 

efficient, reliable, and secure automotive communications 

in real vehicles. Moreover, students can improve their 

knowledge of operating systems, parallel and distributed 

systems, data structures, networking, embedded systems, 

and databases, since efficient communication and 

synchronization strategies, such as the producer-consumer 

problem (central in this study), transcend these computer 

science/engineering domains [28]. 

The open software architecture and implementation, 

including an extensive troubleshooting guide, will be made 

available to the community via SourceForge/GitHub soon 

(in Q2/2023). 

Besides CAN bus, automotive makers deploy other in-

vehicle network technologies that operate with different 

communication protocols and baud rates. Thus, future 

research can also focus on hybrid gateway architectures 

that interconnect multiple in-vehicle subsystems that 

operate at different rates, e.g., CAN, Local Interconnect 

Network (LIN), Media Oriented Systems Transport 

(MOST), Flexray, CAN FD, and Wireless. In this case, the 

gateway architecture can leverage multiple-producer 

multiple-consumer (MPMC) queues or appropriately 

adapted single-producer single-consumer solutions using 

buffered multistage networks. Finally, Linux RT policies 

can help improve the real-time performance of our 

gateway architecture. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Conceptualization of the idea, and supervision by MDG, 

and GK; Research, implementation, and analysis during 

different integration stages of the platform by SN, MDG, 

AS, DB, NM. MDG and SN wrote the paper; all authors 

reviewed the paper and approved the final version. 

FUNDING 

This research was partially supported from EU H2020 

projects AVANGARD (Contract No. 869986) and more 

recently FLUIDOS (No. 101070473).  

Journal of Communications, vol. 18, no. 5, May 2023

338



REFERENCES 

[1] B. Mobility. (2022). Vehicle-centralized, zone-oriented E/E 

architecture with vehicle computers. [Online]. Available:  

https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-

architecture 

[2] S. Brunner, J. Roder, M. Kucera et al., “Automotive E/E-

architecture enhancements by the usage of Ethernet TSN,” 

Workshop on Intelligent Solutions in Emb. Syst. (WISES), 2017, pp. 

9-13. 

[3] D. Wang and S. Ganesan, “Automotive domain controller,” Int. 

Conf. Comput. Info Tech. (ICCIT), 2020, pp. 1-5. 

[4] V. Bandur, G. Selim, V. Pantelic et al., “Making the case for 

centralized automotive E/E architectures,” IEEE Trans. on Vehic. 

Tech., vol. 70, no. 2, 2021, pp. 1230—1245. 

[5] R. Bosch, “CAN Specification v2.0,” Stuttgart, Germany, 1991. 

[6] Cameron. (2013). A single-producer, single-consumer lock-free 

queue for C++. [Online]. Available: 

https://github.com/cameron314/readerwriterqueue  

[7] E. W. Dijkstra, “The structure of the “THE”-multiprogramming 

system,” Commun. ACM, vol. 11, no. 5, 1967, pp. 341—346.  

[8] Producer-Consumer, Dijkstra’s solution, Wikipedia. (Sept. 24, 

2022). [Online]. Available:https://en.wikipedia.org/wiki/Producer-

consumer_problem  

[9] L. Lamport, “Specifying concurrent program modules,” ACM 

Trans. Program. Lang. Syst., vol. 5, no. 2, 1983, pp. 190-222, 2022.  

[10] M. Meneghin, D. Pasetto, H. Franke et al., “Performance evaluation 

of interthread communication on multicore architectures,” Int. 

Symp. High-Perf. Parallel and Distributed Comput., 2013, pp. 131-

132. 

[11] V. Maffione, G. Lettieri, and L. Rizzo, “Cache-aware design of 

general-purpose Single-producer—single-consumer queues,” J. 

Softw. Pract. Exp., vol. 49, 2019, pp. 748—779. 

[12] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An approach to 

specification-based attack detection for in-vehicle networks,” in 

Proc. IEEE Intelligent Vehicles Symp., 2008, pp. 220—225.  

[13] W. Wu, R. Li et al., “A survey of intrusion detection for in-vehicle 

networks,” IEEE Trans. Intelligent Transp. Systems, vol. 21, no. 3, 

2020, pp. 919-933. 

[14] M. D. Pesé, J. W. Schauer, J. Li, and K. G. Shin, “S2-CAN: 

Sufficiently secure controller area network,” in Proc. Computer 

Security Appl. Conf. (ACSAC), 2021, pp. 425-438. 

[15] L. Teri and R. Bolboaca, “A stateful firewall and intrusion detection 

system enforced with secure logging for controller area network,” 

in Proc. ACM European Interdisciplinary Cybersecurity Conf. 

(EICC), 2021, pp. 39-45. 

[16] H. Ekiz, A. Kutlu, and E. Powner, “Design and implementation of 

a CAN / CAN bridge,” in Proc. Int. Parallel Arch., Algorithms, and 

Networks (I-SPAN), 1996, pp. 507—513, 1996. 

[17] H. Ekiz, A. Kutlu, and E. Powner, “Implementation of CAN/CAN 

bridges in distributed environments and performance analysis of 

bridged CAN systems using SAE benchmark,” in Proc. IEEE 

Engineering, 1997, pp. 185- 187. 

[18] J. Sommer and R. Blind, “Optimized resource dimensioning in an 

embedded CAN-CAN gateway,” in Proc. Int Symp. Industrial 

Embedded Systems, 2007, pp. 55-62. 

[19] G. Xie, H. Gong, Y. Han et al., “A real-time CAN-CAN gateway 

with tight latency analysis and targeted priority assignment,” in 

Proc. EEE Real-Time Systems Symp. (RTSS), 2020, pp. 141-152. 

[20] M. K. Budde, “SocketCAN: The official CAN API of the linux 

kernel,” in Proc. CAN Conf., 2012, pp. 5—17. 

[21] Serial Console. SourceForge.  (Dec. 24, 2022) [Online]. Available:   

https://sourceforge.net/projects/serialconsole/files/serialconsole   

[22] Car-Hacking dataset, HCRL.  (Dec. 12, 2022). [Online]. Available:  

https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-

intrusion-dataset  

[23] T. Preud'homme, J. Sopena, G. Thomas et al., “Batchqueue: Fast 

and memory-thrifty core to core communication,” in Proc. Int. 

Symp. on Computer Arch. and High-Perf. Comput., 2010, pp. 215-

222. 

[24] C. Imes, L. Bergstrom, and H. Hoffmann, “A portable interface for 

runtime energy monitoring,” in Proc. 24th Int Symp. Found. Soft. 

Engin., 2016, pp. 968-974.  

[25] L. Mukhanov, D. S. Nikolopoulos, and B. R. De Supinski, “ALEA: 

fine-grain energy profiling with basic block sampling,” Int. Conf. 

Parallel Arch. and Compilation (PACT), 2015, pp. 87-98.  

[26] S. McCall, C. Yucel, and V. Katos, “Education in cyber-physical 

systems security: The case of connected autonomous vehicles,” in 

Proc. IEEE Global Engin. Education Conf. (EDUCON), 2021, pp. 

1379-1385.  

[27] C. Liu and F. Luo, “A co-simulation-and-test method for CAN Bus 

system,” Journal of Communications, vol. 8, no. 10, 2013, pp. 681-

689, 2013. 

[28] Y. Luo and X. Wang, “The study of the classic producer-consumer 

problem in a series of IT courses,” in Proc. Conf. Info. Tech. 

Education (SIGITE20), 2020, pp. 162–-16 

 

Copyright © 2023 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

 

Journal of Communications, vol. 18, no. 5, May 2023

339

https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture
https://github.com/cameron314/readerwriterqueue
https://en.wikipedia.org/wiki/Producer-consumer_problem
https://en.wikipedia.org/wiki/Producer-consumer_problem
https://sourceforge.net/projects/serialconsole/files/serialconsole
https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



