
Automating Internet of Things Network Traffic

Collection with Robotic Arm Interactions

Xi Jiang1,* and Noah Apthorpe2
1 Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA
2 Department of Computer Science, Colgate University, Hamilton, NY, 13346, USA;

 Email: napthorpe@colgate.edu (N.A.)

*Correspondence: xijiang9@uchicago.edu (X.Y.)

Abstract —Consumer Internet of things research often

involves collecting network traffic sent or received by IoT

devices. These data are typically collected via crowdsourcing

or while researchers manually interact with IoT devices in a

laboratory setting. However, manual interactions and

crowdsourcing are often tedious, expensive, inaccurate, or

do not provide comprehensive coverage of possible IoT

device behaviors. We present a new method for generating

IoT network traffic using a robotic arm to automate user

interactions with devices. This eliminates manual button

pressing and enables permutation-based interaction

sequences that rigorously explore the range of possible

device behaviors. We test this approach with an Arduino-

controlled robotic arm, a smart speaker, and a smart

thermostat, using machine learning to demonstrate that

collected network traffic contains information about device

interactions that could be useful for network, security, or

privacy analyses. We also provide source code and

documentation allowing researchers to easily automate IoT

device interactions and network traffic collection in future

studies.

Keywords—test-bed and trials, cyber-physical systems, other

communications and networking topics

I. INTRODUCTION

The Internet of Things (IoT) refers to the wide variety

of physical objects increasingly connected to the Internet.

IoT devices range from common household items, such

as thermostats, light bulbs, and door locks, to medical

products, wearables, and industrial sensors. For example,

a “smart” (IoT) thermostat may be able to receive

location data from a smart car and automatically adjust

the home temperature when a user leaves work. Although

IoT devices provide unprecedented convenience and

efficiency, they also raise concerns about security and

privacy. Users report privacy fears associated with

constant connectivity and always-on environmental

sensors [1–4], and researchers have identified insecurities

in IoT device software and network communications [5–

7]. These issues, combined with the increasing popularity

of consumer IoT devices, are motivating many studies

analyzing IoT network traffic to detect and prevent

privacy and security vulnerabilities.

Manuscript received September 15, 2022; revised October 30, 2022;

accepted December 23, 2022.

Collecting IoT network traffic for these studies

typically involves researchers manually interacting with

devices in a laboratory setting. Researchers press buttons,

touchscreens, or other user interface elements on the

devices in an attempt to mimic real-world user behaviors

or collect traffic from as many device states as possible.

For example, a researcher may attempt to record network

traffic while pressing every button on a device in

sequence or by pressing patterns of buttons (or other user

interface elements) in order to examine the full scope of

device behavior [8]. However, these types of manual

device interactions are time-consuming and are unlikely

comprehensive, posing a significant challenge to IoT

network research (Section II).

IoT studies have also utilized crowdsourcing to acquire

consumer IoT network traffic [9, 10]. This can provide

large quantities of realistic data; however, crowdsourcing

typically requires extensive data collection platform

development, and user reports of device behavior during

traffic collection are prone to inaccuracy.

In this paper, we present a novel method for

automating IoT network traffic collection: configuring a

robotic arm to interact with IoT devices according to

formalized interaction sequences (Section III),

particularly on IoT devices with physical user interface

(UI) elements such as buttons and switches. We focus on

devices with physical UI elements because the collection

of network traffic on such devices has been proven to be

challenging and costly (Section II). At the same time, the

application of robotic arm-assisted traffic collection is

more suitable for these devices compared to devices with

non-physical UI elements, which we discuss in Section V.

This approach can simulate real user behaviors, provide

comprehensive coverage of possible user/device

interactions, and eliminate tedious manual button

pressing. Recording Internet traffic to and from a device

during robotic arm interactions provides a source of

network data that can be used for security testing, privacy

evaluation, or other IoT research. As far as we are aware,

there has been no prior use of robotics to automate IoT

research in this manner, raising significant potential for

cross-disciplinary follow-up research.

Journal of Communications, vol. 18, no. 5, May 2023

283doi:10.12720/jcm.18.5.283-293

mailto:napthorpe@colgate.edu
mailto:xijiang9@uchicago.edu

TABLE I. COMPARISON OF RESEARCH METHODS FOR IOT TRAFFIC

COLLECTION. OUR ROBOTIC ARM METHOD AUTOMATES VERIFIABLE

PHYSICAL INTERACTIONS WITH IOT DEVICES WITHOUT EXTENSIVE

MANUAL EFFORT OR EXPENSIVE CROWDSOURCING CAMPAIGNS

 Manual Crowdsourcing Robotic Arm

Automated X X ✓

Cost $$ $$$ $

Verifiable ✓ X ✓

Scalable X ✓ ✓

We demonstrate the effectiveness of our approach by

configuring a robotic arm to press physical buttons on

two devices: an Amazon Echo Show 5 [11] (a smart

speaker with multiple user interfaces) and an Emerson

Sensi Wi-Fi Smart Thermostat [12] (a household

thermostat with only physical buttons) (Section IV). We

verify that this produces network behavior correlated with

robot/device interactions by testing a variety of

permutation-based button press sequences while

collecting Internet traffic. We then train a machine

learning model (random forest classifier) to accurately

infer (F1 > 0.95) which specific buttons are pressed on the

devices from network traffic alone. This machine

learning task is inspired by the various metadata-based

inference attacks in the consumer IoT privacy literature

[8, 13, 14]. Success at this task indicates that the captured

traffic provides substantial information about interactions

with the devices and corresponding device behavior and

would be useful for follow-up network, security, or

privacy analyses.

Employing robotics for collecting network data from

physical IoT devices eliminates many drawbacks of

manual data collection or crowdsourcing. Our approach

provides rigorous interaction coverage and high

scalability, allowing for easier collection of Internet

traffic for IoT network audits. Although we focus on

network data collection in this paper, there is great

potential for robotic automation of other research

involving cyber-physical devices, including fuzz testing

and usability testing. We hope that this approach and our

provided source code 1 will facilitate continued IoT

research (Sections V–VI).

II. BACKGROUND AND RELATED WORK

Collecting network data from consumer IoT devices

has posed a consistent challenge for IoT research. Studies

typically use either manual data collection or

crowdsourcing to collect IoT network traffic; however,

both approaches have substantial drawbacks.

In this section, we review the challenges of these

traditional methods for IoT data collection and discuss

how our approach provides significant advantages in

terms of automation, monetary cost, verifiability, and

scalability (see Table I).

1https://github.com/Chasexj/Automated_IoT_Traffic_Generation

A. Manual IoT Traffic Collection

Many studies of consumer IoT network traffic have

involved data collection in a controlled laboratory

environment. Researchers acquire devices relevant to

their research question, instrument the devices, and then

manually interact with the devices to test their behavior

and collect data for online and offline analysis. Studies

utilizing manual data collection have focused on privacy-

violating inferences from IoT network traffic [8, 13, 15]

and network vulnerabilities in specific classes of devices

(e.g., children’s toys [6, 16]), sparking increased

consumer awareness, regulatory action, and manufacturer

attention to consumer IoT security and privacy.

Manual data collection has several benefits. First,

researchers can precisely control the network

environment, ensuring that recorded network traffic

actually corresponds to specific devices or user

interactions. This greatly simplifies ground-truth labeling

of collected network traffic for input into supervised

machine learning algorithms or for other follow-up

analyses. Second, researchers can collect data while

subjecting the device or network to active attacks that

would be unethical outside of a controlled environment.

For example, researchers can flood a device with denial-

of-service traffic or attempt to install bogus TLS

certificates.

Unfortunately, manual data collection also has several

serious drawbacks that have limited consumer IoT

research. First, collecting network traffic from all

possible user interactions and device behaviors is usually

infeasible. Most consumer IoT devices do not have

emulator support, so user interactions must be tested on a

physical device. Manually testing repeated sequences of

specific user interactions (e.g., button presses) on a

device is quite tedious, limiting data collection to a small

set of interactions and a correspondingly small volume of

network traffic. In contrast, our robotic arm approach

does not require any manual interaction or intervention

during data collection. This can save hours of researcher

time and eliminate the possible need to restart

experiments if a human researcher forgets a button press

or presses the wrong button.

Second, manual researcher interactions with consumer

IoT devices are unlikely representative of real user

behavior over varying timescales. This means that

network traffic generated via manual interactions may not

be representative of traffic generated by devices in

consumer households. In contrast, our approach uses

permutation-based interaction sequences that can test all

possible interactions with a device or be programmed to

mimic real user behavior over long timescales.

B. Crowdsourcing

A more recent approach to acquiring consumer IoT

network traffic involves crowdsourcing data collection to

real users who have adopted IoT devices [9, 10]. This

typically involves the creation of custom hardware or

Journal of Communications, vol. 18, no. 5, May 2023

284

software that allows users to instrument their own devices

or home networks.

Crowdsourcing IoT traffic has several benefits.

Crowdsourced data is more externally valid than

manually collected laboratory data because it comes from

real users interacting with IoT devices in the wild. With

substantial recruitment efforts, crowdsourcing can also

produce more data from a wider variety of devices and

interaction patterns than laboratory collection.

However, crowdsourced data has other drawbacks. It

may require extensive development effort to create a

platform for data collection that participants feel

comfortable incorporating into their homes. Recruiting

participants is also challenging. Crowdsourcing platforms

such as Amazon Mechanical Turk are not well suited to

IoT data collection, which does not fit well into the

Human Intelligence Task (HIT) framework. Participant

compensation for large-scale crowdsourcing campaigns

can also be quite expensive, especially if participants are

required to install hardware in their homes. Some studies

avoid this expense by asking interested individuals to

volunteer data without monetary compensation,

sometimes by providing details about local IoT device

behavior that may be of interest to privacy or security-

conscious users [9]. However, this can limit study

participation to technically savvy participants or those

with existing privacy or security concerns, potentially

introducing results bias. Our robotic arm approach

requires only an initial cost for the robot and devices but,

like crowdsourcing, can produce large amounts of data.

Crowdsourced IoT data also suffers from unreliable

labels. Participants may not accurately report what

devices they own or what interactions they perform with

the devices. Post hoc identification and verification of

device types and user interactions from network data is a

research problem in its own right [9].

In contrast, data collected with our automated

approach can be directly labeled with the correct ground

truth by the researchers running the robot platform.

C. Automated Data Collection with Robotic Arm

Interactions

The automated data collection approach described in

this paper combines the scalability and reduced

tediousness of crowdsourcing with the control and

verifiability of manual data collection (Table I).

Our approach focuses on automating device

interactions via physical user interface elements rather

than through networked applications (e.g., smartphones,

IoT hubs, or debugging tools). While tools like Android

Debug Bridge (ADB) can be used to automate

interactions with some IoT devices [17, 18], many

devices do not have similar programmatic testing tools

available. Such devices can only be tested with physical

interactions (e.g., button pressing). By performing these

physical interactions with a robotic arm, we are able to

examine network traffic from a breadth of device

behaviors with minimal manual effort.

We are also able to rigorously test permutations of

device interactions to collect data for all possible (or all

reasonable) interactions with a device. These

permutations can include different interface elements

(buttons, etc.) as well as different timings between

interactions.

III. METHOD

Our approach for generating automated IoT device

traffic has two main components: 1) Configuring a

robotic arm to rigorously test user interface interactions

with IoT devices, and 2) Automating network traffic

collection during robotic arm interactions via existing IoT

traffic analysis tools [19].

Implementing this approach involves four primary

challenges: 1) Efficiently obtaining correct input

parameters for the robotic arm such that it interacts with

desired user interface elements on the IoT device, 2)

Ensuring interaction accuracy between the robotic arm

and the IoT device, 3) Designing interaction sequences

that thoroughly explore the space of possible device

behaviors, and 4) Automating network traffic collection

during robot/device interaction.

This section describes our implementation, including

how we addressed these challenges for the Amazon Echo

Show 5 and Sensi Wi-Fi Smart Thermostat devices. Our

source code is publicly available for using in future

research.

A. Experiment Setup

1) Robotic Arm: The main robotic arm used in this

study is the Arduino Braccio Robotic Arm [20] with 6

degrees of freedom (DoF) and motors/servos connected

to the Braccio shield. The robotic arm is fixed to the work

station as illustrated in Fig. 1 and is controlled via an

Arduino UNO R3 board [21]. When given correct

rotation and movement delay parameters, the robotic arm

can press buttons and interact with other interface

elements on an IoT device fixed within the arm’s

maximum reach.

We chose this particular model of robotic arm for two

main reasons: 1) Unlike industrial robotic arms which

often sell for tens of thousands of dollars, the Arduino

Braccio Robotic Arm retails for less than $250. This

keeps our method accessible for IoT researchers with

limited budgets, 2) Compared to other robotic arms in the

same price range, this model has a relatively high

precision (±2 mm), which is desirable for interacting with

devices with small buttons.

2) IoT Devices: The two devices tested in this study

are the Amazon Echo Show 5 (Echo-Show5) [11] and

the Emerson Sensi Wi-Fi Smart Thermostat (Sensi-

Thermostat) [12]. Echo-Show5 is an Amazon smart

display capable of video and voice calls, content

streaming, online shopping, and running third-party

applications. The device is equipped with Amazon’s

Alexa [22] voice assistant, a touch screen, as well as four

Journal of Communications, vol. 18, no. 5, May 2023

285

Figure 1. Sample hardware setup with Arduino Braccio Robotic Arm

(left) and IoT device (right) fixed to the table.

buttons on the top of the device. The four buttons include

a mechanical switch for the camera shutter, a microphone

mute button, and two buttons responsible for volume

up/down. Sensi-Thermostat is a smart Wi-Fi thermostat

that is designed to control conventional household

heating/cooling. While it can be connected to a user’s

smartphone for remote control, there are also six physical

buttons on the device that can be used to raise/lower

temperature, turn on/off the fan, and change the

heating/cooling mode and schedule.

We chose these specific IoT devices based on two

specific criteria:

a) Market representativeness: While there are

numerous IoT devices on the market, we wanted to select

representative devices that are widely deployed to

evaluate the practicality and scalability of our automated

data collection methodology. We chose the Echo-Show5

because it is representative of the IoT smart

speaker/display market (Amazon is a major IoT

manufacturer with over 51% of the U.S. smart speaker

market share as of 2020 [23]). Likewise, the Sensi-

Thermostat is a popular IoT device with >16,000

Amazon reviews circa January 2022, making it one of the

most widely deployed IoT smart thermostats on the

market. Although there are many categories of IoT

devices that we are not testing in this study, our

methodology is highly transferable across different

devices as long as physical user interface (UI) elements

are present. We also believe that the approach can be

adapted to additional devices with a wide variety of user

interfaces (Section V).

b) Network behavior complexity: It is essential for us to

verify that our proposed method is effective across

devices with different levels of network behavior

complexity. The Echo-Show5 is a comparatively

sophisticated device that offers a significantly wider

variety of functionalities than single-purpose IoT devices

such as smart light bulbs or outlets, allowing us to

evaluate our approach on a device with complex network

behaviors. On the other hand, the Sensi-Thermostat is a

single-purpose device, making it ideal for validating our

Figure 2. IoT device (Sensi-Thermostat) with physically enlarged

buttons to eliminate robotic arm misalignment errors.

automated data collection approach for IoT products with

simpler network behavior.

3) Network traffic collection: To capture network

traffic to and from the devices, we set up a Raspberry Pi

Wi-Fi access point using existing “IoT Inspector”

software [19]. This configures the Raspberry Pi such that

all traffic through the Wi-Fi network is captured and

stored locally as PCAP files. Upon setting up the robotic

arm, IoT device, and Raspberry Pi access point, we

instruct the arm to interact with the device as described in

the following section. These interactions cause the device

to generate bidirectional network traffic that is recorded

for analysis. Since the recorded PCAP files contain the

source and destination addresses of captured network

packets, we can use tools such as Wireshark [24] to

separate packets generated specifically by the IoT device

from background traffic. To test this approach with the

Echo-Show5 and Sensi-Thermostat, we filter the captured

traffic to include only Transmission Control Protocol

(TCP) packets sent to or from these devices’ Ethernet

MAC addresses. We also include background TCP traffic

collected during periods without device interactions (idle

time) to help evaluate the effectiveness of our approach.

B. Inverse Kinematics for Robotic Arm Input

Parameters

Once the robotic arm and IoT devices are fixed in

place, we calculate the arm joint rotation parameters

needed for the arm to reach the buttons on the device. For

each button, we manually measure the base rotation

needed to align the arm with the button followed by the

button’s 2D vertical coordinates with respect to the base

of the arm.

We then use the inverse kinematics scripts from [25],

which take the lengths of each section of the arm and

each button’s 2D coordinates and output the needed arm

rotation parameters. These scripts only apply to robotic

arms with 3 degrees of freedom (DoF), so we treat the 6

DoF Arduino Braccio Robotic Arm as having 4 DoF: one

base joint that can rotate horizontally and three arm joints

that can rotate vertically.

Journal of Communications, vol. 18, no. 5, May 2023

286

C. Ensuring Interaction Accuracy

The buttons on most IoT devices are designed for

precise interactions with human fingers and are often

relatively small (usually less than 1 cm2). This can be

problematic, as the robotic arm can experience small

deviations (±2 mm) during every movement, causing

missed presses or unintended presses of adjacent buttons

if not corrected.

In our specific case, we address this problem by

physically enlarging the buttons’ surface areas to

overcome the possible deviations from each arm rotation.

This is achieved by attaching additional hard surfaces on

top of the original buttons (Fig. 2). Given the larger

surface areas, such rotation biases become insignificant,

and missed presses are avoided. Our solution is viable

because the robotic arm used in the experiment shows

randomized movement biases and does not introduce

significant accumulated misalignment over the course of

long experiments. However, in scenarios where such

deviations indeed accumulate, there are existing tools

[26–28] that rely on computer vision to perform

automated correction and can be applied to address the

issue.

While we address the movement bias, it is worth

noting that the robotic arm also experiences delays in

executing movement commands: when a movement is

requested via the Arduino IDE command execution, a

very small delay occurs before the robotic arm motors

actually move to adjust the arm to the desired position.

However, this delay in execution time is on the order of

milliseconds and, unlike the positional bias, it is fixed and

constant for each movement. This means that the time

delay between button press commands and actual button

presses is predictable, does not accumulate over multiple

commands, and is insignificant compared to the timescale

of the entire UI interaction sequences.

D. Designing Interaction Sequences

Our system instructs the robotic arm to move to

specific locations by providing a set of arm rotations as

the input parameters (Section III-B). Given the limited

number of unique physical buttons on each IoT device,

we can configure the robotic arm to iterate through

buttons in a specific order, or “interaction sequence,” by

feeding in consecutive sets of arm rotations.

Our system performs comprehensive device interaction

testing through permutation-based interaction sequences.

We assign each button on the device a unique number,

and then the system instructs the robotic arm to press the

buttons in all possible permutations of these numbers. By

default, the system uses a fixed 10-second delay between

button presses, but this and other details can be easily

customized. For example, a researcher could choose to

use permutations with random repetitions, so the robot

will press individual buttons multiple times per

interaction sequence. A researcher could also randomize

the time between button presses to simulate unpredictable

user behavior (Section VI).

E. Demonstrating Effectiveness with Machine Learning

We evaluate the effectiveness of our approach by

verifying that the button presses performed by the robotic

arm actually lead to the collection of useful network

traffic data. We do this by demonstrating that we can

train a machine learning (ML) model to predict which

buttons were pressed on the device from the network

traffic alone. This allows us to conclude that the captured

traffic provides substantial information about interactions

with the IoT device and is therefore relevant for follow-

up network, security, or privacy analysis. This machine

learning task is inspired by the various metadata-based

inference attacks in the consumer IoT privacy literature

[8, 13, 14], in which network traffic is shown to reveal

substantial information about user interactions with their

IoT devices.

It is important to emphasize that the design of the ML

algorithm is not the primary contribution of this study.

We use ML simply as a method to verify that our robotic

arm interaction approach generates useful IoT traffic. We

expect that this automated method will be effective for

many research purposes given that it allows rigorous

device testing without tedious manual effort.

We perform the ML evaluation as follows: 1) Label

recorded IoT device packets (training data) with the

buttons pressed by the robotic arm immediately prior to

collection, 2) Train a supervised machine learning model

to predict which button presses caused the device to send

specific packets in reserved test data.

1) Training data: We collect training data by

instructing the robotic arm to repeatedly press each

button on the device while recording the timestamp of

each button press. For example, the arm performs 15

presses of button #1 followed by 15 presses of button #2,

etc. The delay between each button press is a fixed 10

seconds.

We record the device’s network traffic during these

interaction sequences as PCAP files as described in

Section III-A. We convert these PCAP files into a

standardized CSV format using the nPrint tool [29].

nPrint encodes each packet as a row in the CSV file with

columns containing the following features: packet’s

source IP address, destination IP address, payload, IPv4

headers, TCP headers, and relative timestamps. We then

add a label column with the integer identifier of the

button pressed immediately prior to the corresponding

packet as determined by comparing packet timestamps

and button press timestamps. A single button press can

cause network activity consisting of multiple packets, so

for each button press with timestamp tbutton, we treat this

button as the label for all packets with timestamps tpacket

within the following range:

tbutton ≤ tpacket < (tbutton + 10s)

This labeling is reasonable because all associated

packets are transmitted a few seconds after a button is

Journal of Communications, vol. 18, no. 5, May 2023

287

pressed—well within the 10 second gap between

consecutive button presses.

2) Random forest classifier: We train a random forest

classifier [30] using the scikit-learn library [31] and our

collected training data. The classifier is designed to

predict which button the robot pressed given only the

subsequent network packet data. We select this particular

ML algorithm in our study because the effectiveness of

using random forest classifiers for characterizing network

traffic has long been established [32–34].

We randomly select 25% of the labeled data to

withhold as a test set and use the remaining 75% as a

training set. We then perform a grid search to choose

model hyperparameters evaluated by multi-metric

(accuracy, precision, recall) 10-fold cross-validation over

the training set. The grid search considers the criterion

function (metric for measuring the quality of a split when

constructing a decision tree in the random forest),

maximum depth of the decision trees in the random forest,

minimum number of samples required to split an internal

node when constructing each decision tree, and the total

number of trees in the random forest. Specific

hyperparameter values tested and selected by the grid

search are shown in Table II.

Using the best hyperparameters found by the grid

search, we train a classifier on the entire training set and

evaluate its precision, recall, and F1 score on the test set.

To obtain more reliable results, we repeat the above

procedures (randomized train/test split, grid search, and

classifier testing) 50 times and compute the means and

variances of the test scores. High scores indicate that the

classifier can confidently associate recorded packets with

the button presses that generated those packets, implying

that the collected network data captures relevant

information about user interactions and device behaviors.

IV. RESULTS

Our study demonstrates that a robotic arm can be used

to automate interactions with IoT devices in order to

collect network traffic for research. Testing this approach

with the Echo-Show5 and Sensi-Thermostat shows that it

can collect IoT traffic that provides rigorous coverage of

device behaviors with high correlations between button

presses and captured packets.

A. Visual Support for Automated IoT Traffic Collection

Visualizations of traffic traces collected from the

Echo-Show5 (Fig. 3) and the Sensi-Thermostat (Fig. 4)

during automated interactions with all physical buttons on

each device verify that our approach produces

interaction-correlated network data. We performed both

experiments without network congestion to prevent TCP

congestion control from causing unwanted variations in

the collected traffic. In practice, nothing prevents future

applications of our automated approach in network

environments with background congestion.

TABLE II. GRID SEARCH VALUES FOR RANDOM FOREST

HYPERPARAMETERS AND SELECTED OPTIONS FOR FINAL MODEL

Hyperparameter Value 1 Value 2 Value 3 Selected

criterion gini entropy entropy

max_depth 20 40 80 40

min_ sample_ split 2 5 10 2

n_estimators 200 400 800 800

1) Echo show 5: Traffic collection from the Echo-

Show5 started at the relative timestamp of 0s and ended

at the relative timestamp of 1533s. The robotic arm

started pressing buttons on the device at 50s according to

a permutation-based interaction sequence and concluded

all button presses at 1000s.

There are clear traffic spikes during the time period

with the automated button presses. The period with

button presses contained a total of 8391 packets with an

average of 8.83 packets per second. In contrast, the rest of

the packet capture (idle time) contained only 1202

packets and an average of 2.25 packets per second. Note

that we excluded packets prior to the beginning of the

button presses when calculating these statistics, as these

early packets are the result of device initialization at

startup.

The significantly higher amount of network traffic

during the button presses indicates that our robotic arm’s

interactions with the Echo-Show5 indeed generates

activity-related traffic compared to periods with no robot

interaction. These results corroborate Apthorpe et al.’s

previous findings [8] that user interactions with an

Amazon voice assistant cause detectable increases in

traffic rates.

2) Sensi-Thermostat: Traffic collection from the Sensi-

Thermostat started at the relative timestamp of 0s and

ended at the relative timestamp of 950s. The robotic arm

button presses occurred from 0s to 950s at intervals of

10s.

The Sensi-Thermostat sends periodic updates

approximately every 200 seconds to reflect changes in

settings caused by the intervening button presses. No

TCP traffic is exchanged outside of these periodic

updates. Unlike the Echo-Show5, the Sensi-Thermostat

does not generate any TCP traffic when the robotic arm

is inactive and no buttons are pressed, because no

periodic update is required. This allows us to conclude

that the observed traffic spikes at a rate of 2 packets per

second occurred as a direct result of the automated button

presses. Compared to the Echo-Show5, there are

significantly fewer captured packets for the Sensi-

Thermostat; however, this is expected, as the Sensi-

Thermostat is a simpler device.

The intermittently spiking traffic we observe

corroborates Apthorpe et al.’s previous findings [8] that

the traffic patterns of single-purpose consumer IoT

devices (e.g., thermostats, lightbulbs, and outlets) are

often directly and obviously correlated with user

interactions and devoid of substantial TCP background

Journal of Communications, vol. 18, no. 5, May 2023

288

Figure 3. Example Echo-Show5 TCP traffic showing significantly more packets during automated robotic arm interactions.

Figure 4. Example Sensi-Thermostat TCP traffic during automated robotic arm interactions. The device batches periodic messages approximately

every 200 seconds in response to settings changes made by the intervening button presses.

traffic. The observable correlation between the Sensi-

Thermostat’s network traffic spikes and the automated

robotic button presses validates the effectiveness of our

data collection approach for this device.

B. ML Support for Automated IoT Traffic Collection

We used machine learning, along with the IoT traffic

captured from the Echo-Show5, to verify the correlation

between button presses and captured packets as described

in Section III-E. The success of our machine learning

model further supports the ability of our automated

interaction method to produce traffic containing

information about device behavior that would be useful

for network, security, or privacy research.

We performed the machine learning evaluation using

the Echo-Show5 data instead of the Sensi-Thermostat

data because the Sensi-Thermostat produced such a small

amount of traffic (41 packets) that 1) it is easy to visually

verify correlations between traffic spikes and button

presses (Section IV-A) and 2) there is not enough data to

train an ML model. In comparison, the Echo-Show5

produced sufficient traffic for random forest training

(8,391 packets).

We labeled each packet in the Echo-Show5 traffic with

the number of the button most likely responsible for it

being sent (Fig. 5). We randomly split the labeled traffic

into 75%/25% training/test sets and conducted a grid

search using the training data to choose hyperparameters

for the random forest classifier. Training the classifier

took only a few seconds using the scikit-learn library. We

then tested the classifier on the test set and recorded the

precision, recall, and F1 scores, weighting each button’s

contribution to the average score by its relative

cardinality in the test set.

We repeated this training and testing process 50 times

using the Echo-Show5 traffic as described in Section

III-E. All average precision, recall, and F1 scores were

approximately 0.96 with variances less than 1.010–4,

demonstrating a strong correlation between the device’s

network behavior and the robotic arm button presses (see

Table III).

Journal of Communications, vol. 18, no. 5, May 2023

289

Figure 5. Example Echo-Show5 TCP traffic with labeled button presses. This trace was collected with 15 presses of each of 4 physical buttons on the

device and 10 seconds between each button press. The trace contains 8391 total packets.

TABLE III. RANDOM FOREST CLASSIFIER PERFORMANCE PREDICTING

ECHO-SHOW5 BUTTON PRESSES FROM COLLECTED NETWORK TRAFFIC

AVERAGE TEST SCORES AND VARIANCES REPORTED OVER 50

REPETITIONS WITH RANDOMLY SELECTED TRAIN/TEST SET DIVISIONS

 Precision Recall F1

Average Score 0.96 0.96 0.96

Variance 4.57e−5 4.89e−5 4.84e−5

These high scores allow us to conclude that the

captured traffic does provide substantial information

about the robot arm interactions and would be useful for

follow-up research about the network, security, or privacy

implications of user interactions with the IoT device.

These results also corroborate the possibility of

inferring details of user interactions with consumer IoT

devices from network traffic [8, 13, 14] and show that our

automated data collection approach could be useful for

similar future studies.

V. LIMITATIONS

Using a robotic arm to automate physical IoT device

interactions is an effective way to scale the collection of

IoT traffic across device behaviors. However, the nature

of collecting network data from physical IoT devices via

robotics has certain constraints:

A. Non-Physical User Interface Elements

While a robotic arm can perform many types of

interactions with IoT devices, such as pressing buttons or

sliding switches, it cannot perform non-physical

interactions such as voice commands. Even certain

physical user interface elements, such as touch screens,

can prove challenging for off-the-shelf robotic arms.

Unlike physical buttons, there are infinite possible

interactions to test for comprehensive coverage of touch

screen presses, and the location of touch screen input

elements may change as the result of prior interactions.

Considering that some IoT devices, including the Echo-

Show5, have touch screens and voice commands as part

of their major functions, it is important to explore

additional techniques (such as software emulators) that

can automate these types of interactions.

Despite this limitation, we believe that the method

described in this paper will be useful to IoT researchers.

Physical device interfaces (e.g., buttons and switches)

have proved the most challenging to automate thus far

and are almost ubiquitous in inexpensive consumer IoT

products. Our proposed method is designed to facilitate

the collection of network traffic on devices with such

physical interfaces. Additionally, combining a robotic

arm with a microphone and an instrumented smartphone

running devices’ associated mobile applications would be

sufficient to explore all possible user inputs for many

common devices without requiring tedious manual button

pressing or dedicated development of device-specific

emulators.

B. IoT Device Size

Configuring the robotic arm to interact with the Echo-

Show5 and the Sensi-Thermostat was feasible as both

devices are small enough for the robotic arm to reach any

location on the devices. In general, the size of the robotic

arm limits the size of the IoT device that can be tested.

Significantly larger devices (such as a smart refrigerator)

exceed the maximum reach or range of motion of most

hobbyist robotic arms. While larger and more precise

robotic arms are available on the market, they are

substantially more expensive. One possible solution is to

have multiple smaller robotic arms operate on a single

large device simultaneously, but this would require

precise coordination of the arms to interoperate. However,

this limitation does not raise significant concern, since

most popular consumer IoT devices are small appliances

that would be suitable for our approach.

Journal of Communications, vol. 18, no. 5, May 2023

290

C. Environmental Sensor Data

Many IoT devices include environmental sensors, such

as thermometers, light sensors, accelerometers, and

gyroscopes that determine their behaviors and network

communications [8] in conjunction with user interface

elements. The scope of possible readings from these

sensors is not explored by our robotic arm approach and

would require a software emulator or a laboratory with

local environment controls. While it would be possible to

place both a robotic arm and an IoT device into a

chamber with controllable temperature or lighting and

conduct permutation-based testing with each of these

variables, this is outside the scope of this paper.

VI. FUTURE WORK

Apart from the limitations stated in Section V, our

automated approach to IoT device interactions is

amenable to many additions and improvements that could

be the topic of future work. We hope that others will

adopt and adapt this approach to automate and scale IoT

research.

A. Randomness in Interaction Sequences

One straightforward extension of our approach is to

create permutation-based interaction sequences with

increased randomness to better replicate the variety of

real user interactions. Although our current

implementation explores all possible unique interaction

permutations, additional randomness could be added by

randomly repeating button presses within interaction

sequences or repeating entire interaction sequences for a

random number of iterations.

A follow-up study could also test whether increases in

interaction randomness actually increase the variety of

collected network traffic. If network traffic is

predominantly linked to the most recent interaction,

introducing random delays in interaction frequency may

not actually produce traffic of greater interest for follow-

up analysis.

B. Additional IoT Devices

While we chose two popular consumer IoT devices to

test with robotic arm interactions, we expect that this

method is amenable to a wide variety of IoT products in

consumer, medical, and other contexts. We are aware of

several universities and consumer advocacy groups with

access to many IoT devices and we recommend their use

of our technique for automating network security and

privacy analyses at scale. We would especially like to see

this approach used to evaluate medical devices, as they

often have many physical buttons and may be under-

audited from a network security perspective [35].

C. Multi-Device Interactions

Although this study explores automated interactions

with individual devices, future work could apply our

system to simultaneous interactions with multiple devices

using multiple robotic arms. Some IoT devices are

designed to communicate with other devices on the local

network, and the traffic from these communications

would not be visible from robotic arm interactions with a

single device. With the help of a centralized coordinator

(i.e., a parallel processing controller), a setup with

multiple devices and multiple robotic arms could test

interleaved interaction sequences across devices to record

traffic from device-device communications. As discussed

in [8], patterns of network traffic from multiple IoT

devices within a household may allow privacy-violating

inferences not achievable with traffic from a single

device alone. Applying our approach to multiple devices

could test the possibility of such inferences and

potentially reveal other privacy or security vulnerabilities

related to local device communications as well. As more

manufacturers promote “ecosystems” of IoT devices, the

ability to automate network research of multi-device

interactions becomes increasingly important.

D. Computer Vision UI Identification

The only manual process in our approach is to

configure the robotic arm with the positions of each of

the user interface elements on the device prior to

automated interactions (Section III-B). This initialization

step could also be automated in future work by adding a

camera to the setup and using computer vision to identify

the type and location of user interface elements on the

device. This would provide an extremely low barrier to

entry for network data collection from any IoT device at

the expense of the additional camera hardware and

increased potential for misidentification of UI elements.

E. Cyber-Physical Fuzz Testing

Our approach could be used to fuzz test the user

interfaces of IoT and other devices with essential physical

interfaces, especially by entities such as security

researchers or consumer protection groups without access

to source code or device emulators.

Testing all possible physical interactions with a device

to see whether any produce buggy or malicious behavior

could reveal previously unknown vulnerabilities. This

idea could be combined with any of the other future

directions in this section to expand the scope of

automated security analysis for cyber-physical devices.

VII. CONCLUSION

The collection of network traffic data from consumer

IoT devices has heretofore involved tedious manual

interactions with devices in a laboratory setting or

expensive crowdsourcing initiatives. In this paper, we

present a novel method for automating the collection of

IoT network traffic across a variety of user interactions

and device behaviors: configuring a robotic arm to

interact with physical user interface elements of IoT

devices according to formalized permutation-based

interaction sequences.

We describe the steps required to implement this

method, including applying inverse kinematics to obtain

Journal of Communications, vol. 18, no. 5, May 2023

291

robotic arm movement parameters, physically enlarging

IoT device buttons to improve interaction accuracy, and

creating permutation-based interaction sequences to

provide comprehensive coverage of possible user

interface interactions. We apply this approach to two

representative IoT devices, an Amazon Echo Show 5 and

an Emerson Sensi Wi-Fi Smart Thermostat. We confirm

its effectiveness through inspection of collected network

traffic and by the successful creation of a machine

learning model that can infer specific robot/device

interactions from the collected traffic. This indicates that

the collected data contains information about device

behaviors that could be useful for network, security, or

privacy analyses.

Compared to prior methods of IoT network data

collection, our automated approach provides high

interaction coverage and does not require tedious manual

effort. Our method is readily adaptable to different

consumer IoT devices and for testing multi-device

interactions. We have made our source code and other

reference materials needed for this approach publicly

available for future research.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The authors contributed evenly to this study. Noah

Apthorpe conceived of the presented idea. Xi Jiang

developed the method and performed the experiments.

Both authors analyzed the results. Both authors wrote the

manuscript and approved the final version.

REFERENCES

[1] P. E. Naeini, S. Bhagavatula, H. Habib, M. Degeling, L. Bauer, L.

F. Cranor, and N. Sadeh, “Privacy expectations and

preferences in an IoT world,” in Proc. Thirteenth Symposium on

Usable Privacy and Security (SOUPS 2017), 2017, pp. 399–412.

[2] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster, “User

perceptions of smart home IoT privacy,” in Proc. ACM on Human-

Computer Interaction, vol. 2, pp. 1–20, 2018.

[3] N. Apthorpe, P. Emami-Naeini, A. Mathur, M. Chetty, and N.

Feamster, “You, me, and IoT: How internet-connected consumer

devices affect interpersonal relationships,” ACM Transactions on

Internet of Things, vol. 3, no. 4, pp. 1–29, 2022.

[4] Y. Huang, B. O. Obieh, and K. Beznosov, “Amazon vs. my

brother: How users of shared smart speakers perceive and cope

with privacy risks,” in Proc. The 2020 CHI Conference on

Human Factors in Computing Systems, 2020, pp. 1–13.

[5] F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford, and V.

Sivara-man, “Systematically evaluating security and privacy for

consumer IoT devices,” in Proc. the 2017 Workshop on Internet

of Things Security and Privacy, 2017, pp. 1–6.

[6] G. Chu, N. Apthorpe, and N. Feamster, “Security and privacy

analyses of Internet of things children’s toys,” IEEE Internet of

Things Journal, vol. 6, no. 1, pp. 978–985, 2018.

[7] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the

mirror: Evaluating IoT device security through mobile companion

apps,” in Proc. the 28th USENIX Security Symposium (USENIX

Security 19), 2019, pp. 1151–1167.

[8] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N.

Feamster, “Keeping the smart home private with smart(er) IoT

traffic shaping,” i n Proc.on Privacy Enhancing Technologies, no.

3, 2019.

[9] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “IoT

inspector: Crowdsourcing labeled network traffic from smart

home devices at scale,” in Proc. the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–21,

2020.

[10] M. H. Mazhar and Z. Shafiq, “Characterizing smart home IoT

traffic in the wild,” in Proc. 2020 IEEE/ACM Fifth International

Conference on Internet-of-Things Design and Implementation

2020, pp. 203–215.

[11] Amazon. Amazon Echo Show 5. [Online]. Available:

https://www.amazon.com/Introducing-Echo-Show-Compact-

Charcoal/dp/B07HZLHPKP

[12] Sensi. Sensi Smart Thermostat. [Online]. Available:

https://sensi.emerson.com/en-us/products/wifi-thermostat

[13] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H.

Aksu, M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo:

I see your smart home activities, even encrypted!” in Proc. the

13th ACM Conference on Security and Privacy in Wireless and

Mobile Networks, 2020, pp. 207–218.

[14] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,

“Packet-level signatures for smart home devices,” Network and

Distributed Systems Security (NDSS) Symposium, 2020.

[15] J. S. Edu, J. M. Such, and G. Suarez-Tangil, “Smart home

personal assistants: A security and privacy review,” ACM

Computing Surveys (CSUR), vol. 53, no. 6, pp. 1–36, 2020.

[16] S. Shasha, M. Mahmoud, M. Mannan, and A. Youssef, “Playing

with danger: A taxonomy and evaluation of threats to smart toys,”

IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2986–3002,

2019.

[17] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:

Revealing and controlling PII leaks in mobile network traffic,” in

Proc. the 14th Annual International Conference on Mobile

Systems, Applications, and Services, 2016, pp. 361–374.

[18] H. Mohajeri Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y.

Huang, N. Feamster, E. W. Felten, P. Mittal, and A. Narayanan,

“Watching you watch: The tracking ecosystem of over-the-top tv

streaming devices,” in Proc. the 2019 ACM SIGSAC Conference

on Computer and Communications Security, 2019, pp. 131–147.

[19] N. Apthorpe. (2017). IoT-inspector. [Online]. Available:

https://github.com/NoahApthorpe/iot-inspector

[20] Arduino. Tinkerkit Braccio robot. [Online]. Available:

https://store.arduino.cc/products/tinkerkit-braccio-robot

[21] Arduino. Arduino Uno rev3. [Online]. Available:

https://store.arduino.cc/usa/arduino-uno-rev3

[22] Amazon. Amazon Alexa. [Online]. Available:

https://developer.amazon.com/en-US/alexa

[23] V. Research. (2020). Smart speaker consumer adoption report April

2020. [Online]. Available: https://research.voicebot.ai/report-

list/smart-speaker-consumer-adoption-report-2020/

[24] Signal Processing and Communications Laboratory, University

of Cambridge, Department of Engineering, “Inverse kinematics

demo. [Online]. Available:

https://github.com/sigproc/roboticsurgery/tree/master/src/ros/modi

fied arm/InvKin

[25] G. Du. vision-based-robotic-grasping. [Online]. Available:

https://github.com/GeorgeDu/vision-based-robotic-grasping

[26] G. L. Mariottini and S. I. Roumeliotis, “Active vision-based robot

localization and navigation in a visual memory,” in Proc. 2011

IEEE International Conference on Robotics and Automation.

IEEE, 2011, pp. 6192–6198.

[27] V. Kumar, Q. Wang, W. Minghua, S. Rizwan, S. Shaikh, and X.

Liu, “Computer vision-based object grasping 6DoF robotic arm

using picamera,” in Proc. 2018 4th International Conference on

Control, Automation and Robotics (ICCAR), 2018, pp. 111–115.

[28] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New

directions in automated traffic analysis,” in Proc. the 2021 ACM

SIGSAC Conference on Computer and Communications Security,

2021, pp. 3366–3383.

[29] T. K. Ho, “Random decision forests,” in Proc. 3rd International

Conference on Document Analysis and Recognition, vol. 1, 1995,

pp. 278–282.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in

Journal of Communications, vol. 18, no. 5, May 2023

292

Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

[31] C. Wang, T. Xu, and X. Qin, “Network traffic classification with

improved random forest,” in Proc. 2015 11th International

Conference on Computational Intelligence and Security (CIS),

2015, pp. 78–81.

[32] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust

network traffic classification,” IEEE/ACM Transactions on

Networking, vol. 23, no. 4, pp. 1257–1270, 2014.

[33] L. Jun, Z. Shunyi, L. Yanqing, and Z. Zailong, “Internet traffic

classification using machine learning,” in Proc. 2007 Second

International Conference on Communications and Networking in

China, 2007, pp. 239– 243.

[34] A. Burns, M. E. Johnson, and P. Honeyman, “A brief chronology

of medical device security,” Communications of the ACM, vol. 59,

no. 10, pp. 66–72, 2016.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Communications, vol. 18, no. 5, May 2023

293

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

