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Abstract —Consumer Internet of things research often 

involves collecting network traffic sent or received by IoT 

devices. These data are typically collected via crowdsourcing 

or while researchers manually interact with IoT devices in a 

laboratory setting. However, manual interactions and 

crowdsourcing are often tedious, expensive, inaccurate, or 

do not provide comprehensive coverage of possible IoT 

device behaviors. We present a new method for generating 

IoT network traffic using a robotic arm to automate user 

interactions with devices. This eliminates manual button 

pressing and enables permutation-based interaction 

sequences that rigorously explore the range of possible 

device behaviors. We test this approach with an Arduino-

controlled robotic arm, a smart speaker, and a smart 

thermostat, using machine learning to demonstrate that 

collected network traffic contains information about device 

interactions that could be useful for network, security, or 

privacy analyses. We also provide source code and 

documentation allowing researchers to easily automate IoT 

device interactions and network traffic collection in future 

studies. 

 

Keywords—test-bed and trials, cyber-physical systems, other 

communications and networking topics 

 

I. INTRODUCTION 

The Internet of Things (IoT) refers to the wide variety 

of physical objects increasingly connected to the Internet. 

IoT devices range from common household items, such 

as thermostats, light bulbs, and door locks, to medical 

products, wearables, and industrial sensors. For example, 

a “smart” (IoT) thermostat may be able to receive 

location data from a smart car and automatically adjust 

the home temperature when a user leaves work. Although 

IoT devices provide unprecedented convenience and 

efficiency, they also raise concerns about security and 

privacy. Users report privacy fears associated with 

constant connectivity and always-on environmental 

sensors [1–4], and researchers have identified insecurities 

in IoT device software and network communications [5–

7]. These issues, combined with the increasing popularity 

of consumer IoT devices, are motivating many studies 

analyzing IoT network traffic to detect and prevent 

privacy and security vulnerabilities.  
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Collecting IoT network traffic for these studies 

typically involves researchers manually interacting with 

devices in a laboratory setting. Researchers press buttons, 

touchscreens, or other user interface elements on the 

devices in an attempt to mimic real-world user behaviors 

or collect traffic from as many device states as possible. 

For example, a researcher may attempt to record network 

traffic while pressing every button on a device in 

sequence or by pressing patterns of buttons (or other user 

interface elements) in order to examine the full scope of 

device behavior [8]. However, these types of manual 

device interactions are time-consuming and are unlikely 

comprehensive, posing a significant challenge to IoT 

network research (Section II).  

IoT studies have also utilized crowdsourcing to acquire 

consumer IoT network traffic [9, 10]. This can provide 

large quantities of realistic data; however, crowdsourcing 

typically requires extensive data collection platform 

development, and user reports of device behavior during 

traffic collection are prone to inaccuracy.  

In this paper, we present a novel method for 

automating IoT network traffic collection: configuring a 

robotic arm to interact with IoT devices according to 

formalized interaction sequences (Section III), 

particularly on IoT devices with physical user interface 

(UI) elements such as buttons and switches. We focus on 

devices with physical UI elements because the collection 

of network traffic on such devices has been proven to be 

challenging and costly (Section II). At the same time, the 

application of robotic arm-assisted traffic collection is 

more suitable for these devices compared to devices with 

non-physical UI elements, which we discuss in Section V. 

This approach can simulate real user behaviors, provide 

comprehensive coverage of possible user/device 

interactions, and eliminate tedious manual button 

pressing. Recording Internet traffic to and from a device 

during robotic arm interactions provides a source of 

network data that can be used for security testing, privacy 

evaluation, or other IoT research. As far as we are aware, 

there has been no prior use of robotics to automate IoT 

research in this manner, raising significant potential for 

cross-disciplinary follow-up research. 

 
 

 

 

Journal of Communications, vol. 18, no. 5, May 2023

283doi:10.12720/jcm.18.5.283-293

mailto:napthorpe@colgate.edu
mailto:xijiang9@uchicago.edu


TABLE I. COMPARISON OF RESEARCH METHODS FOR IOT TRAFFIC 

COLLECTION. OUR ROBOTIC ARM METHOD AUTOMATES VERIFIABLE 

PHYSICAL INTERACTIONS WITH IOT DEVICES WITHOUT EXTENSIVE 

MANUAL EFFORT OR EXPENSIVE CROWDSOURCING CAMPAIGNS 

 Manual Crowdsourcing Robotic Arm 

Automated X X ✓ 

Cost $$ $$$ $ 

Verifiable ✓ X ✓ 

Scalable X ✓ ✓ 

 

We demonstrate the effectiveness of our approach by 

configuring a robotic arm to press physical buttons on 

two devices: an Amazon Echo Show 5 [11] (a smart 

speaker with multiple user interfaces) and an Emerson 

Sensi Wi-Fi Smart Thermostat [12] (a household 

thermostat with only physical buttons) (Section IV). We 

verify that this produces network behavior correlated with 

robot/device interactions by testing a variety of 

permutation-based button press sequences while 

collecting Internet traffic. We then train a machine 

learning model (random forest classifier) to accurately 

infer (F1 > 0.95) which specific buttons are pressed on the 

devices from network traffic alone. This machine 

learning task is inspired by the various metadata-based 

inference attacks in the consumer IoT privacy literature 

[8, 13, 14]. Success at this task indicates that the captured 

traffic provides substantial information about interactions 

with the devices and corresponding device behavior and 

would be useful for follow-up network, security, or 

privacy analyses. 

Employing robotics for collecting network data from 

physical IoT devices eliminates many drawbacks of 

manual data collection or crowdsourcing. Our approach 

provides rigorous interaction coverage and high 

scalability, allowing for easier collection of Internet 

traffic for IoT network audits. Although we focus on 

network data collection in this paper, there is great 

potential for robotic automation of other research 

involving cyber-physical devices, including fuzz testing 

and usability testing. We hope that this approach and our 

provided source code 1  will facilitate continued IoT 

research (Sections V–VI). 

II. BACKGROUND AND RELATED WORK 

Collecting network data from consumer IoT devices 

has posed a consistent challenge for IoT research. Studies 

typically use either manual data collection or 

crowdsourcing to collect IoT network traffic; however, 

both approaches have substantial drawbacks.  

In this section, we review the challenges of these 

traditional methods for IoT data collection and discuss 

how our approach provides significant advantages in 

terms of automation, monetary cost, verifiability, and 

scalability (see Table I). 

 
1https://github.com/Chasexj/Automated_IoT_Traffic_Generation 

A. Manual IoT Traffic Collection 

Many studies of consumer IoT network traffic have 

involved data collection in a controlled laboratory 

environment. Researchers acquire devices relevant to 

their research question, instrument the devices, and then 

manually interact with the devices to test their behavior 

and collect data for online and offline analysis. Studies 

utilizing manual data collection have focused on privacy-

violating inferences from IoT network traffic [8, 13, 15] 

and network vulnerabilities in specific classes of devices 

(e.g., children’s toys [6, 16]), sparking increased 

consumer awareness, regulatory action, and manufacturer 

attention to consumer IoT security and privacy.  

Manual data collection has several benefits. First, 

researchers can precisely control the network 

environment, ensuring that recorded network traffic 

actually corresponds to specific devices or user 

interactions. This greatly simplifies ground-truth labeling 

of collected network traffic for input into supervised 

machine learning algorithms or for other follow-up 

analyses. Second, researchers can collect data while 

subjecting the device or network to active attacks that 

would be unethical outside of a controlled environment. 

For example, researchers can flood a device with denial-

of-service traffic or attempt to install bogus TLS 

certificates.  

Unfortunately, manual data collection also has several 

serious drawbacks that have limited consumer IoT 

research. First, collecting network traffic from all 

possible user interactions and device behaviors is usually 

infeasible. Most consumer IoT devices do not have 

emulator support, so user interactions must be tested on a 

physical device. Manually testing repeated sequences of 

specific user interactions (e.g., button presses) on a 

device is quite tedious, limiting data collection to a small 

set of interactions and a correspondingly small volume of 

network traffic. In contrast, our robotic arm approach 

does not require any manual interaction or intervention 

during data collection. This can save hours of researcher 

time and eliminate the possible need to restart 

experiments if a human researcher forgets a button press 

or presses the wrong button.  

Second, manual researcher interactions with consumer 

IoT devices are unlikely representative of real user 

behavior over varying timescales. This means that 

network traffic generated via manual interactions may not 

be representative of traffic generated by devices in 

consumer households. In contrast, our approach uses 

permutation-based interaction sequences that can test all 

possible interactions with a device or be programmed to 

mimic real user behavior over long timescales. 

B. Crowdsourcing 

A more recent approach to acquiring consumer IoT 

network traffic involves crowdsourcing data collection to 

real users who have adopted IoT devices [9, 10]. This 

typically involves the creation of custom hardware or 
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software that allows users to instrument their own devices 

or home networks. 

Crowdsourcing IoT traffic has several benefits. 

Crowdsourced data is more externally valid than 

manually collected laboratory data because it comes from 

real users interacting with IoT devices in the wild. With 

substantial recruitment efforts, crowdsourcing can also 

produce more data from a wider variety of devices and 

interaction patterns than laboratory collection.  

However, crowdsourced data has other drawbacks. It 

may require extensive development effort to create a 

platform for data collection that participants feel 

comfortable incorporating into their homes. Recruiting 

participants is also challenging. Crowdsourcing platforms 

such as Amazon Mechanical Turk are not well suited to 

IoT data collection, which does not fit well into the 

Human Intelligence Task (HIT) framework. Participant 

compensation for large-scale crowdsourcing campaigns 

can also be quite expensive, especially if participants are 

required to install hardware in their homes. Some studies 

avoid this expense by asking interested individuals to 

volunteer data without monetary compensation, 

sometimes by providing details about local IoT device 

behavior that may be of interest to privacy or security-

conscious users [9]. However, this can limit study 

participation to technically savvy participants or those 

with existing privacy or security concerns, potentially 

introducing results bias. Our robotic arm approach 

requires only an initial cost for the robot and devices but, 

like crowdsourcing, can produce large amounts of data. 

Crowdsourced IoT data also suffers from unreliable 

labels. Participants may not accurately report what 

devices they own or what interactions they perform with 

the devices. Post hoc identification and verification of 

device types and user interactions from network data is a 

research problem in its own right [9]. 

In contrast, data collected with our automated 

approach can be directly labeled with the correct ground 

truth by the researchers running the robot platform. 

C. Automated Data Collection with Robotic Arm 

Interactions 

The automated data collection approach described in 

this paper combines the scalability and reduced 

tediousness of crowdsourcing with the control and 

verifiability of manual data collection (Table I).  

Our approach focuses on automating device 

interactions via physical user interface elements rather 

than through networked applications (e.g., smartphones, 

IoT hubs, or debugging tools). While tools like Android 

Debug Bridge (ADB) can be used to automate 

interactions with some IoT devices [17, 18], many 

devices do not have similar programmatic testing tools 

available. Such devices can only be tested with physical 

interactions (e.g., button pressing). By performing these 

physical interactions with a robotic arm, we are able to 

examine network traffic from a breadth of device 

behaviors with minimal manual effort.  

We are also able to rigorously test permutations of 

device interactions to collect data for all possible (or all 

reasonable) interactions with a device. These 

permutations can include different interface elements 

(buttons, etc.) as well as different timings between 

interactions. 

III. METHOD 

Our approach for generating automated IoT device 

traffic has two main components: 1) Configuring a 

robotic arm to rigorously test user interface interactions 

with IoT devices, and 2) Automating network traffic 

collection during robotic arm interactions via existing IoT 

traffic analysis tools [19]. 

Implementing this approach involves four primary 

challenges: 1) Efficiently obtaining correct input 

parameters for the robotic arm such that it interacts with 

desired user interface elements on the IoT device, 2) 

Ensuring interaction accuracy between the robotic arm 

and the IoT device, 3) Designing interaction sequences 

that thoroughly explore the space of possible device 

behaviors, and 4) Automating network traffic collection 

during robot/device interaction.  

This section describes our implementation, including 

how we addressed these challenges for the Amazon Echo 

Show 5 and Sensi Wi-Fi Smart Thermostat devices. Our 

source code is publicly available for using in future 

research. 

A. Experiment Setup 

1) Robotic Arm: The main robotic arm used in this 

study is the Arduino Braccio Robotic Arm [20] with 6 

degrees of freedom (DoF) and motors/servos connected 

to the Braccio shield. The robotic arm is fixed to the work 

station as illustrated in Fig. 1 and is controlled via an 

Arduino UNO R3 board [21]. When given correct 

rotation and movement delay parameters, the robotic arm 

can press buttons and interact with other interface 

elements on an IoT device fixed within the arm’s 

maximum reach. 

We chose this particular model of robotic arm for two 

main reasons: 1) Unlike industrial robotic arms which 

often sell for tens of thousands of dollars, the Arduino 

Braccio Robotic Arm retails for less than $250. This 

keeps our method accessible for IoT researchers with 

limited budgets, 2) Compared to other robotic arms in the 

same price range, this model has a relatively high 

precision (±2 mm), which is desirable for interacting with 

devices with small buttons. 

2) IoT Devices: The two devices tested in this study 

are the Amazon Echo Show 5 (Echo-Show5) [11] and 

the Emerson Sensi Wi-Fi Smart Thermostat (Sensi-

Thermostat) [12]. Echo-Show5 is an Amazon smart 

display capable of video and voice calls, content 

streaming, online shopping, and running third-party 

applications. The device is equipped with Amazon’s 

Alexa [22] voice assistant, a touch screen, as well as four 
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Figure 1. Sample hardware setup with Arduino Braccio Robotic Arm 

(left) and IoT device (right) fixed to the table. 

 

buttons on the top of the device. The four buttons include 

a mechanical switch for the camera shutter, a microphone 

mute button, and two buttons responsible for volume 

up/down. Sensi-Thermostat is a smart Wi-Fi thermostat 

that is designed to control conventional household 

heating/cooling. While it can be connected to a user’s 

smartphone for remote control, there are also six physical 

buttons on the device that can be used to raise/lower 

temperature, turn on/off the fan, and change the 

heating/cooling mode and schedule. 

We chose these specific IoT devices based on two 

specific criteria: 

a) Market representativeness: While there are 

numerous IoT devices on the market, we wanted to select 

representative devices that are widely deployed to 

evaluate the practicality and scalability of our automated 

data collection methodology. We chose the Echo-Show5 

because it is representative of the IoT smart 

speaker/display market (Amazon is a major IoT 

manufacturer with over 51% of the U.S. smart speaker 

market share as of 2020 [23]). Likewise, the Sensi-

Thermostat is a popular IoT device with >16,000 

Amazon reviews circa January 2022, making it one of the 

most widely deployed IoT smart thermostats on the 

market. Although there are many categories of IoT 

devices that we are not testing in this study, our 

methodology is highly transferable across different 

devices as long as physical user interface (UI) elements 

are present. We also believe that the approach can be 

adapted to additional devices with a wide variety of user 

interfaces (Section V). 

b) Network behavior complexity: It is essential for us to 

verify that our proposed method is effective across 

devices with different levels of network behavior 

complexity. The Echo-Show5 is a comparatively 

sophisticated device that offers a significantly wider 

variety of functionalities than single-purpose IoT devices 

such as smart light bulbs or outlets, allowing us to 

evaluate our approach on a device with complex network 

behaviors. On the other hand, the Sensi-Thermostat is a 

single-purpose device, making it ideal for validating our 

 
Figure 2. IoT device (Sensi-Thermostat) with physically enlarged 

buttons to eliminate robotic arm misalignment errors. 

 

automated data collection approach for IoT products with 

simpler network behavior. 

3) Network traffic collection: To capture network 

traffic to and from the devices, we set up a Raspberry Pi 

Wi-Fi access point using existing “IoT Inspector” 

software [19]. This configures the Raspberry Pi such that 

all traffic through the Wi-Fi network is captured and 

stored locally as PCAP files. Upon setting up the robotic 

arm, IoT device, and Raspberry Pi access point, we 

instruct the arm to interact with the device as described in 

the following section. These interactions cause the device 

to generate bidirectional network traffic that is recorded 

for analysis. Since the recorded PCAP files contain the 

source and destination addresses of captured network 

packets, we can use tools such as Wireshark [24] to 

separate packets generated specifically by the IoT device 

from background traffic. To test this approach with the 

Echo-Show5 and Sensi-Thermostat, we filter the captured 

traffic to include only Transmission Control Protocol 

(TCP) packets sent to or from these devices’ Ethernet 

MAC addresses. We also include background TCP traffic 

collected during periods without device interactions (idle 

time) to help evaluate the effectiveness of our approach. 

B. Inverse Kinematics for Robotic Arm Input 

Parameters 

Once the robotic arm and IoT devices are fixed in 

place, we calculate the arm joint rotation parameters 

needed for the arm to reach the buttons on the device. For 

each button, we manually measure the base rotation 

needed to align the arm with the button followed by the 

button’s 2D vertical coordinates with respect to the base 

of the arm.  

We then use the inverse kinematics scripts from [25], 

which take the lengths of each section of the arm and 

each button’s 2D coordinates and output the needed arm 

rotation parameters. These scripts only apply to robotic 

arms with 3 degrees of freedom (DoF), so we treat the 6 

DoF Arduino Braccio Robotic Arm as having 4 DoF: one 

base joint that can rotate horizontally and three arm joints 

that can rotate vertically. 
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C. Ensuring Interaction Accuracy 

The buttons on most IoT devices are designed for 

precise interactions with human fingers and are often 

relatively small (usually less than 1 cm2). This can be 

problematic, as the robotic arm can experience small 

deviations (±2 mm) during every movement, causing 

missed presses or unintended presses of adjacent buttons 

if not corrected. 

In our specific case, we address this problem by 

physically enlarging the buttons’ surface areas to 

overcome the possible deviations from each arm rotation. 

This is achieved by attaching additional hard surfaces on 

top of the original buttons (Fig. 2). Given the larger 

surface areas, such rotation biases become insignificant, 

and missed presses are avoided. Our solution is viable 

because the robotic arm used in the experiment shows 

randomized movement biases and does not introduce 

significant accumulated misalignment over the course of 

long experiments. However, in scenarios where such 

deviations indeed accumulate, there are existing tools 

[26–28] that rely on computer vision to perform 

automated correction and can be applied to address the 

issue. 

While we address the movement bias, it is worth 

noting that the robotic arm also experiences delays in 

executing movement commands: when a movement is 

requested via the Arduino IDE command execution, a 

very small delay occurs before the robotic arm motors 

actually move to adjust the arm to the desired position. 

However, this delay in execution time is on the order of 

milliseconds and, unlike the positional bias, it is fixed and 

constant for each movement. This means that the time 

delay between button press commands and actual button 

presses is predictable, does not accumulate over multiple 

commands, and is insignificant compared to the timescale 

of the entire UI interaction sequences.  

D. Designing Interaction Sequences 

Our system instructs the robotic arm to move to 

specific locations by providing a set of arm rotations as 

the input parameters (Section III-B). Given the limited 

number of unique physical buttons on each IoT device, 

we can configure the robotic arm to iterate through 

buttons in a specific order, or “interaction sequence,” by 

feeding in consecutive sets of arm rotations. 

Our system performs comprehensive device interaction 

testing through permutation-based interaction sequences. 

We assign each button on the device a unique number, 

and then the system instructs the robotic arm to press the 

buttons in all possible permutations of these numbers. By 

default, the system uses a fixed 10-second delay between 

button presses, but this and other details can be easily 

customized. For example, a researcher could choose to 

use permutations with random repetitions, so the robot 

will press individual buttons multiple times per 

interaction sequence. A researcher could also randomize 

the time between button presses to simulate unpredictable 

user behavior (Section VI).  

E. Demonstrating Effectiveness with Machine Learning 

We evaluate the effectiveness of our approach by 

verifying that the button presses performed by the robotic 

arm actually lead to the collection of useful network 

traffic data. We do this by demonstrating that we can 

train a machine learning (ML) model to predict which 

buttons were pressed on the device from the network 

traffic alone. This allows us to conclude that the captured 

traffic provides substantial information about interactions 

with the IoT device and is therefore relevant for follow-

up network, security, or privacy analysis. This machine 

learning task is inspired by the various metadata-based 

inference attacks in the consumer IoT privacy literature 

[8, 13, 14], in which network traffic is shown to reveal 

substantial information about user interactions with their 

IoT devices. 

It is important to emphasize that the design of the ML 

algorithm is not the primary contribution of this study. 

We use ML simply as a method to verify that our robotic 

arm interaction approach generates useful IoT traffic. We 

expect that this automated method will be effective for 

many research purposes given that it allows rigorous 

device testing without tedious manual effort.  

We perform the ML evaluation as follows: 1) Label 

recorded IoT device packets (training data) with the 

buttons pressed by the robotic arm immediately prior to 

collection, 2) Train a supervised machine learning model 

to predict which button presses caused the device to send 

specific packets in reserved test data. 

1) Training data: We collect training data by 

instructing the robotic arm to repeatedly press each 

button on the device while recording the timestamp of 

each button press. For example, the arm performs 15 

presses of button #1 followed by 15 presses of button #2, 

etc. The delay between each button press is a fixed 10 

seconds.  

We record the device’s network traffic during these 

interaction sequences as PCAP files as described in 

Section III-A. We convert these PCAP files into a 

standardized CSV format using the nPrint tool [29]. 

nPrint encodes each packet as a row in the CSV file with 

columns containing the following features: packet’s 

source IP address, destination IP address, payload, IPv4 

headers, TCP headers, and relative timestamps. We then 

add a label column with the integer identifier of the 

button pressed immediately prior to the corresponding 

packet as determined by comparing packet timestamps 

and button press timestamps. A single button press can 

cause network activity consisting of multiple packets, so 

for each button press with timestamp tbutton, we treat this 

button as the label for all packets with timestamps tpacket 

within the following range:  

 

tbutton ≤ tpacket < (tbutton + 10s) 

 

This labeling is reasonable because all associated 

packets are transmitted a few seconds after a button is 
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pressed—well within the 10 second gap between 

consecutive button presses.  

2) Random forest classifier: We train a random forest 

classifier [30] using the scikit-learn library [31] and our 

collected training data. The classifier is designed to 

predict which button the robot pressed given only the 

subsequent network packet data. We select this particular 

ML algorithm in our study because the effectiveness of 

using random forest classifiers for characterizing network 

traffic has long been established [32–34]. 

We randomly select 25% of the labeled data to 

withhold as a test set and use the remaining 75% as a 

training set. We then perform a grid search to choose 

model hyperparameters evaluated by multi-metric 

(accuracy, precision, recall) 10-fold cross-validation over 

the training set. The grid search considers the criterion 

function (metric for measuring the quality of a split when 

constructing a decision tree in the random forest), 

maximum depth of the decision trees in the random forest, 

minimum number of samples required to split an internal 

node when constructing each decision tree, and the total 

number of trees in the random forest. Specific 

hyperparameter values tested and selected by the grid 

search are shown in Table II.  

Using the best hyperparameters found by the grid 

search, we train a classifier on the entire training set and 

evaluate its precision, recall, and F1 score on the test set. 

To obtain more reliable results, we repeat the above 

procedures (randomized train/test split, grid search, and 

classifier testing) 50 times and compute the means and 

variances of the test scores. High scores indicate that the 

classifier can confidently associate recorded packets with 

the button presses that generated those packets, implying 

that the collected network data captures relevant 

information about user interactions and device behaviors. 

IV. RESULTS 

Our study demonstrates that a robotic arm can be used 

to automate interactions with IoT devices in order to 

collect network traffic for research. Testing this approach 

with the Echo-Show5 and Sensi-Thermostat shows that it 

can collect IoT traffic that provides rigorous coverage of 

device behaviors with high correlations between button 

presses and captured packets. 

A. Visual Support for Automated IoT Traffic Collection 

Visualizations of traffic traces collected from the 

Echo-Show5 (Fig. 3) and the Sensi-Thermostat (Fig. 4) 

during automated interactions with all physical buttons on 

each device verify that our approach produces 

interaction-correlated network data. We performed both 

experiments without network congestion to prevent TCP 

congestion control from causing unwanted variations in 

the collected traffic. In practice, nothing prevents future 

applications of our automated approach in network 

environments with background congestion. 

 

TABLE II. GRID SEARCH VALUES FOR RANDOM FOREST 

HYPERPARAMETERS AND SELECTED OPTIONS FOR FINAL MODEL 
 

Hyperparameter Value 1 Value 2 Value 3 Selected 

criterion gini entropy  entropy 

max_depth 20 40 80 40 

min_ sample_ split 2 5 10 2 

n_estimators 200 400 800 800 

 

 

1) Echo show 5: Traffic collection from the Echo-

Show5 started at the relative timestamp of 0s and ended 

at the relative timestamp of 1533s. The robotic arm 

started pressing buttons on the device at 50s according to 

a permutation-based interaction sequence and concluded 

all button presses at 1000s. 

There are clear traffic spikes during the time period 

with the automated button presses. The period with 

button presses contained a total of 8391 packets with an 

average of 8.83 packets per second. In contrast, the rest of 

the packet capture (idle time) contained only 1202 

packets and an average of 2.25 packets per second. Note 

that we excluded packets prior to the beginning of the 

button presses when calculating these statistics, as these 

early packets are the result of device initialization at 

startup.  

The significantly higher amount of network traffic 

during the button presses indicates that our robotic arm’s 

interactions with the Echo-Show5 indeed generates 

activity-related traffic compared to periods with no robot 

interaction. These results corroborate Apthorpe et al.’s 

previous findings [8] that user interactions with an 

Amazon voice assistant cause detectable increases in 

traffic rates. 

2) Sensi-Thermostat: Traffic collection from the Sensi-

Thermostat started at the relative timestamp of 0s and 

ended at the relative timestamp of 950s. The robotic arm 

button presses occurred from 0s to 950s at intervals of 

10s.  

The Sensi-Thermostat sends periodic updates 

approximately every 200 seconds to reflect changes in 

settings caused by the intervening button presses. No 

TCP traffic is exchanged outside of these periodic 

updates. Unlike the Echo-Show5, the Sensi-Thermostat 

does not generate any TCP traffic when the robotic arm 

is inactive and no buttons are pressed, because no 

periodic update is required. This allows us to conclude 

that the observed traffic spikes at a rate of 2 packets per 

second occurred as a direct result of the automated button 

presses. Compared to the Echo-Show5, there are 

significantly fewer captured packets for the Sensi-

Thermostat; however, this is expected, as the Sensi-

Thermostat is a simpler device. 

The intermittently spiking traffic we observe 

corroborates Apthorpe et al.’s previous findings [8] that 

the traffic patterns of single-purpose consumer IoT 

devices (e.g., thermostats, lightbulbs, and outlets) are 

often directly and obviously correlated with user 

interactions and devoid of substantial TCP background  
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Figure 3. Example Echo-Show5 TCP traffic showing significantly more packets during automated robotic arm interactions. 

 

Figure 4. Example Sensi-Thermostat TCP traffic during automated robotic arm interactions. The device batches periodic messages approximately 

every 200 seconds in response to settings changes made by the intervening button presses. 

 

traffic. The observable correlation between the Sensi-

Thermostat’s network traffic spikes and the automated 

robotic button presses validates the effectiveness of our 

data collection approach for this device.  

B. ML Support for Automated IoT Traffic Collection 

We used machine learning, along with the IoT traffic 

captured from the Echo-Show5, to verify the correlation 

between button presses and captured packets as described 

in Section III-E. The success of our machine learning 

model further supports the ability of our automated 

interaction method to produce traffic containing 

information about device behavior that would be useful 

for network, security, or privacy research. 

We performed the machine learning evaluation using 

the Echo-Show5 data instead of the Sensi-Thermostat 

data because the Sensi-Thermostat produced such a small 

amount of traffic (41 packets) that 1) it is easy to visually  

 

verify correlations between traffic spikes and button 

presses (Section IV-A) and 2) there is not enough data to 

train an ML model. In comparison, the Echo-Show5 

produced sufficient traffic for random forest training 

(8,391 packets).  

We labeled each packet in the Echo-Show5 traffic with 

the number of the button most likely responsible for it 

being sent (Fig. 5). We randomly split the labeled traffic 

into 75%/25% training/test sets and conducted a grid 

search using the training data to choose hyperparameters 

for the random forest classifier. Training the classifier 

took only a few seconds using the scikit-learn library. We 

then tested the classifier on the test set and recorded the 

precision, recall, and F1 scores, weighting each button’s 

contribution to the average score by its relative 

cardinality in the test set.  

We repeated this training and testing process 50 times 

using the Echo-Show5 traffic as described in Section 

III-E.  All average precision, recall, and F1 scores were 

approximately 0.96 with variances less than 1.010–4, 

demonstrating a strong correlation between the device’s 

network behavior and the robotic arm button presses (see 

Table III).  
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Figure 5. Example Echo-Show5 TCP traffic with labeled button presses. This trace was collected with 15 presses of each of 4 physical buttons on the 

device and 10 seconds between each button press. The trace contains 8391 total packets. 

 

TABLE III. RANDOM FOREST CLASSIFIER PERFORMANCE PREDICTING 

ECHO-SHOW5 BUTTON PRESSES FROM COLLECTED NETWORK TRAFFIC 

AVERAGE TEST SCORES AND VARIANCES REPORTED OVER 50 

REPETITIONS WITH RANDOMLY SELECTED TRAIN/TEST SET DIVISIONS 

 Precision Recall F1 

Average Score 0.96 0.96 0.96 

Variance 4.57e−5 4.89e−5 4.84e−5 

 

These high scores allow us to conclude that the 

captured traffic does provide substantial information 

about the robot arm interactions and would be useful for 

follow-up research about the network, security, or privacy 

implications of user interactions with the IoT device. 

These results also corroborate the possibility of 

inferring details of user interactions with consumer IoT 

devices from network traffic [8, 13, 14] and show that our 

automated data collection approach could be useful for 

similar future studies. 

V. LIMITATIONS 

Using a robotic arm to automate physical IoT device 

interactions is an effective way to scale the collection of 

IoT traffic across device behaviors. However, the nature 

of collecting network data from physical IoT devices via 

robotics has certain constraints: 

A. Non-Physical User Interface Elements 

While a robotic arm can perform many types of 

interactions with IoT devices, such as pressing buttons or 

sliding switches, it cannot perform non-physical 

interactions such as voice commands. Even certain 

physical user interface elements, such as touch screens, 

can prove challenging for off-the-shelf robotic arms. 

Unlike physical buttons, there are infinite possible 

interactions to test for comprehensive coverage of touch 

screen presses, and the location of touch screen input 

elements may change as the result of prior interactions. 

Considering that some IoT devices, including the Echo-

Show5, have touch screens and voice commands as part 

of their major functions, it is important to explore 

additional techniques (such as software emulators) that 

can automate these types of interactions.  

Despite this limitation, we believe that the method 

described in this paper will be useful to IoT researchers. 

Physical device interfaces (e.g., buttons and switches) 

have proved the most challenging to automate thus far 

and are almost ubiquitous in inexpensive consumer IoT 

products. Our proposed method is designed to facilitate 

the collection of network traffic on devices with such 

physical interfaces. Additionally, combining a robotic 

arm with a microphone and an instrumented smartphone 

running devices’ associated mobile applications would be 

sufficient to explore all possible user inputs for many 

common devices without requiring tedious manual button 

pressing or dedicated development of device-specific 

emulators.  

B. IoT Device Size 

Configuring the robotic arm to interact with the Echo-

Show5 and the Sensi-Thermostat was feasible as both 

devices are small enough for the robotic arm to reach any 

location on the devices. In general, the size of the robotic 

arm limits the size of the IoT device that can be tested. 

Significantly larger devices (such as a smart refrigerator) 

exceed the maximum reach or range of motion of most 

hobbyist robotic arms. While larger and more precise 

robotic arms are available on the market, they are 

substantially more expensive. One possible solution is to 

have multiple smaller robotic arms operate on a single 

large device simultaneously, but this would require 

precise coordination of the arms to interoperate. However, 

this limitation does not raise significant concern, since 

most popular consumer IoT devices are small appliances 

that would be suitable for our approach. 
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C. Environmental Sensor Data 

Many IoT devices include environmental sensors, such 

as thermometers, light sensors, accelerometers, and 

gyroscopes that determine their behaviors and network 

communications [8] in conjunction with user interface 

elements. The scope of possible readings from these 

sensors is not explored by our robotic arm approach and 

would require a software emulator or a laboratory with 

local environment controls. While it would be possible to 

place both a robotic arm and an IoT device into a 

chamber with controllable temperature or lighting and 

conduct permutation-based testing with each of these 

variables, this is outside the scope of this paper. 

VI. FUTURE WORK 

Apart from the limitations stated in Section V, our 

automated approach to IoT device interactions is 

amenable to many additions and improvements that could 

be the topic of future work. We hope that others will 

adopt and adapt this approach to automate and scale IoT 

research.  

A. Randomness in Interaction Sequences 

One straightforward extension of our approach is to 

create permutation-based interaction sequences with 

increased randomness to better replicate the variety of 

real user interactions. Although our current 

implementation explores all possible unique interaction 

permutations, additional randomness could be added by 

randomly repeating button presses within interaction 

sequences or repeating entire interaction sequences for a 

random number of iterations.  

A follow-up study could also test whether increases in 

interaction randomness actually increase the variety of 

collected network traffic. If network traffic is 

predominantly linked to the most recent interaction, 

introducing random delays in interaction frequency may 

not actually produce traffic of greater interest for follow-

up analysis.  

B. Additional IoT Devices 

While we chose two popular consumer IoT devices to 

test with robotic arm interactions, we expect that this 

method is amenable to a wide variety of IoT products in 

consumer, medical, and other contexts. We are aware of 

several universities and consumer advocacy groups with 

access to many IoT devices and we recommend their use 

of our technique for automating network security and 

privacy analyses at scale. We would especially like to see 

this approach used to evaluate medical devices, as they 

often have many physical buttons and may be under-

audited from a network security perspective [35].  

C. Multi-Device Interactions 

Although this study explores automated interactions 

with individual devices, future work could apply our 

system to simultaneous interactions with multiple devices 

using multiple robotic arms. Some IoT devices are 

designed to communicate with other devices on the local 

network, and the traffic from these communications 

would not be visible from robotic arm interactions with a 

single device. With the help of a centralized coordinator 

(i.e., a parallel processing controller), a setup with 

multiple devices and multiple robotic arms could test 

interleaved interaction sequences across devices to record 

traffic from device-device communications. As discussed 

in [8], patterns of network traffic from multiple IoT 

devices within a household may allow privacy-violating 

inferences not achievable with traffic from a single 

device alone. Applying our approach to multiple devices 

could test the possibility of such inferences and 

potentially reveal other privacy or security vulnerabilities 

related to local device communications as well. As more 

manufacturers promote “ecosystems” of IoT devices, the 

ability to automate network research of multi-device 

interactions becomes increasingly important.  

D. Computer Vision UI Identification 

The only manual process in our approach is to 

configure the robotic arm with the positions of each of 

the user interface elements on the device prior to 

automated interactions (Section III-B). This initialization 

step could also be automated in future work by adding a 

camera to the setup and using computer vision to identify 

the type and location of user interface elements on the 

device. This would provide an extremely low barrier to 

entry for network data collection from any IoT device at 

the expense of the additional camera hardware and 

increased potential for misidentification of UI elements.  

E. Cyber-Physical Fuzz Testing 

Our approach could be used to fuzz test the user 

interfaces of IoT and other devices with essential physical 

interfaces, especially by entities such as security 

researchers or consumer protection groups without access 

to source code or device emulators.  

Testing all possible physical interactions with a device 

to see whether any produce buggy or malicious behavior 

could reveal previously unknown vulnerabilities. This 

idea could be combined with any of the other future 

directions in this section to expand the scope of 

automated security analysis for cyber-physical devices. 

VII.  CONCLUSION 

The collection of network traffic data from consumer 

IoT devices has heretofore involved tedious manual 

interactions with devices in a laboratory setting or 

expensive crowdsourcing initiatives. In this paper, we 

present a novel method for automating the collection of 

IoT network traffic across a variety of user interactions 

and device behaviors: configuring a robotic arm to 

interact with physical user interface elements of IoT 

devices according to formalized permutation-based 

interaction sequences.  

We describe the steps required to implement this 

method, including applying inverse kinematics to obtain 
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robotic arm movement parameters, physically enlarging 

IoT device buttons to improve interaction accuracy, and 

creating permutation-based interaction sequences to 

provide comprehensive coverage of possible user 

interface interactions. We apply this approach to two 

representative IoT devices, an Amazon Echo Show 5 and 

an Emerson Sensi Wi-Fi Smart Thermostat. We confirm 

its effectiveness through inspection of collected network 

traffic and by the successful creation of a machine 

learning model that can infer specific robot/device 

interactions from the collected traffic. This indicates that 

the collected data contains information about device 

behaviors that could be useful for network, security, or 

privacy analyses. 

Compared to prior methods of IoT network data 

collection, our automated approach provides high 

interaction coverage and does not require tedious manual 

effort. Our method is readily adaptable to different 

consumer IoT devices and for testing multi-device 

interactions. We have made our source code and other 

reference materials needed for this approach publicly 

available for future research. 
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