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Abstract—With the rapid development of modern 

communication systems, phased array antennas (PAAs) are 

widely used in many applications such as radars and 5G 

networks. In a PAA composed of multiple elements 

(antennas), beamforming or beam steering can be achieved 

by adjusting the phase difference in the excitation signals that 

feed each element of the array, eliminating the need for 

mechanical antenna movement. The performance quality of 

the communication systems heavily relies on the precise 

synthesis of the PAAs. PAA synthesis entails determining the 

geometric or physical shape of an antenna based on 

knowledge of its electrical parameters. Conventional 

methods for PAA synthesis use conventional electromagnetic 

models embedded in antenna design software’s. However, 

these models often pose challenges due to resource-intensive 

computations, lengthy simulation times, and potential high 

error rates. Machine learning (ML) techniques can be 

employed to optimize solutions in various telecommunication 

systems, including PAAs synthesis. In this article, we review 

and investigate the application of ML techniques in the 

synthesis of PAAs. The results of this study show that 

utilizing ML techniques can expedite the design process by 

threefold, while simultaneously reducing errors and 

increasing accuracy up to 99%.  
  

Keywords—phased array antenna, machine learning, deep 

learning, artificial neural networks 

 

I. INTRODUCTION 

Today, artificial intelligence (AI) techniques are 

extensively utilized in communication systems, both in the 

physical and upper layers, which include detection and 

decoding, wireless communication networks, cellular 

networks, cognitive radio, wireless sensor networks, cyber 

security, and the design of various types of 

telecommunication antennas. Machine learning (ML) has 

demonstrated remarkable advancements in antenna design 

for a wide range of telecommunication systems, including 

millimeter wave systems, body-centered 

telecommunication systems, THz telecommunication 

systems, satellite telecommunication systems, 

telecommunication systems of unmanned aerial vehicles 
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(UAVs), telecommunication systems of base stations [1], 

satellite systems [2], and 5G networks [3]. ML employs 

various techniques to discover optimal geometric 

structures and patterns from high-dimensional random 

data in order to design antennas [4], design phased arrays 

[5], and artificial electromagnetic media such as 

metamaterials, meta surfaces, electromagnetic bandgap 

structures, and provide selectable frequency levels [6]. 

Generally, an antenna can be represented through a 

mathematical model, as depicted in Fig. 1. The inputs to 

this system are denoted as x and p, which correspond to the 

excitation current of the antenna and a set of parameters 

that define the geometric and electromagnetic properties of 

the array, respectively. The output (y) is the antenna 

radiation pattern. It is assumed that x, p, and y belong to 

either Banach or Hilbert domains. The system is 

represented by an operator S which is continuous 

(frequency dependent), and linear in x, but usually not 

linear in p.  

The phased array antenna (PAA) is among the most 

commonly used types of antennas in telecommunication 

systems, garnering significant interest from researchers 

due to its versatile applications. A PAA is a computer-

controlled antenna array that produces a beam of radio 

waves that can be electrically steered in different 

directions without the need for mechanical movement of 

the antenna [2]. 

 

 

 

 

 

 

 

 
 

Figure 1.   Antenna system mathematical model. 

 

In practice, the optimal radiation pattern for a PAA is 

formed based on the distributed and independent dynamic 

control of the phases of PAA elements. Obtaining the 
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desired set of excitations of elements (phases of PAA 

elements) is an optimization problem that is created in 

conventional optimization methods according to the 

adopted metric (objective performance). Unfortunately, in 

conventional optimization methods, it may take a long 

time to reach an optimal or suboptimal solution. This is 

due to the inherent iterative nature of these methods and 

usually requires a large number of iterations or complex 

calculations to converge.  

Conventional optimizations may take a long time to 

converge to an optimal or suboptimal solution due to their 

inherent iterative nature, as they usually require a large 

number of iterations to converge or involve complex 

computations. Consequently, these methods are not 

suitable for implementation within a near-term schedule. 

Furthermore, defect detection in PAA and inverse 

scattering-based nonlinear problems require complex yet 

cost-effective solutions, where ML can provide an edge 

over other techniques. Failure of the elements in a PAA 

causes drastic field changes in the array apertures, thus the 

antenna radiation pattern is degrading. ML techniques 

have previously been used to determine the location of 

fault element in the antenna array. In summary, several 

advantages of ML algorithms are highlighted by 

comparing them with conventional PAA synthesis 

methods. The main effects include speeding up the design 

process, reducing errors and time spent, improving the 

accuracy of antenna design, helping researchers save a lot 

of simulation work, and suggesting approximate solutions 

for specific optimization problems. In addition, one of the 

significant advantages of ML is that ML methods can be 

learned from data without any prior knowledge and the 

learned model can be used for future designs. 

 The synthesis of the radiation pattern of an array 

antenna is a crucial aspect in the design and 

implementation of a Phased Array Antenna (PAA). Proper 

weighting of the array elements plays a significant role in 

achieving the desired radiation pattern. Array radiation 

pattern synthesis is widely used to direct energy in specific 

directions, eliminate sources of interference, or even 

reduce the likelihood of interference with other systems. 

Conventionally, filter design techniques are used in 

radiation pattern combination algorithms for arrays due to 

the similarity between spatial signal processing and signal 

amplitude. However, these algorithms often lack the 

flexibility to consider all constraints Optimization 

techniques can be a more general solution to produce 

desirable radiation patterns, despite stricter conditions and 

more limitations. While the algorithms based on 

optimization are highly flexible, they may require a 

substantial amount of time to converge to the optimal 

solution, especially for large arrays. For fixed or pre-

configured radiation patterns, additional computations are 

not considered a hassle. However, in dynamic scenarios, 

generating a specific radiation pattern in real-time 

becomes more challenging.  

In contrast to conventional optimization methods in 

PAA pattern synthesis, ML networks using training 

datasets that utilize training datasets can achieve faster 

computational performance compared to conventional 

optimization methods. Considering the crowded radio 

spectrum, which requires systems with the ability to 

reconfigure and adapt to the environment, ML algorithms 

are widely used in adjustable and adaptive PAAs. To 

change the polarization in a tunable array, the radiation 

pattern, operating frequency, and current distribution 

across the antenna are changed. Adaptive arrays instantly 

weight and combine signals to obtain the desired pattern 

and remove interfering signals [7]. In this method, by 

adjusting the weight of the PAA elements, the antenna 

pattern is changed. In the conventional mode, pattern 

forming software algorithms are used to create array 

patterns. This is where the role of AI in PAA design 

becomes apparent.  

ML algorithms can adjust the weighting of array 

elements using fast and superior methods. ML can perform 

better than conventional algorithms in signal processing in 

noisy and multi-path fading environments. The use of ML 

according to the antenna array architecture controls the 

signals with digital beamforming methods. When using 

ML in the antenna design of telecommunication systems, 

regression-based algorithms are an essential tool. By using 

these algorithms and sufficient data sets, a model can be 

obtained that represents the mapping diagram of the 

nonlinear relation between the antenna's geometric 

characteristics and parameters.  

One of the most used ML algorithms for designing 

antennas are artificial neural network (ANN) and support 

vector regression (SVR) [8]. Other less commonly used 

regression methods include linear regression (LR), least 

absolute shrinkage and selection operator (LASSO), 

Gaussian process regression (GPR), and kriging regression 

(KR). ML techniques can make the design process three 

times faster in addition to reducing errors and increasing 

accuracy up to 99% [8]. ANN algorithms have been used 

to find relationships between antenna parameters.  

In recent studies, many works have been conducted on 

the use of techniques based on AI and ML to solve 

problems related to the design of PAAs. In [9], a deep 

neural network (DNN) was used to perform fault analysis 

on active phased arrays of 5G and 6G radios. DNN is 

designed to classify various errors by extracting hidden 

features in the phase and square components of baseband 

signals. This method achieves 99% accuracy in detecting 

the failure of an array element and 80% accuracy in 

detecting multi-element error. In [10], an effective ML-

assisted array synthesis method was presented based on 

active basis element modeling. In particular, the proposed 

model considers the mutual coupling effects between each 

antenna element and the surrounding environment. The 

result of this study shows that ML-assisted array synthesis 

method can provide design freedom, improve array 

performance, enhance design efficiency, and collaborate 

with different optimization methods. Zhang et al. [11] 

presented a deep deterministic gradient algorithm, which 

is a typical reinforcement-learning algorithm that has 

robust fitting ability for high-dimensional continuous 

nonlinear problems, for pattern synthesis of a phased array 

antenna. Oliveri et al. [12] was placed on the application 

of ML to speed up the analysis of reflective arrays by 
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Zhang et al. [13] a cognitive antenna array associated with 

a deep reinforcement-learning model was proposed for fast 

adaptation to complex electromagnetic environment. This 

platform includes a vector network analyzer and a micro-

programmed control unit to view and adjust the antenna 

array. The vector network analyzer feeds the signal to the 

phased array antenna through a power divider and 

transmits the measured gain to the host computer to invoke 

the deep reinforcement-learning algorithm, in which case 

the microprogrammed control unit uses digital phase 

shifters for each controls the phase shift. The antenna 

element receives the phase distribution adjustment 

command from the deep reinforcement-learning model. 

The result shows a good agreement between the simulated 

and measured radiation patterns. This algorithm is also 

used in the design of a coherent PAA, demonstrating the 

potential for automatic adjustment of different beam 

angles. With the increasing complexity of the antenna 

structure, the number of its geometric parameters also 

increases, making it more challenging to establish 

relationships between the parameters, the resonance 

frequencies, and other features of the antenna radiation 

pattern. The conventional approach to optimize the 

antenna design is using simulation models for achieving 

desired pattern. This process is a heavy computation and 

time-consuming process. Instead of using this method, the 

antenna design process can be accelerated by utilizing ML 

techniques, which involve establishing a mapping between 

the inputs and outputs [14]. In general, antenna design by 

ML involves four steps, as shown in Fig. 2. Although using 

ML for antenna design requires simulations to the 

necessary training data, once trained, it can be used to 

predict the antenna parameters for any arbitrary input at a 

higher speed and a lower error compared to the simulation 

results. In this paper, we investigate the use of ML 

techniques in the PAA optimization.  

The continuation of the paper is organized as follows. 

In Section II, the literature review will be presented, and in 

Section III, PAA is described briefly. In Section IV, we 

review a summary of ML techniques, and finally, in 

Section V, we will conclude the article. 

 

 
Figure 2. Steps of applying ML for antenna design. 

II. RESEARCH LITERATURE  

The radiation pattern of an array antenna is formed by 

the amplitude and phase of the signal applied to each of its 

elements [15]. However, it should be noted that when 

feeding the array elements, there are many couplings 

between the elements that are placed together with a 

distance of less than half the wavelength of the operating 

frequency. As mentioned, the radiation pattern of an array 

antenna without coupling can be obtained simply by 

multiplying the radiation pattern of one element of the 

array antenna by the AF. However, in the case where there 

is coupling between array elements, it will be difficult to 

determine the amplitude and phase of the signal for each 

array element in order to achieve the desired radiation 

pattern. As a common approach, Fourier transform or 

optimization techniques can be used to obtain the desired 

radiation pattern in the array antenna [16−18]. 

 However, these methods cannot be easily implemented 

in practice. Synthesis of the radiation pattern of an array 

requires considerable computational time. Simulation of 

radiation patterns in the design of antennas can be done 

with simulation software. In this case, to observe the 

radiation pattern with coupling, it is possible to simulate 

the radiation pattern by directly introducing a signal with 

a certain phase difference to each element of the antenna. 

The presence of coupling causes the radiation pattern to be 

affected. Therefore, it is essential to find the proper 

amplitude and phase for the signal applied to the array 

elements to obtain a radiation pattern without coupling 

effects. 

Recently, ML techniques have been used for the design 

and synthesis of antennas [19, 20]. ML can be used to 

determine the amplitude and phase of the signal required 

to synthesize the radiation pattern of the PAA when 

coupling is considered. Distortion of the radiation pattern 

due to the existence of coupling between the elements of 

the antenna array is intensified by decreasing the distance 

between the elements of the antenna. To minimize side 

effects caused by coupling between array elements, neural 

network-based methods for radiation pattern synthesis 

have been studied [19, 21]. The radiation pattern is mainly 

determined by the phase of the signal that excites the 

antenna element. Different radiation patterns are obtained 

for different signal phases. The relative phase difference is 

more important than the absolute value of the phase. 

Therefore, the phase of the first element in the array is kept 

constant at zero degree and the phase of the other elements 

of the array is compared with it.  

When using ML techniques, the radiation pattern of the 

training data can be obtained by increasing the phase to a 

certain extent. In this way, every time the phase value 

increases, a certain number of states will be created for the 

array elements. Therefore, a number of radiation patterns 

corresponding to these states will be produced. To verify 

whether the DNN is properly trained, the validation data 

must not overlap with the training data. Determining the 

type of input and output of a DNN is very important 

because the learning results can be completely dependent 

on the type of input and output data. The total number of 

radiation patterns will be proportional to the number of 

array elements and the number of phase difference angles 

considered for array elements. In simulator software, 

amplitude and phase of signals are known as variables. The 

Step 1

• Storing the numerical values of the inputs along 
with the simulation outputs that obtained through 
the simulation in a database.

Step 2

• Dividing the created data set into three sets include 
training, validation, and test.

Step 3

• Choosing the right learning algorithm based on the 
complexity, amount of available data, and 
mathematical formulas.

Step 4

• Using the model after training and testing it to 
predict the outputs for the desired inputs.
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desired antenna patterns are simulated and stored using a 

computing and simulation software. The antenna 

amplitude and phase variables are entered into the 

simulator software and the radiation pattern is extracted. 

As the depth of the neural network increases (the number 

of hidden layers of the neural network), the number of 

output neurons decreases.  

For training, a certain number of radiation patterns 

generated by the software simulators are used). The 

training execution time in the neural network algorithm is 

reduced by using appropriate hardware. By substituting 

DL techniques instead of electromagnetic simulation in 

addition to reducing the computation time, the error is also 

reduced [22, 23]. Moreover, when some elements of the 

array fail, the radiation pattern of the array also changes, 

and in this case, a NN can be used to detect the failed 

elements of the array [24]. 

 In addition, the NN can be used to determine the 

excitation signal of the array elements [25, 26]. The study 

of antenna pattern synthesis based on NN has revealed the 

feasibility of DNN as a logical candidate for learning 

desired radiation patterns. So, a DL-based method for 

estimating the excitation signal of array elements by 

interpreting the desired radiation pattern is also suggested. 

A. Related Works  

Although the topic of this article is about the application 

of ML in PAA synthesis, some other applications of ML 

in PAA such as fault diagnosis and beamforming also are 

presented in this section.  

1)  Application of ML in PAA synthesis 

Various studies have been conducted in the field of 

using ML in the design and optimization of PAAs. In this 

section, we have an overview of some of the researches 

that have been done in this field in recent years. Shan et al. 

[25] the possibility of applying DL techniques for the 

synthesis of reflective arrays is investigated. In this paper, 

a deep CNN is proposed to predict the phase shift in a 

reflect array antenna. The proposed network receives the 

radiation pattern and the direction of the pattern along with 

the training data and the test data obtained by the array 

theory as input to the model. After sufficient training, the 

proposed network has strong approximation ability and 

correctly predicts the phase change. The results of the 

paper show that deep CNN can mimic the phase synthesis 

process of reflect arrays and have great potential for 

continuous phase prediction in more complex array 

synthesis problems.   As mentioned above, array synthesis 

means calculation of phase values of the array elements for 

obtaining desired radiation pattern for array. Lovato and 

Gong [26] a CNN is designed and trained to synthesize an 

8×8 planar PAA. In this architecture, a desired two-

dimensional radiation pattern is processed to calculate 

phase values for PAA synthesis  .The performance of the 

network is evaluated using data that has not been exposed 

to before during neural network training. In the proposed 

model presented in the study, a CNN is trained to calculate 

patch antenna phases of PAA using the desired radiation 

pattern as the input. The proposed CNN model is shown in 

Fig. 3. The model consists of four convolutional layers and 

four fully-connected layers, totally eight layers. In the 

proposed CNN beamforming model, the input is a two-

channel radiation pattern that realized gain in both linear 

and dBi scales, separately. 165,000 samples are used for 

network training and 40,000 separate samples are used for 

validation. The training patterns are generated by an 8×8 

patch antenna array simulated in ANSYS High Frequency 

Structure Simulator (HFSS) software.  Using the 

progressive phase shift values for the four sub-arrays, 

training samples are generated with random beams in the 

range of  0° ≤ 𝜃 ≤ 45°, 0° ≤ ∅ ≤ 360° . As shown in Fig. 

4, the spherical representation (𝜃, 𝜙) of radiation patterns 

is transformed to the sine-space projection (𝑢, 𝑣). Input 

patterns are scaled to [-1, 1] and normalized to the entire 

data set. The output phase data, instead of wrapping to [0, 

2𝜋] is in the range [-4𝜋, 4𝜋]. Four convolution layers with 

10, 20, 30, and 40 filters are used in each layer. The inputs 

are zero-padded at each layer to maintain a constant output 

shape number of (45, 46) and all filters have a shape 

number of (5, 5). To reduce the effects of outliers in the 

training batch on the weights of each stage, batch 

normalization is used at each convolution stage. Pooling 

layers as a critical component of the proposed CNN 

beamformer are excluded to the model. Pooling layers are 

important for classification tasks. Pooling layers, in 

addition to make the convolution spatially and 

transnationally invariant, making it possible to detect 

features. For pattern synthesis, the phase output of the NN 

must be sensitive to spatial location of the desired beam in 

the input. Therefore, the position of a beam is a critical 

feature. By removing the pooling layers, the CNN does not 

benefit from the down-sampling provided by the pooling. 

As a result, for each convolutional layer with a large 

number of weights; 82,800 neurons belong to the flattened 

output of the final convolution layer.  As shown in Fig. 3 

the output of the convolutional block is divided into four 

fully-connected parts composed of three hidden layers of 

2048, 1024, and 16 neurons, respectively.  To reinforce 

learning for each sub-array, multiple output hidden layer 

branches are used.  At each of the hidden layers, a dropout 

rate of 30% is applied for reducing over-fitting. The leaky 

rectified linear unit (ReLU) is used for all layer activations 

excluding the output. The mean squared error (MSE) 

function is used for the network. Through the trained 

network, a radiation pattern is used to verify the 

performance of the proposed CNN beamformer. As shown 

in Fig. 3, the desired radiation pattern input to the trained 

network.  The phases are calculated at the output and then, 

using HFSS to extract the radiation pattern.  The NN is 

able to accurately calculate phases to synthesize the 

desired pattern if there are minor differences between the 

two patterns.  In [27], using DNN, a linear array antenna 

with four patch antenna elements is designed. To 

investigate the effect of DL, large coupling is created 

between array antenna elements that are spaced 0.28 λ 

apart (less than half a wavelength). In this research, the 

radiation pattern with coupling is simulated by directly 

introducing a signal with a phase difference of 60° to each 

antenna element. The radiation patterns of the training data 

are obtained by increasing the phase with 20°changes. In 
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other words, according to angles from zero to 360°, 

increments of 20° cause 19 modes to appear in each 

antenna. Therefore, the total number of radiation patterns 

obtained will be 1 × 19 × 19 × 19 = 6859. Radiation 

patterns are extracted in units of one degree according to 

the amount of radiation angle, from zero to 180°. Therefore, 

the number of input data becomes 181. The initial phase 

starts at 10°, increases in 40° steps, and stops at 130° (10°, 

50°, 90°, and 130°) so; the number of modes created in 

each antenna will be four and the total number of radiation 

patterns for model validation will be 1 × 4 ×4 × 4 = 64. 

The data related to the antenna structure is simulated and 

stored using a software. The amplitude and phase variables 

of the antenna are entered into the simulation software and 

the radiation patterns are extracted. The number of input 

data was 181 and their values change from zero to one. 

When the signal phase is set as the output data of the DNN, 

two different outputs will be generated for the same input 

due to the equivalence of 0° and 360°. Since this issue may 

lead to poor learning, the output data of the DNN 

(amplitude and phase of the array elements) are shown as 

complex numbers. In this method, 6859 radiation patterns 

were used to train the model and 64 radiation patterns were 

used to validate the model. The difference between the 

proposed method in this research and other conventional 

methods is that real and imaginary numbers are used to 

show the phase values in order to increase the ability to 

learn the desired antenna radiation pattern. Fig. 5 shows 

the DNN model used in the research. In [28], the pattern 

synthesis of a PAA is studied using a deep certainty policy 

gradient algorithm, which is a typical deep reinforcement-

learning algorithm and has strong fitting ability for high-

dimensional continuous nonlinear problems. Such a 

feature can be arbitrarily used to design a heterogeneous 

phased array antenna on the surface of a complex 3D 

object, which is able to implement fast and complete array 

radiation pattern guidance. In [29], an array synthesis 

method with the help of ML based on active base element 

modeling is proposed. The model proposed in the paper 

also considers the effects of mutual coupling between each 

antenna element and the surrounding environment. The 

result of the study shows that the array synthesis method 

with the help of ML technique can provide design freedom, 

array performance, and excellent efficiency. In [30], a 

DNN is proposed to compute the bone-shaped two-band 

polarized array antenna at frequencies of 28 GHz and 38 

GHz for 5G network applications. In the paper, a DNN 

model is built on a five-layer system using an adaptive 

learning algorithm. The framework and hyperparameters 

of the DNN model, a hybrid algorithm using two particle 

swarm optimization methods and a modified version of the 

gravitational search algorithm, are developed. To generate 

a database for model training and testing, 150 bone-shaped 

antennas with different geometries in terms of resonance 

frequency are simulated using a precision DNN model. 

 

 
Figure 3. Proposed CNN model in [26] 

 
Figure 4. Input and prediction pattern of CNN model proposed in 

[26] 

In [31], an ANN model is proposed to solve the 

limitation of prior knowledge in ANNs for modeling finite 

periodic arrays. Considering the problem of mutual 

coupling in the array, the proposed model in the paper 

consists of two sub-ANNs: an ANN for elements and an 

ANN for the array. Based on the relationship between the 

geometric variables and the electromagnetic behavior of 

the array elements, NN elements are constructed to provide 

prior knowledge for array NN modeling. Then, in cross-

coupling investigation, the array ANN is modeled to obtain 

the electromagnetic response of the entire array from the 

non-linear superposition of the responses of the array 

elements. In [32], a method for the synthesis of the 

radiation pattern of almost-periodic arrays that includes the 

633

Journal of Communications, vol. 18, no. 10, October 2023



 

effects of mutual coupling is proposed. In the article, for 

modeling, the momentum method is combined with the 

generalized equivalent circuit method and is presented 

under the name of (MoM-GEC) method. In the article, 

ANN is used as a computational model in array pattern 

synthesis. The results of this study show that multilayer 

direct neural networks can successfully and efficiently 

provide distinct and complex patterns of quasi-periodic 

array antennas with sources of different amplitudes. In [33], 

a phase estimation method between PAA elements based 

on neural network using linear array radiation power 

pattern is proposed. To validate the proposed method, the 

authors apply a radiation pattern measured in a shielded 

room to the neural network to estimate the initial phase 

errors and verify the estimation accuracy. The proposed 

method only requires the measurement of a single 

radiation pattern for estimation. This shows that the 

proposed method requires significantly less time compared 

to other conventional techniques. The research results 

show that the proposed method is useful for estimating the 

phase of linear arrays. 

 

 
Figure 5. DNN architecture for pattern synthesis of a 4-element linear 

array (reproduced from reference [50 27 ]) 

 

2) Application of ML in PAA Beamforming, Failure 

Diagnosis, etc. 

In [24], a CNN-based method for array failure detection 

with support vector machine (SVM) technique is presented. 

The results of the study show that fault detection in array 

antennas by DNN is accurate and possible. The accuracy 

of the proposed DNN method in the research is discussed 

under different amounts of training data. In [34], 

considering active PAA for 5G and 6G radios, a DNN for 

error analysis is proposed. In the paper, DNN is designed 

to classify various errors by extracting hidden features in 

phase and components of baseband signals. Validation of 

the proposed method is performed on a phased array 

operating at 28 GHz. This method achieves 99% accuracy 

in detecting the failure of an array element and 80% 

accuracy for detecting the failure of several array elements. 

In [35], a cognitive array antenna associated with a deep 

reinforcement-learning model is proposed for fast 

adaptation to the complex electromagnetic environment. 

The platform includes a network analyzer and a 

programmable control unit to view and adjust the array. 

The network vector analyzer, through the power divider, 

supplies the signal to feed the PAA elements and transmits 

the measured gain to the host computer in order to call the 

deep reinforcement-learning algorithm. This is done while 

the programmed control unit controls the digital phase 

shifters to change the phase of each antenna element when 

receiving the command to adjust the phase distribution 

from the deep reinforcement learning model. The result of 

this research shows a good agreement between the 

simulated and measured radiation patterns. This algorithm 

is used to design the PAA and enables automatic 

adjustment for different beam angles. In [36], a method to 

obtain the power density value, which provides the 

standard of human presence exposed to radio frequency 

electromagnetic field from mobile devices using a DL 

network. A mobile communication device that uses an 

array antenna needs a large number of phase conditions to 

cover a wide communication range. However, the power 

density values must be calculated repeatedly every time 

the phase condition changes, which requires a lot of time 

and cost. To implement this process seamlessly, a DL 

network is presented in the paper, which can receive the 

phase conditions of the array antenna and simultaneously 

provide the power density for the phase conditions of the 

array antenna as output. In the research, for a 4 × 1 patch 

array antenna, which is commonly used in 5G mobile 

phone communication devices, by changing the phase of 

the array elements, 5832 radiation patterns are generated 

as training data and then converted into power density 

values and the model is trained. The neural network model 

presented in the research is shown in Fig. 6.  

 
Figure 6. 5-layers NN model to determine the phases of a 4-elements 

linear array (reproduced from reference [35]) 

 

In [37], a DL-based beamformng design approach is 

proposed, and a beamforming neural network (BFNN) 

which can be trained to learn how to optimize the 

beamformer for maximizing the spectral efficiency with 

hardware limitation and imperfect channel state 

information (CSI) is presented. Simulation results show 

that the proposed BFNN achieves significant performance 

improvement and strong robustness to imperfect CSI over 

the traditional beamforming algorithms. In [38], a method 

for generating an adaptive radiation pattern of an array 

using DL is proposed, which is based on a deep CNN. In 

this proposal, a radiation pattern is applied as an input to 

the model, which encodes the desired behavior and 

calculates the optimal currents required to match the 

antenna with the desired pattern specifications. This 

proposal reduces the computation time and provides an 
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intelligent mapping from a classical iteration algorithm to 

the antenna for its reproduction. After training, the model 

is able to successfully calculate the optimal flows and 

avoid costly iterative optimizations to find the required 

flows (see Fig. 7). Summary of the studies related to the 

applications of ML in PAAs in the last five years are listed 

in Table I. 
 

 
Figure 7. Architecture of the deep CNN for generating an adaptive radiation pattern (reproduced from reference [38]) 

TABLE I. SUMMARY OF THE STUDIES RELATED TO THE APPLICATIONS OF ML IN PAAS IN THE LAST FIVE YEARS 

Application Phased Array Type ML Algorithm Year Ref. 

Synthesis of Reflect array 
2D Circular aperture 

reflect array 

CNN based on 

AlexNet 
2018 Shan et al. [25] 

antenna array failure 

diagnosis 

2D 5×5 microstrip 

array at λ/2 interval 
CNN with SVM 2019 Chen et al [24] 

phased antenna 

array beamforming 
2D 88 microstrip 

patch antenna array 
CNN 2019 Lovato and Gong [26] 

Design of finite periodic 

arrays 
2D array ANN 2019 Xiao et al [31] 

phase antenna 

array adaptive beam-

forming 

149- elements, λ/2 

spaced on a circular 

aperture array 

CNN 2020 Bianco et al. [38] 

Large-scale phase array 

beamforming 

1D 1×64 antenna array 

at λ/2 interval 
DNN 2020 Lin and Zhu [37] 

Synthesis of the phased 

array 

1D 4×1 array patch 

antenna 
5-layers DNN 2020 Kim and Choi [27] 

Power density of phase 

array 

1D 4×1 array patch 

antenna 
DNN 2021 Bang and Kim [36] 

Circularly polarized bone-

shaped patch antenna for 

5G 

Uniform circular 

antenna array 
5-layers DNN 2021 Montaser and Mahmoud [30] 

Conformal PAA pattern 

synthesis 

1D 1×17 conformal 

phase array antenna 

Deep 

Deterministic 

Policy Gradient 

2022 Zhang et al. [28] 

Phase estimation method 

for a linear antenna array 
1D linear array 8-layers NN 2022 Iye et al.  [33] 

Synthesis of the phased 

array under mutual 

coupling 

1D linear arrays 
ML assisted 

array synthesis 
2022 Wu et al. [29] 

5G and 6G active phased 

array 
2D linear arrays DNN 2022 Nielsen et al. [34] 

synthesize the pattern of 
almost periodic arrays 

2D planar array FFNN 2022 Bilel and Taoufik [32] 

Cognitive antenna array 
conformal phased 

array antenna 

Deep 

reinforcement 

learning 

2022 Zhang et al.  [35] 

 

635

Journal of Communications, vol. 18, no. 10, October 2023



 

B. Research Gaps and Opportunities  

In the studies related to the applications of AI especially 

ML in PAAs, there is a gap regarding adaptive PAA 

(APAA), which can be an opportunity in future studies in 

this field. Few studies have been done in relation to the use 

of ML techniques in APAA. Therefore, it is necessary to 

conduct more studies in this field. APAA in various areas 

such as wireless localization, adaptive nulling, multiple 

input multiple output (MIMO) communication, calibration 

and failure detection of array elements. APAA is presented 

with signal processing techniques. these techniques, in 

addition to use for determining signal parameters such as 

the direction of arrival (DoA) of the input signal, also used 

in beam formation and directing it in the desired direction 

with an approach to minimize interference. Therefore, 

APAA can be used to perform the following missions: (1) 

DoA estimation of all input signals (interfering and 

multipath signals) through DoA algorithms such as 

Multiple Signal Classification (MUSIC),  (2) Signal 

parameter estimation through rotational invariant 

techniques (ESPRIT), (3)  Distinguish the wanted signal 

from the  unwanted input signals, (4) In addition to direct 

and track the radiation pattern in the direction of the 

desired signal, place it in the DOA of the interfering and 

multipath null pattern signals [39].  

These capabilities are achieved using adaptive 

algorithms such as least mean square (LMS) and recursive 

least squares (RLS) through dynamic updates of phase 

weights in array elements. The main item of APAA 

systems is the digital signal processor (DSP). DSP can 

calculate the complex weights by managing the received 

data information and multiply the weights in each antenna 

element. In addition to optimizing the radiation pattern of 

the array, this operation also causes the radiation pattern to 

be shaped to minimize the interference [40, 41]. In APAA, 

in conventional methods, some algorithms such as 

Auxiliary Sources method is used to find the optimal 

antenna for a given pattern [42]. In traditional methods, for 

obtaining an optimal antenna with a periodically changing 

directional pattern numerical experiments are performed 

[43, 44]. In particular, AI-based methods can perform 

much more powerfully in noisy and multi-path 

environments compared to conventional algorithms in 

digital signal processing. Therefore, using ML techniques 

in APAA systems can be an opportunity in future studies 

to improve the application of APAAs in various 

communication systems. 

III. PHASED ARRAY ANTENNA (PAA) 

PAA is a multi-antenna package whose desirable 

radiation pattern is conducted in a certain direction while 

suppressing undesirable radiations. In addition, to change 

the direction of the PAA radiation, there is no need to 

move the antenna mechanically, and the direction of the 

pattern is electronically controlled. These capabilities 

cause the PAA to find many applications in 

communication systems. By PAA, it is possible to achieve 

more reliable and robust telecommunication links by 

reducing the “multi-path fading” and “co-channel 

interference” problems due to suppression of unwanted 

signals emitted from other directions. PAAs are used in 

“base stations” of mobile cellular networks to increase the 

coverage of the main signal in a desired area while 

suppressing interference in the other areas [15 45]. 

Satellite television (TV) systems also use PAA. PAA-

based broadcast links have higher performance in adverse 

weather, being smaller and lighter in weight, which can be 

easily installed on the walls and roofs compared to 

traditional parabolic dish systems. In addition, the adaptive 

shaping of the radiation pattern in such antennas allows 

moving objects such as airplanes to access satellite 

programs [46]. In addition to telecommunication 

applications, biomedical applications can benefit from the 

advantages of PAAs [47−49]. For example, in microwave 

imaging to detect breast cancer PAAs are used [50−52]. 

A. PAA Structure 

Antenna radiation pattern or simply antenna pattern is 

defined as a mathematical function or a graphical 

representation of antenna radiation properties. In most 

cases, the antenna pattern is obtained in the antenna far 

field [53]. The elements of a PAA can be arranged linearly 

(one dimension), planarly (two dimensions), or conformal 

(three dimensions) to produce different radiation patterns. 

Fig. 8 shows linear and planar array antennas. 

 

(a) 

 
(b) 

Figure 8.   PAA types, a) linear [54], b) planar [55]. 

 

In array antennas that consist of a number of similar 

elements, the antenna pattern is obtained based on the 

theorem of pattern multiplication [56]: 

 

Array radiation pattern = Array element radiation 

pattern × Array factor (AF)                 (1) 

 

Fig. 9 depicts the array pattern obtained by multiplying 

the array element pattern by the AF for a 5-elements array 

(array elements are horn antennas). In the pattern 

multiplication theorem, AF is a function that depends on 

the geometry of the array and excitation currents of the 

elements in terms of their phase and feeding range. 

Therefore, AF depends on the array type. Fig. 10 shows a 
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simple schematic of linear and planar arrays. It is assumed 

that the array elements are located at equal distances (d). 

1) AF in linear array  

Assuming that all array elements are identical, the AF is 

independent of the array element type. Therefore, the field 

of an array element with radiation angle θ located at the 

origin is obtained from the following equation: 

                                    𝐸𝜃 = 𝐼0
𝑒−𝑗𝑘𝑟

4𝜋𝑟
                               (2) 

where, I0 is the excitation current of the isotropic element, 

k is the free space wave number, and r is the distance of 

the observation point from the origin. It is assumed that all 

elements are located at the same distance d from each other. 

The concepts of r, d, and θ for a linear array with eight 

elements are shown in Fig. 11. 

 

 

 

 

 

 

 
     (a)                                     (b)                                    (c) 

Figure 9.   Radiation pattern of a 5-elemens linear array composed of 

five 1𝜆 × 1𝜆 horn antenna: a) a horn antenna pattern, b) AF, c) array 

pattern [57] 

    

                      

 

 

 

 

 

                          (a)                                               (b) 

Figure 10. Schematic of PAA: a) linear array with N-elements, b) planar 

elements-2×N1array with N 

 

Figure 11. A linear array with eight elements. 

 

It is assumed that the excitation current of the elements 

are equal and the element located at the origin is 

considered as the reference phase (i.e., ∅1 =0). 

 

      𝐼1 = 𝐼0,    𝐼2 = 𝐼0𝑒𝑗∅2 , …,    𝐼𝑁 = 𝐼0𝑒𝑗∅𝑁          (3) 

 
The electromagnetic fields around the elements are 

obtained as follows: 

                      𝐸𝜃1
≈ 𝐼0

𝑒−𝑗𝑘𝑟

4𝜋𝑟
= 𝐸0                                  (4) 

 

   𝐸𝜃2
≈ 𝐼0𝑒𝑗∅2

𝑒−𝑗𝑘(𝑟−𝑑𝑐𝑜𝑠𝜃)

4𝜋𝑟
= 𝐸0𝑒𝑗(∅2+𝑘𝑑𝑐𝑜𝑠𝜃)              (5) 

 

𝐸𝜃𝑁
≈ 𝐼0𝑒𝑗∅𝑁

𝑒−𝑗𝑘[𝑟−(𝑁−1)𝑑𝑐𝑜𝑠𝜃]

4𝜋𝑟
= 𝐸0𝑒𝑗[∅𝑁+(𝑁−1)𝑘𝑑𝑐𝑜𝑠𝜃](6) 

 

The array field is obtained from the superposition of the 

array element fields and is expressed as follows: 

 

      𝐸𝜃 = 𝐸𝜃1
+ 𝐸𝜃2

+ ⋯ + 𝐸𝜃𝑁
= 𝐸0 × 𝐴𝐹               (7) 

 

The AF for a linear array with N elements separated by 

d is obtained by Eq. (5) as follows: 

 

𝐴𝐹 = [1 + 𝑒𝑗(∅2+𝑘𝑑𝑐𝑜𝑠𝜃) + ⋯ + 𝑒𝑗[∅𝑁+(𝑁−1)𝑘𝑑𝑐𝑜𝑠𝜃]     (8) 

 

The phases of uniform linear array elements (with the 

same elements and the same distances) with the linear 

phase progressing from one element to another are as 

follows: 

 

∅1 = 0,   ∅2 = 𝛼,   ∅3 = 2𝛼, … , ∅𝑁 = (𝑁 − 1)𝛼      (9) 

 

where, α is the amount of phase change of array elements. 

By inserting the linear phase values in the general formula 

of an array with N elements, AF is obtained as follows: 

 

𝐴𝐹 = [1 + 𝑒𝑗(𝛼+𝑘𝑑𝑐𝑜𝑠𝜃) + ⋯ + 𝑒𝑗(𝑁−1)[𝛼+𝑘𝑑𝑐𝑜𝑠𝜃] =

∑ 𝑒𝑗(𝑛−1)𝜓𝑁
𝑛=1                                                            (10) 

 

The term α+kdcosθ which is denoted by 𝜓  is array 

function phase, which is related to the distance of elements, 

phase shifts, and radiation angles. If the AF in Eq. (6) is 

multiplied by 𝑒𝑗𝜓, the following relation is resulted: 

 

            𝐴𝐹 × 𝑒𝑗𝜓 = [𝑒𝑗𝜓 + 𝑒2𝑗𝜓 + ⋯ + 𝑒𝑗𝑁𝜓]           (11) 

 

By subtracting the AF from the above equation, AF can 

be obtained as follows: 

 

             𝐴𝐹 = 𝑒𝐽(𝑛−1)
𝜓

2
sin (

𝑁𝜓

2
)

sin (
𝜓

2
)

                               (12) 

 

The exponential in Eq. (10) shows the phase shift of the 

phase center of the array relative to the origin. If the 

position of the array is moved so that the center of the array 

is at the origin, the phase term is lost and finally, the AF 

after phase change and normalization becomes the 

following simple form: 

 

                     𝐴𝐹 =
1

𝑁

sin (
𝑁𝜓

2
)

sin (
𝜓

2
)

                                   (13) 

 

PAA usually consist of a feeding network and phase 

shifters. The feeding network and the phase shifters are 

used to control the phase of element currents to obtain the 

pattern of the array antenna for radiation in the desired 
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direction [58] perform distribution of the transmitter signal 

(current) to the elements. In general, the array-feeding 

networks can be divided into three main classes: (1) 

limited feeding, (2) spatial feeding, and (3) semi-limited 

feeding (a combination of limited and spatial feeding) [59]. 

In a spatial feeding, the array is fed by a separate feeding 

horn located at a suitable distance from the array [60]. 

Fixed feed, which is the simplest method, power is taken 

from a source and through a feed line is distributed to the 

elements. The limited feeding method is classified into two 

main types: (1) parallel feeding, and (2) serial feeding [61]. 

As an example, the parallel feeding method in a linear 

array with eight elements is shown in Fig. 11. 

2) AF in planar array  

Unlike linear array, which can only scan the original 

radiation pattern of the array in one polar plane (elevation 

or azimuth plane), planar array can scan the original 

pattern in both θ and ϕ directions. Compared to linear 

arrays, planar arrays have higher gain and fewer sub-lobes. 

The principles of planar array design are similar to the 

linear array. In planar array, the elements are arranged in 

two dimensions, and AF can be shown as the product of 

the AF of two linear arrays, one along the x-axis and the 

other along the y-axis (Fig. 10 (b)) [62]: 

 

      𝐴𝐹 = 𝐴𝐹𝑥 × 𝐴𝐹𝑦 =
sin (

𝑁1𝜓𝑥
2

)sin (
𝑁2𝜓𝑦

2
)

𝑁1sin (
𝜓𝑥

2
)𝑁2sin (

𝜓𝑦

2
)
                  (14) 

 

                    𝜓𝑥 = 𝑘𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑥                        (15) 

 

                    𝜓𝑦 = 𝑘𝑑𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑦                        (16) 

 

3) AF in conformal array  

When the array elements are arranged properly in a 

space, they can form three-dimensional (3D) or conformal 

array. In this case, the AF is shown as follows: 

 

𝐴𝐹 = 𝐴𝐹𝑥 × 𝐴𝐹𝑦 × 𝐴𝐹𝑧 =
sin (

𝑁1𝜓𝑥
2

)sin (
𝑁2𝜓𝑦

2
)𝑠𝑖𝑛(

𝑁3𝜓𝑧
2

)

𝑁1sin (
𝜓𝑥

2
)𝑁2sin (

𝜓𝑦

2
)𝑁3sin (

𝜓𝑧
2

)
(17) 

       𝜓𝑥 = 𝑘𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑥                                     (18) 

  

        𝜓𝑦 = 𝑘𝑑𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑦                                    (19) 

 

         𝜓𝑧 = 𝑘𝑑𝑧𝑐𝑜𝑠𝜃 + 𝛼𝑧                                            (20) 

 

IV. ML TECHNIQUES AND ALGORITHMS   

ML can give computers the ability to learn without 

explicit programming. ML is a branch of computer science 

in which machines are designed so that can program 

themselves [63]. The training process is simply learning 

from previous experiences or observations, such as 

guidelines for looking for patterns in data so that the better 

decision can be made by the machine. The main goal of 

ML is learned automatically and do tasks without human 

intervention [64, 65]. Fig. 12 illustrates ML process. 

Previous data is used to train the model and then the trained 

model is used to test new data, and finally to predict the 

results. Trained model performance is evaluated by a part 

of the previously available data (data not provided during 

model training). This is called the model validation process. 

It measures the accuracy of the model's performance on 

data that has not been seen by the model before. In this 

case, the ratio of the number of correctly predicted features 

to the total features available for prediction describes the 

accuracy of the model. 

ML techniques can be classified into four general 

classes including: (1) supervised, (2) unsupervised, (3) 

semi-supervised, and (4) reinforcement learning. 

Algorithms have been proposed for each of these 

techniques.  

 

 
(a) 

 
(b) 

Figure 12. ML process: a) model training, b) model evaluation. 

 

A.  ML techniques 

1) Supervised learning 

In supervised learning new data is derived using labeled 

data based on what they have already learned and to 

predict future events or labels. In this technique, 

monitoring which means labeling the data is used to guide 

or modify the model. For this purpose, the training set is 

known and then the learning algorithm predicts the output. 

By comparing the predicted output with the actual output 

and if errors are identified, the model can be corrected 

while correcting them [63]. 

2) Unsupervised learning 

 In these types of techniques, there is no observer (label) 

to guide or correct the model. These types of ML 

techniques are used when there is unlabeled or unclassified 

data to train the model. In this case, the system does not 

correctly define the output, but explores the data in such a 

way that it can extract rules from the data set and describe 

the hidden structures of the unlabeled data [63-65].  

3) Semi-Supervised learning 

These techniques are methods that fall between 

supervised and unsupervised learning. Therefore, these 

types of learning algorithms use both unlabeled and 

labeled data for training purposes. In general, they use less 

labeled data and more unlabeled data. This technique is 

used to improve the accuracy of learning. 

Historical Data

((Training Data
ML Algorithm

Prediction 
Model

New  Data
Prediction 

Model 
Prediction
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4)  Reinforcement learning 

These techniques are a type of learning method that is 

rewarded or punished based on the work done by the 

system. If the system is trained to do a certain task but does 

not do it, the system can be punished. However, if the 

system performs well, it will be rewarded. This is 

represented as 0 and 1, where 0 represents punishment and 

1 represents reward.  

 

 

 

 

 

 

 

 

 

 
 

 

                                (a)                                                     (b) 

Figure 13. Comparison of ANN and DNN: a) ANN, b) DNN 

 

 
Figure 14.   FNN structure with two hidden layers.  

 

 
Figure 15. CNN structure. 

 

 
Figure 16.  RBFNN structure. 

 
Figure 17.  RNN structure with two hidden layers. 

B. ML Algorithms 

Different methods are used to categorize ML algorithms. 

One of them is classification based on similarities. In this 

article, we have categorized ML algorithms based on the 

similarity of their performance. Although this method of 

categorization may be useful, it is not perfect. Because 

there are still algorithms that can easily fall into different 

categories, such as vector quantization training, which is 

both a neural network-inspired method and a sample-based 

method. The ML algorithms can be grouped according to 

their similarities [66]. 

Among the ML algorithms, ANN algorithms are models 

that are inspired by the structure or function of biological 

neural networks. These algorithms are a class of pattern 

matching that are commonly used for regression and 

classification problems, but are actually a huge sub-field 

of hundreds of different algorithms used to solve 

variousproblems. The main difference between ANN and 

deep neural network (DNN) is in the number of their 

hidden layers. In other words, there is only one hidden 

layer in the ANN, while DNN has more than one hidden 

layer. Fig. 13 shows the general schemes of ANN and 

DNN. In ANN, we deal with methods that are more 

classical. DL algorithms are a modern update to ANNs that 

exploit abundant low-cost computations. DL algorithms 

build much larger and more complex neural networks, and 

many DL methods are associated with very large labeled 

datasets. In general, DNNs consist of simple processing 

interconnected nodes and three types of layers. These 

layers are: 1) the input layer, which contains the feed data, 

2) the hidden layer/layers, which are responsible for all the 

calculations, and 3) the output layer, which produces the 

result. We mention some of the most popular NNs in this 

section as follow [67]:  

• FNN: Feedforward NN or simply FNN is the simplest 

type of NN, and as can be seen from Fig. 14, this type 

of NN consists of several simple neurons organized 

in layers. Each unit in a layer is connected to all units 

in the previous, while there are not any feedback 

connections on the model outputs. 

• CNN: Convolutional NN or simply CNN is a 

remarkable class of NNs in which they use 

convolution instead of multiplicative neurons (see 

Fig. 15). For example, the generation of image 

features is done by applying a filter on the image, as 

it can use the correlation between pixels. Such NNs 

are popular for classification tasks and for obtaining 

spatial features of the input layer.  

• RBFNN: In radial basis function NN or simply 

RBFNN, a type of function is used which changes 
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according to the distance from a location and acts as 

activation function. As shown in Fig. 16, RBFNN 

consists of input, hidden layers, and an output. 

Depending on the basis function and the number of 

hidden layers, RBFNN can be considered non-linear. 

• RNN:  Recurrent NN or simply RNN differs from 

FNN in having a feedback loop and exploiting 

previous input data to influence subsequent inputs 

due to its memory (see Fig. 17). As a result, they are 

mainly used for temporal tasks. Due to their key 

impact in various research fields, two advanced RNN 

architectures are discussed, namely long short-term 

memory (LSTM) and gated recurrent unit (GRU). 

V. CONCLUSION 

One of the most widely used antennas in 

communication systems are PAAs, which have attracted 

the attention of researchers due to the development of their 

applications. An important issue in the design of PAAs is 

the synthesis of their radiation patterns. Since in a PAA, 

the desired radiation pattern is obtained by adjusting the 

phase difference between signals feeding the array 

elements, therefore, providing a model to obtain the 

desired radiation pattern is an important and fundamental 

issue in the design of these antennas. In conventional PAA 

synthesis methods, use antenna simulation software that is 

based on electromagnetic models. These models are very 

time-consuming in addition to having errors. Recently, 

ML techniques have been used to design and synthesize 

array antennas. By replacing ML techniques instead of 

electromagnetic simulation, in addition to increasing 

accuracy and reducing errors in PAA pattern synthesis, the 

design process time is also reduced and time is saved. In 

this paper, we reviewed the ML techniques in PAA 

synthesis. This study shows that the use of ML techniques 

leads to the improvement of PAA synthesis in 

communication systems. There are a few challenges 

related to ML applications, such as feature engineering, 

existence of the hyper parameters, capacity, complexity, 

and the necessity of conducting multiple experiments for a 

suitable architecture. The large number of parameters and 

meta-parameters required for tuning is the main weakness 

of ML techniques, which makes the process complicated 

and time-consuming. Nevertheless, it can be hoped that 

ML techniques will play a dominant role in the design of 

array antennas through faster solutions. The key advantage 

of ML techniques is the accuracy in solving complex 

problems. The main opportunities ahead regarding the 

application of ML techniques in PAAs are: (a) improving 

the level of evolution of ML techniques in order to achieve 

better results with understanding of the structure and 

continuous training, and (b) achieving a balance between 

precision and accuracy of complexity in order to quickly 

demonstrate its general superiority over traditional 

approaches. Furthermore, the implementation of a real-

time platform to evaluate the actual speed-up factors is 

needed, which is subject to ongoing and future studies. In 

addition, in the studies related to the applications of AI 

especially ML in PAA, there is a gap regarding adaptive 

PAA (APAA), which can be an opportunity in future 

studies in this field. Therefore, the use of ML techniques 

in the design of APAA can be an opportunity to improve 

the methods of using APAAs in various applications. 

  CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Mohammad Reza Ghaderi contributed to the machine 

learning algorithms development for the article, as well as 

the initial paper writing. Nasrin Amiri contributed to 

phased array antenna synthesis methods and fine-tuning 

the manuscript. All research activities were conducted 

under the supervision of Mohammad Reza Ghaderi. All 

authors have approved the final version of the paper.  

REFERENCES 

[1] M. M. Khan, S. Hossain, P. Mozumdar, S. Akter, and R. H. 

Ashique, “A review on machine learning and deep learning for 

various antenna design applications,” Heliyon, vol. 8, no. 4, 2022. 

[2] I. Merino-Fernandez, S. L. Khemchandani, J. del Pino, and J. Saiz-

Perez, “Phased array antenna analysis workflow applied to 

gateways for LEO satellite communications,” Sensors, vol. 22, no. 

23, p. 9406, Dec. 2022. 

[3] R. Umair, P. Dalal, S. M. Abbas, and S. Khan, “Phased array 

antenna for millimeter-wave 5g mobile phone applications,” 

presented at the 2022 IEEE Wireless Antenna and Microwave 

Symposium (WAMS), pp. 1–4. IEEE, 2022. 

[4] S. D. Campbell, R. P. Jenkins, P. J. O’Connor, and D. Werner, 

“The explosion of artificial intelligence in antennas and 

propagation: How deep learning is advancing our state of the art,” 

IEEE Antennas Propag. Mag., vol. 63, no. 3, pp. 16–27, Jun. 2021. 

[5] F. Zardi, P. Nayeri, P. Rocca, and R. Haupt, “Artificial 

intelligence for adaptive and reconfigurable antenna arrays: A 

review,” IEEE Antennas Propag. Mag., vol. 63, no. 3, pp. 28–38, 

Jun. 2021. 

[6] S. Li, Z. Liu, S. Fu, Y. Wang, and F. Xu, “Intelligent beamforming 

via physics-inspired neural networks on programmable 

metasurface,” IEEE Trans. Antennas Propag, vol. 70, no. 6, pp. 

4589–4599, Jun. 2022. 

[7] F. Zardi, P. Nayeri, P. Rocca, and R. Haupt, “Artificial 

Intelligence for adaptive and reconfigurable antenna arrays: A 

review,” IEEE Antennas and Propagation Magazine, vol. 63, no. 

3, pp. 28–38, 2021. 

[8] S. Islam, H. Ouassal, A. I. Omi, A. Wisniewska, H. M. Jalajamony, 

R. E. Fernandez, and P. K. Sekhar, “Application of machine 

learning in electromagnetics: Mini-review,” Electronics, vol. 10, 

no. 22, 2021.  

[9] M. H. Nielsen et al., “Robust and efficient fault diagnosis of mm-

wave active phased arrays using baseband signal,” IEEE Trans. 

Antennas Propag., vol. 70, no. 7, pp. 5044–5053, Jul. 2022. 

[10] Q. Wu, W. Chen, C. Yu, H. Wang, and W. Hong, “Machine 

learning-assisted array synthesis using active base element 

modeling,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 

5054–5065, Jul. 2022. 

[11] B. Zhang et al., “Ultra-wide-scanning conformal heterogeneous 

phased array antenna based on deep deterministic policy gradient 

algorithm,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 

5066–5077, Jul. 2022. 

[12] G. Oliveri, M. Salucci, and A. Massa, “Towards efficient 

reflectarray digital twins — An EM-driven machine learning 

perspective,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 

5078–5093, Jul. 2022. 

[13] B. Zhang, C. Jin, K. Cao, Q. Lv, and R. Mittra, “Cognitive 

conformal antenna array exploiting deep reinforcement learning 

method,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5094–

5104, Jul. 2022. 

[14] H. M. E. Misilmani, T. Naous, and S. K. A. Khatib, “A review on 

the design and optimization of antennas using machine learning 

algorithms and techniques.” International Journal of RF and 

Microwave Computer-Aided Engineering, vol. 30, no. 10, 2020. 

640

Journal of Communications, vol. 18, no. 10, October 2023



 

[15] Balanis, “Antenna theory: Analysis and design,” vol. 1. Hoboken, 

NJ, USA: Wiley, 2005. 

[16] Z. He, Z. Hua, L. Hongmei, L. Beijia, and W. Qun, ‘‘Array antenna 

pattern synthesis method based on intelligent algorithm,’’ 

presented at the IEEE Int. Conf. Electron. Inf. Commun. Technol. 

(ICEICT), Harbin, China, Aug. 2016, pp. 549–551. 

[17] H. W. Wu and D. G. Fang, ‘The synthesis of a magneto-electric 

dipole linear array antenna using the element-level pattern 

diversity (ELPD( technique,’’ IEEE Antennas Wireless Propag. 

Lett., vol. 17, no. 6, pp. 1069–1072, Jun. 2018. 

[18] J. L. Gomez-Tornero, A. J. Martinez-Ros, and R. Verdu-Monedero, 

‘‘FFT synthesis of radiation patterns with wide nulls using tapered 

leaky-wave antennas,’’ IEEE Antennas Wireless Propag. Lett., vol. 

9, pp. 518–521, May 2010. 

[19] H. M. E. Misilmani and T. Naous, ‘‘Machine learning in antenna 

design: An overview on machine learning concept and 

algorithms,’’ presented at the Int. Conf. High Perform. Comput. 

Simulation (HPCS), Dublin, Ireland, Jul. 2019, pp. 600–607. 

[20] E. P. Y. Chen, A. Rozhkova, E. Torabi, H. Bagci, A. Shamim, and 

X. Zhang, ‘‘Machine learning in electromagnetics: A review and 

some perspectives for future research,’’ presented at the Int. Conf. 

Electromagn. Adv. Sep 2019. 

[21] R. G. Ayestaran, F. L. Heras, and L. F. Herran, ‘‘High-accuracy 

neuralnetwork-based array synthesis including element coupling,’’ 

IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 45–48, Mar. 

2006. 

[22] C. Gianfagna, H. Yu, M. Swaminathan, R. Pulugurtha, R. 

Tummala, and G. Antonini, ‘‘Machine-learning approach for 

design of nanomagneticbased antennas,’’ J. Electron. Mater., vol. 

46, no. 8, pp. 4963–4975, Apr. 2017. 

[23] J. Tak, A. Kantemur, Y. Sharma, and H. Xin, ‘‘A 3-D-PrintedW-

Band slotted waveguide array antenna optimized using machine 

learning,’’ IEEE Antennas Wireless Propag. Lett., vol. 17, no. 11, 

pp. 2008–2012, Nov. 2018. 

[24] Q. Chen, H. Ma, and E. P. Li, ‘‘Failure diagnosis of microstrip 

antenna array based on convolutional neural network,’’ presented 

at the IEEE Asia–Pacific Microw. Conf. (APMC), Singapore, Dec. 

2019, pp. 90–92. 

[25] T. Shan, M. Li, S. Xu, and F. Yang, ‘‘Synthesis of reflectarray 

based on deep learning technique,’’ presented at the Cross Strait 

Quad-Regional Radio Sci. Wireless Technol. Conf. (CSQRWC), 

Xuzhou, China, Jul. 2018, pp. 1–2. 

[26] R. Lovato and X. Gong, ‘‘Phased antenna array beamforming 

using convolutional neural networks,’’ presented at the IEEE Int. 

Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting, 

Atlanta, GA, USA, Jul. 2019, pp. 1247–1248. 

[27] J. H. Kim and S. W. Choi, “A deep learning-based approach for 

radiation pattern synthesis of an array antenna,” IEEE Access, vol. 

8, pp. 226059–226063, 2020. 

[28] B. Zhang et al., “Ultra-wide-scanning conformal heterogeneous 

phased array antenna based on deep deterministic policy gradient 

algorithm,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 

5066–5077, Jul. 2022. 

[29] Q. Wu, W. Chen, C. Yu, H. Wang, and W. Hong, “Machine 

learning-assisted array synthesis using active base element 

modeling,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 

5054–5065, Jul. 2022. 

[30] M. Montaser and K. R. Mahmoud, “Deep learning-based antenna 

design and beam-steering capabilities for millimeter-wave 

applications,” IEEE Access, vol. 9, pp. 145583–145591, 2021. 

[31] L.-Y. Xiao, W. Shao, X. Ding, Q. H. Liu, and W. T. Joines, 

“Multigrade artificial neural network for the design of finite 

periodic arrays,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 

3109–3116, 2019. 

[32] H. Bilel and A. Taoufik, “Radiation pattern synthesis of the 

coupled almost periodic antenna arrays using an artificial neural 

network model,” Electronics (Basel), vol. 11, no. 5, p. 703, 2022. 

[33] T. Iye, P. van Wyk, T. Matsumoto, Y. Susukida, S. Takaya, and Y. 

Fujii, “Neural network-based phase estimation for antenna array 

using radiation power pattern,” IEEE Antennas Wirel. Propag. 

Lett., vol. 21, no. 7, pp. 1348–1352, 2022. 

[34] M. H. Nielsen et al., “Robust and efficient fault diagnosis of mm-

wave active phased arrays using baseband signal,” IEEE Trans. 

Antennas Propag., vol. 70, no. 7, pp. 5044–5053, Jul. 2022. 

[35] B. Zhang, C. Jin, K. Cao, Q. Lv, and R. Mittra, “Cognitive 

conformal antenna array exploiting deep reinforcement learning 

method,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5094–

5104, Jul. 2022. 

[36] J. Bang and J. H. Kim, “Predicting power density of array antenna 

in mmWave applications with deep learning,” IEEE Access, vol. 9, 

pp. 111030–111038, 2021.  

[37] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna 

arrays using deep learning,” IEEE wirel. commun. lett., vol. 9, no. 

1, pp. 103–107, 2020.  

[38] S. Bianco, P. Napoletano, A. Raimondi, M. Feo, G. Petraglia, and 

P. Vinetti, “AESA adaptive beamforming using deep learning,” 

presented at the 2020 IEEE Radar Conference (RadarConf20), 

2020. 

[39] A. Sami, and L. Kudsi, “Adaptive array antennas for mobile earth 

stations: A review,” 2017. 

[40] K. K. Shetty, “A novel algorithm for uplink interference 

suppression using smart antennas in mobile communications,” 

M.S. thesis, Florida State University, USA, 2004.  

[41] C. S. Rani, P. V. Subbaiah, K. C. Reddy, and S. S. Rani, “LMS 

and RLS algorithms for smart antennas in a W-CDMA mobile 

communication environment,” ARPN Journal of Engineering and 

Applied Sciences, vol. 4, pp. 77–88, 2009.  

[42] G.V.S Karthik, M. Z. U. Rahman, and T. Anusha, “Algorithm for 

steering smart antennas: an application to wireless 

communications,” International Journal of Research and Reviews 

in Wireless Communications (IJRRWC), vol. 1, pp. 34–42, 2011. 

[43] I. Darsavelidze, J. Manjgaladze, M. Prishvin, and R. Zaridze, “The 

optimal antenna synthesis problem for adaptive phased array,” 

presented at the 2021 IEEE 26th International Seminar/Workshop 

on Direct and Inverse Problems of Electromagnetic and Acoustic 

Wave Theory (DIPED), pp. 151–154. IEEE, 2021. 

[44] J. Fenn,” Evaluation of adaptive phased array antenna, far-field 

nulling performance in the near-field region,” IEEE Transactions 

on Antennas and Propagation, vol. 38, no. 2, pp. 173–185, 1999. 
[45] C. Alakija, and S. Stapleton, “A mobile base station phased array 

antenna,” presented at the 1992 IEEE International Conference on 

Selected Topics in Wireless Communications, 1992. 

[46] P. Brennan, “Low cost phased array antenna for land-mobile 

satcom applications,” IEEE Proceedings H Microwaves, 

Antennas and Propagation, vol. 138, no. 2, pp. 131, 1991. 

[47] P. F. Turner, “Regional Hyperthermia with an Annular Phased 

Array,” IEEE Transactions on Biomedical Engineering, no. 1, pp. 

106-114, 1984.  

[48] M. O'donnell, “Efficient parallel receive beam forming for phased 

array imaging using phase rotation (medical US application),” 

presented at the IEEE Symposium on Ultrasonics, pp. 1495-1498, 

1990.  

[49] J. Souquet, “Phased array transducer technology for 

transesophageal imaging of the heart: Current status and future 

aspects,” Developments in Cardiovascular Medicine, pp. 251–

259, 1982. 

[50] Levy, “Combined endorectal and phased-array MRI in the 

prediction of pelvic lymph node metastasis in prostate cancer,” 

Yearbook of Diagnostic Radiology, vol. 2007, pp. 321–322, 2007. 

[51] Villers, P. Puech, D. Mouton, X. Leroy, C. Ballereau, and L. 

Lemaitre, “Dynamic contrast enhanced, pelvic phased array 

magnetic resonance imaging of localized prostate cancer for 

predicting tumor volume: correlation with radical prostatectomy 

findings,” The Journal of urology, vol. 176, pp. 2432–2437, 2006.  

[52] L. Qian, L. Qingming, and B. Chance, “2D phased array 

fluorescence wireless localizer in breast cancer detection,” in 

Proc. 2003 IEEE International Workshop on Computer 

Architectures for Machine Perception, 2004, pp. 71–73.  

[53] R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed., Artech 

House, New York, 2005, pp. 48–100. 

[54] Join 12,220,000 engineers with over 5,740,000 free CAD files. 

[Online]. Available:  https://grabcad.com/library/28-ghz-ka-

band-16-element-5g-linear-phased-array-assembly-with-2-

4mm-edge-connectors-1  

[55] What is an Active Electronically Scanned Array or AESA? 

[Online]. Available: 

https://www.everythingrf.com/community/what-is-an-active-

electronically-scanned-array   

[56] F. T. Ulaby, “Applied Electromagnetics,” Prentice Hall, Inc., 

New Jersey, 2007, pp. 100–125. 

641

Journal of Communications, vol. 18, no. 10, October 2023

https://grabcad.com/library/28-ghz-ka-band-16-element-5g-linear-phased-array-assembly-with-2-4mm-edge-connectors-1
https://grabcad.com/library/28-ghz-ka-band-16-element-5g-linear-phased-array-assembly-with-2-4mm-edge-connectors-1
https://grabcad.com/library/28-ghz-ka-band-16-element-5g-linear-phased-array-assembly-with-2-4mm-edge-connectors-1
https://www.everythingrf.com/community/what-is-an-active-electronically-scanned-array
https://www.everythingrf.com/community/what-is-an-active-electronically-scanned-array


 

[57] Antenna Arrays. [Online]. Available:  
https://em.groups.et.byu.net/embook/ch9/demo9.3.html 

[58] Phased Array Antenna Patterns—Part 1 - Analog Devices. 

[Online]. Available:  https://www.analog.com/en/analog-

dialogue/articles/phased-array-antenna-patterns-part1.html 

[59] Y. Lo and S. Lee, “Antenna Handbook: Applications,” Kluwer 

Academic Publishers, 1993.  

[60] R. C. Hansen, “Phased array antennas,” Wiley-Interscience, 2009. 

[61] R. C. Johnson and H. Jasik, “Antenna engineering handbook,” 

1984.  

[62] C.A. Balanis, “Modern antenna handbook,” John Wiley & Sons, 

New York, 2008, pp. 60–95. 

[63] Gavin Edwards discusses about Machine Learning: An 

Introduction. [Online]. Available: 

https://towardsdatascience.com/machine-learning-an-

introduction-23b84d51e6d0 

[64] D. Gupta, A. Julka, S. Jain, T. Aggarwal, A. Khanna, N. 

Arunkumar, V.H.C. De Albuquerque, “Optimized cuttlefish 

algorithm for diagnosis of Parkinson’s disease,” Cognit. Syst. Res. 

vol. 52, 2018.   

[65] R. Quinlan, “C4.5: Programs for Machine Learning, Morgan 

Kaufmann Publishers,” San Mateo, CA, 2014. 

[66] Future-Proof AI Infrastructure – HPE AI Custom Model Training. 

[Online]. Available: https://machinelearningmastery.com/a-tour-

of-machine-learning-algorithms/ 

[67] H. A. Kassir, Z. D. Zaharis, P. Lazaridis, N. V. Kantartzis, T. V. 

Yioultsis, T. D. Xenos, “A review of the state of the art and future 

challenges of deep learning-based beamforming,” IEEE Access, 

vol. 10, 2022.  

 

Copyright © 2023 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made。 

 
 

642

Journal of Communications, vol. 18, no. 10, October 2023

https://em.groups.et.byu.net/embook/ch9/demo9.3.html
https://www.analog.com/en/analog-dialogue/articles/phased-array-antenna-patterns-part1.html
https://www.analog.com/en/analog-dialogue/articles/phased-array-antenna-patterns-part1.html
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



