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I.

 

INTRODUCTION

 

Synthetic Aperture Radar (SAR) sensors

 

in Unmanned 

Aerial Vehicles

 

(UAVs) have been gaining popularity and 

allowed flexible surface observation in different practical 

applications in medium-scale observation areas

 

such as 

topographical mapping

 

[1],

 

object detection [2]–[3], and 

phenotyping [4].

  

Growing potential use of large and small 

UAVs for SAR imaging [5]–[7]

 

opens the democratization 

of SAR. It

 

increases

 

potential applications in scientific, 

maritime, earth monitoring,

 

and agricultural monitoring.

 

 

  

and apply specific interventions that can maximize crop 

yield and profits [5]. However, the current allowable 

operation for UAV-equipped SAR sensors can generally 

be as short as 5 minutes and as long as 55 minutes [8] with 

factors such as the energy expenditure of the SAR sensor 

versus its accuracy and the energy capacity of the battery. 

Providing accurate data characterization is essential but 

requires more energy. The sweet spot for compensation 

between energy and signal integrity varies between each 

UAV and SAR module.  

Research in energy and signal integrity relationships in 

UAVs and SAR modules is not well explored. Simulating 

signal integrity over a certain channel can be complicated 

and computationally heavy. It would take a very long time 

to execute. The authors would like to contribute to this gap 

and present the relationship between the overall energy 

expenditure of three UAVs with a SAR sensor and its BER 

following the simulations based on a transmit-channel-

receive chain of 16-quadrature-amplitude (16-QAM), low-

density parity-check (LDPC), independent and identically 

distributed Rayleigh fading channel, and single-antenna 

directivity done through Nvidia Sionna, an open-source 

link-layer simulation tool [9] that will ease the execution 

complexity with reduced simulation time. This work aims 

to guide future adopters in designing off-the-shelf 

commercial UAVs and SAR modules. The selection 

design guidance provided by authors can cut unnecessary 

costs or circumvention of choosing an excessive 

specification for a particular UAV or SAR module 

application in an intended mission. Section II discusses the 

system design.  It is followed by the discussion of the 

results in Sec. III. Lastly, summative remarks are given in 

Sec. IV. 

II. DESIGN OF THE SYSTEM 

A. Signal Fading: BER against 𝐸b/𝑁0 Analysis under 

Rayleigh Fading 

In the case of SAR that relies on moving azimuth, each 

point scatterer on the ground has a different Doppler 

frequency shift which causes the signals to be received to 

have fading characteristics. These fading signal 

characteristics are complicated to simulate and 
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Abstract—This paper presents the relationship between energy 

and signal integrity of Unmanned Aerial Vehicles (UAVs) with 

Synthetic Aperture Radar (SAR) capabilities for a more informed 

off-the-shelf selection design. The energy is expressed in the 

UAV and SAR power consumption, whereas signal integrity is 

expressed in Bit-Error Rate (BER).  Low-end, mid-end, and high-

end—categorized in terms of their market cost—commercial 

UAVs and SAR modules were considered. The energy relations 

are based on the UAV flight path and power ratings.  The signal 

processing and decomposition of the reconstructed objects for the 

model simulations are based on a transmit-channel-receive chain 

of 16-quadrature-amplitude, low-density parity check, Rayleigh 

response, and single-antenna directivity done through Nvidia 

Sionna. The results indicate that far-reaching flight spatial path 

scanning is achieved with high-end UAVs and low-cost SARs, 

but the accuracy is relatively low. Higher accuracy is achieved 

with low-end UAVs with high-cost SARs. Further, the results 

point out that selecting UAV-SAR is critical in terms of energy 

and accuracy for a specific target application. The outcomes 

show tradeoffs in the selection design.

Index Terms—Synthetic Aperture Radar (SAR), Unmanned 

Aerial Vehicles (UAV), Bit-Error Rate (BER), rayleigh fading, 

nvidia sionna, energy, signal integrity, selection design

Early adopters of using UAVs equipped with camera 

sensors or synthetic apertures in agriculture enjoy the 

benefit of in-situ data characterization of growing crops 
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computationally heavy. Recently, Nvidia Sionna, a GPU-

accelerated TensorFlow-based library for simulating the 

physical layer of wireless communication systems, was 

released.  

The authors maximized the tool to test the performance 

of the SAR in UAV by getting the Bit-Error Rate (BER) 

against the ratio of bit energy to noise power spectral 

density ( 𝐸b/𝑁0) under the Rayleigh fading model in 

Nvidia Sionna [9]. 

Fig. 1 shows the architectural block diagram of the 

system model for a simulation of SISO transmissions over 

a flat-fading channel that approximates real-world wireless 

transmissions [10].  An instance of flat-fading channel 

class was created to simulate transmissions over an 

independent and identically distributed Rayleigh fading 

channel.  

A point-to-point transmission from the transmitter 

antenna to the SAR's receiver antenna was investigated.  

The simulation uses no precoding, and each antenna sends 

its own data stream. 

A batch of random transmit vectors of random 16QAM 

symbols are generated as the binary source. The low-

density parity-check (LDPC) code module is used in the 

system model as a compliant encoder and a corresponding 

decoder. 

 

   

Fig. 1. SISO SAR over flat-fading channel block diagram model 

The FlatFading Channel uses the Kronecker correlation 

model using exponential correlation matrices to add spatial 

correlation to an independent and identically distributed 

Rayleigh fading channel. 

Computing error rates such as BER are used for 

characterization and help future system designers choose 

the best methods for mitigating errors. 

The Bit Error Rate (BER) is a critical metric for 

evaluating systems that transfer digital data from one 

location to another.  Data are prone to errors that are 

introduced into the system when data is transmitted across 

a data link. BER measures a system's overall performance, 

including the transmitter, receiver, and connecting 

medium. 

BER is the error rate of binary signals that occurs in a 

transmission system and is described in eq. 1.  

 
𝐵𝐸𝑅 =

𝐵𝑒

𝐵𝑠
 (1)

 

where 𝐵𝑒, is the total number of bit errors and 𝐵𝑠 is the total 

number of bits sent. 

The assumptions of the classical SAR image generation 

model led to a Rayleigh distribution model [11]. The return 

signal comprises numerous separate complex signals that 

fluctuate as the relative magnitudes and phases of the 

scatterers change geographically. The envelope fluctuation, 

a linear detector that outputs the magnitude of the envelope 

voltage, reveals that it follows a Rayleigh distribution. For 

Rayleigh fading, the ratio of the square of the envelope 

means to the variance of the fluctuating component is a 

form of inherent signal-to-noise ratio. The Rayleigh 

distribution is given by eq. 2.  

 

𝑃(𝑟) =
𝑟

𝜎2
 𝑒

(−𝑟2

𝜎2⁄ )
, 0 ≤ 𝑟 ≤ ∞ (2) 

 

where σ is the rms value of the received signal, 𝑟2 2⁄  is the 

instantaneous power, and 𝜎2 is the local average power of 

the received signal before detection. 

B. UAV and SAR Specifications 

In this paper, three UAVs with SAR are selected [7], 

[12], [13] as the benchmark platform for comparisons that 

represents low-end, mid-end, and high-end UAVs, 

respectively.  The classifications were based on the cost or 

the suggested retail price (SRP) of the respective 

commercial drones at the time of their releases. 

The mentioned UAVs with SAR modules are chosen by 

their availability.  Most have been used in personal, 

educational, commercial, and industrial settings.  The 

extracted specifications in their respective datasheets were 

the UAV battery energy capacity, UAV power 

consumption, SAR power consumption, and UAV plus 

SAR weight. Table I shows the summary of the 

specifications. 

 UAV AND SAR SPECIFICATION SUMMARY 

UAV / SAR 

Battery 

Energy 

Capacity 

UAV 

Power 

Consump

tion 

SAR 

Power 

Consump

tion 

UAV 

plus 

SAR 

weight 

DJI Phantom 2 / 

Time Domain 

PulsON 410 

11.1V, 

5200mAh, 

57.72Wh 

130W 4.2 W 
1 kg, 

58 g 

Spreading 

Wings S900 / 

INRAS RDL-

77G-TX2RX16 

22.2V, 

12000mAh, 

266.4Wh 

1000W 11.1W 
6.8 kg, 

60 g 

Matrice 600 Pro 

/ 77 GHz FPGA 

mmWave 

51.2V, 

12960mAh, 

663.552Wh 

1250W 25.6W 
10kg,  

3kg 

 

The specifications were extracted from the 

manufacturer's respective datasheets.  Some information is 

not directly extracted from the datasheet, as some are not 

explicitly. 
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Because LiPo batteries, such as those used on the 

selected UAVs, are easily degraded if fully or 100% 

discharged [14], the authors use a conservative 80% of 

each UAV's electric charge to compute battery capacity, as 

shown in Table II. 

 UAV USEABLE BATTERY CAPACITY ENERGY 

UAV 

Battery 

Voltage, 

(V) 

Total 

Battery 

Capacity, 

(mAh) 

Useable 

Battery 

Capacity, 

(mAh) 

DJI 

Phantom 2 
11.1 5200 4160 

Spreading 

Wings 

S900 

22.2 12000 9600 

Matrice 

600 Pro 
51.2 12960 10368 

 

The power P expressed in watts shown in Table III of 

an electrical device is equal to the voltage V multiplied by 

the current I, according to Ohm's law. We multiply both 

sides of the equation by time to determine the energy 

stored in a battery since energy is power multiplied by time: 

 

𝐸 = 𝑉 ∙ 𝐼 ∙ 𝑇 (3) 

 

Remember that ampere-hours are a unit of measurement 

for the electric charge Q in the battery. 

 

𝐸 = 𝑉 ∙ 𝑄, (4) 

 

where 𝐸  is the energy stored in a battery, expressed in 

watt-hours, 𝑉  is the voltage of the battery, and 𝑄  is the 

electric charge capacity of the battery in amp-hours. 

 UAV WEIGHT AND POWER CONSUMPTION 

UAV 
UAV weight, 

(g) 

Total Power 

Consumption, 

(W) 

DJI Phantom 2 1000 130 

Spreading 

Wings S900 
6800 1000 

Matrice 600 Pro 10000 1250 

 

In its electrical parameters datasheet [9], INRAS RDL-77G-

TX2RX16 specifies three supply currents and voltages, 

with maximum supply voltages of 3.4 V, 5.1 V, and 3.4 V, 

and supply currents of 2100 mA, 200 mA, and 860 mA, 

respectively which computes as its SAR power 

consumption to be 11.1 W. The other SAR sensor 

parameters are extracted directly from publicly available 

data sheets.  

TABLE IV.  SAR WEIGHT AND POWER CONSUMPTION 

SAR 
SAR weight, 

(g) 

Total Power 

Consumption, (W) 

Time Domain 

PulsON 410 
58 4.2 

INRAS RDL-77G-

TX2RX16 
60 11.1 

77 GHz FPGA 

mmWave 
3000 25.6 

The overall power consumption of the SAR and its 

related weight are shown in Table IV. 

The total power consumption of the UAV and SAR can 

be computed by summating the UAV power consumption 

and SAR power consumption. 
 

𝑓𝑐 = ∑ 𝑓𝑈𝐴𝑉

𝑁

𝑛

+ 𝑓𝑆𝐴𝑅 (5) 

 

where 𝑓𝑝  is the total power consumption in, 𝑓𝑈𝐴𝑉  is the 

power consumption of the UAV, and 𝑓𝑆𝐴𝑅  is the power 

consumption of SAR in watts. 

 UAV  SAR  ALL UP WEIGHT AND POWER CONSUMPTION  

UAV and SAR 
All up 

Weight, (kg) 

Total Power 

Consumption, (W) 

DJI Phantom 2 1.058 134.2 

Spreading Wings 

S900 
6.860 1011.1 

Matrice 600 Pro 10.300 1275.6 

 

C. Flight Path: UAV Grid Flight Path Planning 

Drone grid flight paths are ideal for mapping missions, 

especially in areas where SAR is commonly used to 

capture data images for processing.  

A web-based grid flight planning application [15] was 

used to set a pre-determined flight path. The drone flight 

path proprietary algorithm of the mentioned application 

was used to calculate the time needed to map 32.52 

hectares of farmland in Silang, Cavite. Fig. 2 shows the 2D 

drone grid path plan. 

 

 

Fig. 2. Drone grid path simulation 

The parameters used were 70% side lap and front lap 

with a cruising altitude of 100 meters. The average speed 

of the UAV is 20 kilometers per hour. The calculated time 

to map the target dimensions was 24 minutes. 

D. Relationship of Bit Error Rate and Power 

Consumption for Different Types of UAV 

The duration to scan the coverage area 𝑡𝐶𝑂𝑉 is known 

with our grid path plan and can be converted into an M × 1 

matrix, spliced per minute. Hence, we can calculate the 

energy consumption of the UAV. The energy consumption 

of the UAV is dependent on the voltage 𝑉and power rating 

𝐴ℎ. 
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TABLE III:

TABLE II:

TABLE V:



𝐸𝑈𝐴𝑉 = 𝑊ℎ = 𝑉 ∙ 𝐴ℎ (6) 

Assume that the energy available for SAR 𝐸𝑆𝐴𝑅  is 

dependent on the energy capacity of the UAV. 

𝐸𝑆𝐴𝑅 = 𝐸𝑈𝐴𝑉 = 𝑊ℎ = 𝑊[𝑡𝐶𝑂𝑉]𝑇 (7) 

Then we can impose 𝐸𝑆𝐴𝑅

 
to be a function of time by 

multiplying the power consumed by SAR with
 
the vector

 

𝑡𝐶𝑂𝑉 .
 

Assume that
 
ESAR

 
uses energy per bit 𝐸𝑏

 
and

 
neglects 

the energy for the amplifier, impedance matching circuits, 

band-pass filter, and antenna that usually consume the 

energy.
 

Assume that the noise density is constant from all the 

vectors of the matrix 𝑡𝐶𝑂𝑉. 
 
Since the location is relatively 

flat, the temperature would be the same.
 
The temperature 

used in this simulation is 30 degrees centigrade.
 

 

𝑁0 = 𝑘𝑇 = (
𝑊

𝐻𝑧
) , (8)

 

  

Power consumption can now be plotted after the 

computation. It is assumed that the equation expressed 

means that the system that requires power is the UAV and 

the SAR system only. 

 

𝑓𝑐 = 𝑓𝑒 + 𝑓𝑚 = 𝑓𝑆𝐴𝑅 + 𝑓𝑈𝐴𝑉 (9) 

 

Overall power consumption is 𝑓𝑐 ,  and 𝑓𝑒  denotes all 

electrical power consumption which is from SAR, 𝑓𝑚 

denotes all the mechanical power consumption which is 

from the UAV. 

Getting the power of SAR in terms of time (𝑡), 

 

𝑓𝑆𝐴𝑅 (𝑡) = 𝐸𝑆𝐴𝑅(𝑡) = 𝐸𝑏(𝑡) (10) 

where (𝑡), is equal to the matrix 𝑡𝐶𝑂𝑉 expressed in vector 

form, 𝑓𝑆𝐴𝑅 and 𝑓𝑈𝐴𝑉 is expressed in an M × 1 matrix.  We 

then derive Table VI. 

 MATRIX TABLE 

M 
Eb/N0 BER 𝑓𝑆𝐴𝑅 𝑓𝑈𝐴𝑉 𝑓𝑐 

(dB) (unitless) M × 1 M × 1 M × 1 (Wh) 

1 dB  Wh Wh Wh 

… … … … … … 

M dB  Wh Wh Wh 

 

Generally, the lower the value of the BER, the better the 

performance.  Radars, including SAR, depends on the 

reflected information or the backscatter.  In this paper, the 

reflected data are affected by the Kronecker with low 

correlation. The relationship between BER and a UAV's 

power consumption with SAR sensor operating at the 

discussed methodology is investigated.  

III. RESULTS AND DISCUSSIONS 

A. Signal Fading: BER against Eb/N0 Analysis under 

Rayleigh Fading 

𝐸b/𝑁0  is the normalized signal-to-noise ratio equal to 

the SNR divided by the "gross" link spectral efficiency in 

(bit/s)/Hz, where the bits in this context are transmitted 

data bits, including error correction information and other 

protocol overhead.  The computed BER versus the spectral 

noise density in a SISO SAR over i.i.d Rayleigh channel is 

shown in Fig. 3. SISO SAR configuration relies on the 

chirp waveform transmitted signal [16], which is the basic 

SAR configuration.  

Additionally, LDPC encoding and decoding method 

and Kronecker low correlation model have been treated 

with the simulation for a low noise performance to meet 

the reduced transmit power without losing signal-to-noise 

ratio and thus avoid expensive transmitter [17]. 

 

 

Fig. 3. BER vs. Eb/N0 over i.i.d. Rayleigh fading channel 

The Monte-Carlo simulation model shows that it has a 

good performance with low error rates occurring as low as 

𝐸b 𝑁0⁄ = 9 dB. 

B. Relationship of BER and Power Consumption for 

Different UAV SAR 

1) Low-end UAV with low-end SAR 

The DJI Phantom 2 has a total 4160 mAh useable 

battery capacity and is considered low-end as the SRP cost 

suggests compared to the other UAVs in this paper. Fig. 4 

shows the scatter plot results with a linear regression 

coefficient of determination of 𝑅² =  0.0235.  

 

Fig. 4. Power consumption vs. BER of DJI Phantom 2 with SAR 

2) Mid-end UAV with mid-end SAR 

The Spreading Wings S900 has a total 9600 mAh 

useable battery and is considered the in-between as the 
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high-end is the successor of this UAV and costs 

significantly less. Fig. 5 shows the results with a linear 

regression coefficient of determination of 𝑅² =  0.1017. 

 

 

Fig. 5. Power consumption vs. BER of DJI Phantom 2 with SAR 

3) High-end UAV with high-end SAR 

The Matrice 600 Pro has a total 10368 mAh useable 

battery capacity and is considered high-end as it is the 

heaviest but has the longest flight time. Fig. 6 shows the 

results with linear regression of 𝑅² =  0.0239.  

  

 

Fig. 6. Power consumption vs. BER of DJI Phantom 2 with SAR 

Fig. 7 shows the energy and signal integrity 

relationships of three UAV and SAR modules with linear 

regression. It shows that high-end UAVs show a steeper 

downward slope, which suggests that increasing power 

consumption leads to lower BER. However, with low-end 

UAVs, the same BER value could also be obtained with 

less power consumption.  The results also indicate that 

low-end UAVs show a leveled slope which implies 

minimal effect on the BER as the energy varies. In the case 

of mid-end UAVs, it shows performance between high-

end and mid-end UAVs. 

 

Fig. 7. Power consumption vs. BER of all UAV and SAR combinations 
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The steepest downward slope of energy and signal 

integrity UAV and SAR combination is the high-end UAV 

with low-cost SAR.  The most balanced performance is the 

low-end UAV and high-cost SAR combination.  

IV. CONCLUSION 

The simulation of commercial UAVs with SAR sensors 

in a flight grid path determined the relationship between 

the total power consumption of the system and its accuracy 

in BER.  The model result does not directly describe much 

of the variance in the dependent variable in the matrices 

presented as observed in the calculated coefficient of 

determination 𝑅².   The Monte-Carlo simulation model 

from Sionna recorded nominal error rates at 𝐸b/𝑁0  =
 9.0 dB  and above.  Additionally, the coefficient of 

determination R² from the three UAVs follows the same 

linear regression of downward slope, which indicates that 

higher power consumption garners lower BER with much 

intensity on high-end UAVs. The mid-end UAVs follow 

the downward slope pattern but with much less intensity 

relatively. The low-end UAV shows the least slope 

relationship.  Generally, the simulation showed a 

predictable accuracy pattern regarding the system's power 

consumption. 

While low-end, mid-end, and high-end commercial 

UAVs and SAR modules were considered, the results 

indicate that far-reaching flight spatial path scanning is 

achieved with high-end UAVs and low-cost SARs.  

However, the accuracy is relatively low, and higher 

accuracy is achieved with low-type UAVs with high-cost 

SARS.  Furthermore, the results point out that selecting 

UAV-SAR is critical in terms of energy and accuracy for 

the target application, which shows tradeoffs in the 

selection design. 
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